专利名称:在基因算法、信息编码和非重复加密中采用合成基因的制作方法
技术领域:
本发明涉及基因算法(genetic algorithms)、信息编码和信息加密。具体说,本发明涉及基因算法的结构和如何能够使该结构更精确地类似于自然的基因范型;复杂数据组编码的结构,具体说,数字上体表达的数据组;和绝对可靠的信息加密方法。特别适用该发明的问题的范围是,传统基因算法的更自然的类基因的实现、以合成基因的形式提高信息编码的效率和/或采用合成基因的信息加密可能是这些问题的一个解决途径。
背景技术:
基因算法用于解决研究、发展和实施的许多领域,尤其是科学和工程中的问题已经有很多年了。基因算法的核心魅力是其对于否则难以解决的问题提出的新颖解决途径的概念。因为其存在与自然生物基因相同的巨大魔力和惊人效果的原因,通过基因算法的使用,研究者常常发现对于各种问题的独特和意外的解决方案。
部分说来,基因算法拥有其能力和效用,正是由于它模仿了这样一个过程,按现在的科学估计,其已经成功地自我演进了数亿年。
因此,希望能够提供自然基因法则的更高程度的转换,并将其应用到基因算法的领域。
随着科技进步为数据的利用和可视化创造了更多的机会,对编码和检索该信息的现有技术也有了更多的压力。具体说,三维可视对象的领域和在数字环境中它们的操纵已经在医学、教育和科学中变得越来越重要。虚拟现实正在快速变为一种被接受的,在某些情况下甚至是唯一的实现有效的通信、教育和仿真的方式。遗憾的是,当前的信息编码的方法是非常低效的和麻烦的。
因此,希望提供更有效和简洁的信息编码方法。
因为数字业务的指数性增加,在因特网上和因特网下,对于完全可靠的信息交换的形式的需要已经变得极为重要。随着功能更强大的计算机为几乎每个人所拥有的时代的来临,数据加密的计算加强算法,以及该加密的解码,现在已经变得实际上可行了。
技术工具的快速兴起、更平常的专门技术和易得的计算机的绝对能力已经滋生了一类新的用户,他们的动机并不总是那么令人尊敬的。“代码破译”和计算机“骇客”总的来说已经成为了娱乐、成就和犯罪活动的新手段。迄今为止,绝对可靠的信息加密算法,如果有的话,也是极少的。
基因算法通常是发展单个数据对象的种群的平行处理,通常将二进制字符串发展为相同数据类型的新种群,使用模仿生物基因的诸如重组或交换的方法和基于达尔文的适者生存的观念的比例再生模式。该算法从通常以某一伪随机方式产生的数据对象的某一起始种群开始。这些数据对象然后被迭代地估计其适应性,由于其属于手边的问题,对种群内的各种数据对象执行类基因的运算以便进化一个新种群。
在“Adaptation in Artificial and Natural Systems” (《在人工和自然系统中的适应》,作者John H.Holland教授,1975年)一书中,密执安大学的JohnHolland阐述了用于固定长度的二进制字符串的基因算法的最初的概念。在基因算法和基因分类符系统中的后续和重要的工作可以参见在Grefenstette的1987年的Proceedings of the Second International Conference on GeneticAlgorithms(基因算法第二届国际会议);《计算机》1994年6月,第27卷第6期17-26页的M.Srinlvas等的“Genetic AlgorithmsA survey”(基因算法一个调查);Goldberg的《基因算法》,第10-20页和第80-139页,AddisonWesley 1989版;在San Diego的1987年6月的IEEE第一届神经网络国际会议的第3卷第769-775页的W.B.Dress的“Darwinian Optimization ofSynthetic Neural Systems”(合成神经系统的达尔文优化);1987年7月28-31日的Proceedings of the Second International Conference on Genetic Algorithms(基因算法第二届国际会议)的第36-40页的Schaffer等的“An AdaptiveCrossover Distribution Mechanism for Genetic Algorithms”(基因算法的自适应交换分配机制);和Melanie Mitchell的“An Introduction to GeneticAlgorithms”(基因算法入门)第87-113页,MIT出版社1996年。
在随后几年中,对Holland的基本假设进行了几种改进,但都没有考虑在这些基因算法和它们的自然基因范型之间缺乏平行性的问题,即在传统的基因算法中,类性的重组和交换,不论其几何或亲缘的复杂化,都仅以其最终形式,即其表型形式,对种群成员或数据对象发生。这在生物学上就等价于例如将跑的非常快的人的腿嫁接到具有强壮上肢的人的身体上以便得到某一环境适应性的目的。
实际上,所有的在基因算法中的改进的努力都是在同一水平上进行的。即,不管其变化,现有技术在基因算法中的交换和适应性选择的规程是在成员发展的相同阶段上执行的,而不考虑围绕着支持个体发育的基因组的调制系统的综合行为的复杂性,或者换言之,从简单到更复杂阶段逐步改变的有机体中包含的事件的展开。
实际上,生物学的性重组是在基因型阶段发生的,在该阶段基因型是一组共享一特定基因构造的有机体。表型是由有机体的基因构造和环境相互作用而确定的该有机体的构造,是在事物的全部方案中发生自然选择的阶段。
在牛津大学出版社1993年的“The Origins of Order”(次序的起源),第411页到439页,Stuart A.Kauffman指出,在自然遗传学和本体论中,“染色体和点突变连续地‘扰乱’调整系统的‘线路图’和‘逻辑’”。另外,发展过程是高度递归的,实际上比Von Neumann建筑远更平行,其歪曲了关于认识到“基因代码”被执行的方式的观点。
实际上,两个过程,即生物交换或性重组和适应性选择,不仅发生在不同的层次,而且是以难以置信的不同规模发生的。
在W.H.Freeman and Company 1965年的“基因总论”,第2-26页、第265-384页,Adrian M.Srb指出,“据估计,使发育出目前全世界的人口的卵子受精的精子可以被装入小于铅笔上的橡皮的一个容器…人类生物上遗传的特质,也就是类似性以及将人彼此区分和将人与其他生物相区别的不同,其基础在大量微小的精子中。”体表达(volume rendering)是一种计算机图形技术,由此感兴趣的对象或事物被采样或被分为许多立方的积木,称为体素,或体元素。体素是二维(以下称为2-D)象素的三维(以下称为3-D)的对应物,是单位体的量度标准。每个体素带有一个或多个值,用于该体的某一被测量或计算的特性,体素通常由单位立方体表示。3-D体素组由多个2-D图像聚合,并通过将这些图像投射到2-D象素空间来显示,在其中它们被存储在帧缓冲器中。以这种方式表达的体类似于在3-D空间中粒子的透明悬浮。
在面表达(surface rendering)中,体数据(volumetric data)必须通过诸如等表面、等轮廓、平面提取或边界跟随,被首先转换为几何基元。然后,使用传统的几何表达技术,诸如多边形网络或轮廓的这些基元被表达用于显示。两种技术都有各自的优缺点。
体表达技术的主要优点是,3-D体可以被显示而无需任何数据组的几何知识,因而无需立即转换为面表示法。在面表达中的该转换步骤有时可以是相当复杂,尤其是如果面没有被好好定义,例如有干扰的2-D图像,其可能需要很多的用户的干预,诸如手动轮廓描绘(contour tracing)。
另一方面,因为3-D数据组被减少为面表达中的一组基元(primitive),这可以导致要存储的数据量的显著减少,可以提供由该方法产生3-D重构的快速显示和操纵。
相反地,由于所有的图像堆栈数据被用于体表达,所以需要具有很多存储器和处理能力的计算机来处理以这种方式被表达的体。因为整个数据组被以体表达的方式保存,所以在用面表达简化到几何结构时可能会丢失的任何部分,包括内部结构和细节,都可被观看。
由于感兴趣的大多数应用程序希望保存源自体表达的内部结构和细节,但也希望象在面表达的情况那样更有效地执行,尤其是对于大量数据的情况,因此很希望能够提供一种技术,实现两种方法的优点,即面表达的速度和体表达的详细。
数据加密的现有技术至少有两千年的历史,整个密码术领域已经进化到相当高度的专业化。最常用的方法采用“密钥”或密钥系统。一个密钥可以是例如“快褐狐”的一个短语的二进制等价物。该二进制数则被用于加密信息数据组。作为一个总的原则,该二进制数越长,破译该加密的消息越难。因此,相比于更标准的40位方法,所谓的“强”加密算法可能使用128位方法。早期密钥加密算法的一种形式是“对称”密钥方法。对称密钥加密方法需要被加密的消息的发送者和接收者都可以使用同一密钥,该同一密钥被用于加密和解密,因此,“对称”。该系统假定这些通信具有另外可靠通信的途径,否则就无法对使用什么密钥达成一致。
在1976年,斯坦福大学的Whitfield Diffie和Martin Hellman提出了“公钥”加密系统。不久该系统被命名为“RSA”。用户的RSA软件产生一对密钥。每个都是大整数,有时多于500位。这两个密钥是数学上相关的。任何一个密钥可以被输入某个软件以加密一个消息,另一个密钥可以被以后输入以解密同一消息。即,用一个密钥加密,用另一个密钥解密。然而,在实际中,RSA加密被更多地用作安全“信封”。因此,发送的是用一个对称密钥加密的消息和所使用的密钥的拷贝,包裹在RSA信封中。在接收端,解密软件首先打开RSA信封,获取对称密钥,使用该密钥以解码该消息。
在任何情况下,同一加密将导致,每次同一密钥都被用于同一信息数据组。即,该过程可以被重复(replicate)。
无论所使用的密钥系统的类型如何,对称的或公共的,可重复最终是现有技术的信息加密的薄弱方面。
因此,希望能够提供一种改进的方法,用于不可被重复的绝对可靠的信息加密。
发明内容
本发明使用生物遗传学作为一个比喻,通过将合成基因并入基因算法过程,以实现与自然基因范型更加平行。在计算机可读存储器的结构中采用合成基因,为基因算法提供了更大的灵活性和能力,使得可以有效和简洁地信息编码,提供了安全信息加密,和提供了一种问题解决途径,可以被应用到大量的非常不同的问题。
本发明的另一个实施例提供了一种使用合成基因的编序的信息数据组的非线性编码的方法和系统。
本发明的另一个实施例提供了一种使用合成基因的高度非线性信息加密的方法和系统,其是完全非重复的。
本发明的其他优点和新颖特征,有的将会在下面的描述中被阐释,有的将在本领域的技术人员细查以下描述后变得清楚,或者有的将由本发明的实施而被获知。
图1是基因型和表型层次之间的区别的概观,所公开的发明在执行基因算法时在这些层次上工作;图2是用于以基因算法实施本发明的一般方法的流程图;图3是用于示例问题中的递归子例程的伪代码列表,在该示例问题中采用了基因算法中的合成基因;图4是要由本发明的一个实施例解决的示例“魔方”问题的合成染色体扩展和适应性评估的流程图;图5是在使用合成基因来编码体信息中所使用一般例程的流程图;图6是根据本发明的一个实施例使用合成基因的示例“立方体中的立方体”编码问题的流程图;图7a是在示例编码问题中用于产生外部立方体的详细宏参数的表;图7b是在示例编码问题中用于显示四个内部立方体的详细宏指令的表;图8是根据本发明的一个实施例用于示例“立方体中的立方体”问题的递归子例程的伪代码列表;图9是“立方体中的立方体”问题的编码的合成基因的表和描述;图10是根据本发明的一个实施例的使用合成基因的信息加密的概观;图1l是根据本发明的一个实施例的使用合成基因的消息加密的例子的流程图;图12是在消息加密例子中使用的递归子例程的伪代码列表;和图13是示出产生不同组合成基因的同一消息的加密的两个例子的表。
本发明的详细描述现在参考附图,合成基因和计算机可读取存储器结构的使用和实施将被更全面地描述。另外,合成染色体和它们的合成基因的产生、存储和操纵的规程将被更全面地描述。最后,从在合成染色体和构成的合成基因内包含的基本信息中得出的包含被编码的参数或物理问题组的其他方面的表型结构的构造将被更全面地描述。
的确,尤其从线性数学观点看,生物染色体和它们所包括的基因,在相对“不复杂”的基因到基因关系中,已经进化了上亿年。尽管如此,退一步说,例如象人眼这样复杂的器官毕竟已经出现了,这是令人印象深刻的。在牛津大学出版社1993年的“The Origins of Order”(次序的起源)中的第441页到442页,Stuart A.Kauffman指出,在实际上,生物进化的绝对能力来源于“包含成千上万基因的基因系统的生成物相互激发和抑制(turn on andoff)。它是协调在有机体的每个细胞类型中的不同基因的表达,并成为个体发育的有序展开的基础的该管理系统的整体动态行为。”因此,从简化的观点来看,生物进化的力量源自在有机体的发展层次的适应性评估和在其基因层次的重现和交换之间的持续的循环。
图1示出了两个主要层次,本发明的一个实施例的基因算法在这些层次上工作。在上面的表型层次中的适应性选择过程规定了在下面的基因型层次中的重组或交换和可能的变异过程中哪个合成基因最终发生。
在图2的流程图中示意性地示出了在基因算法内使用合成基因和染色体的概观。在第一步骤,按给定问题的参数的要求,进行将由扩展子例程EXPAND使用的全局赋值(global assignment)。它们可以包括模运算符的除数最大值、在每个染色体中的基因的数目、最终的表型实体的大小、和其最终特性将在目标函数中被评估的单个种群成员。
下一步骤包括产生合成染色体的整个种群,其由单个合成基因组成。该步骤可以是,通常也是以伪随机方式进行的。
接下来的步骤被迭代地进行,直到某一目标被达到。它们包括根据等级按比例产生后代,例如合成染色体交换直到整个种群被取代;引入小概率变异;扩展每个成员的基因组为充分形成的表型实体或者准问题解决方案;和根据它们对某一目的或目标函数的匹配来将整个表型种群的结果分等级。
在下面提出的例子中,目标函数是对所谓“魔方”问题的解决方案。在该案中,四乘四的网格矩阵,每个格中有1到16的整数之一,且其安排的方式使得每行、每列和每个对角线中各格的和相等。
图3示出了一个简单子例程的伪代码,其可以被用于扩展合成染色体为充分发展的种群成员,该种群成员具有足以有能力解决示例问题的足够的结构。由于其是递归调用,要被赋予当前种群成员的合成染色体的基因的临时向量的全局数组“dx[]”,扩展结果即充分发展的表型种群成员的临时数组“exp-rslt[]”,还有作为模运算符的除数的“md”,都是在别处定义的。
以伪代码的形式,调用的原型是EXPAND(t,x,d,n),其中t=要扩展的基因的数目
x=最后计算的数据(初始为0)d=基因数组元素计数器(即染色体位点)(初始为0)和n=所得种群成员的大小(即,在此是被编码和充分发展的种群成员的线性长度)因为在实际中,最充分发展或扩展的种群成员在长度上比它们对应的合成染色体大得多,所以基因数组计数器,即染色体位点被首先检查是否超出了染色体位点的范围。例如,如果d<0,则t被加到现在的d值上,即d=d+t。如果d>t,则t被从现在的d值中减去,即d=d-t。
已经确立染色体位点在合适的范围内后,下一步骤是将染色体的当前位点的值即基因数组元素“d”加到刚计算的即“通过”的值“x”,得到“m”,即在子例程内临时定义的局部变量。然后模运算符确定“m”去掉其除数“md”的整数倍后的余数。在该特定例子中,由于基因值是伪随机赋予的在0和999之间的值,所以保证了相当量的可变性。1必须被加入该结果,因为基数是0,而我们的代码对于可能的值的要求是在1-16的范围内。
最后,为了递归调用的终止,进行检查是否第0个元素已经到达,如不然,则(对其自身)进行另一个调用,直到该条件被满足。
图4示出了在“魔方”问题中的用于所得表型的染色体扩展和适应性评估的详细流程图。
可能合成基因的更重要的一个方面是执行信息数据组的高度压缩和有序的编码的能力。正如上面在与体表达数据相关的背景技术部分中所讨论的,面表达数据的优点之一是其表达的速度,因为笛卡儿坐标是知道的,而体表达数据不是几何上具体的,使用体素可以存储关于对象的内部结构的详细信息,尽管在存储器和计算的额外开销方面常常花费不菲。面表达方法的相对的速度和存储优势的取得是因为不存储关于在3-D空间中对象的内部结构的信息。
本发明的一个实施例提供了一种以面表达方法的精神和效率存储类体象素信息实现体表达的优势的方法和系统。
图5是合成基因编码过程的概观,由于其可以包含简单体形状,内部细节是完整的。
图6示出了用于编码简单数据组的过程的流程图,用于产生3D立方体,在其内部有不同颜色、阴影和表面信息的四个更小的立方体,等距离地放置。
图7a和图7b是示出在下面的例子中用作宏规范的实际数据的不同层次的表,其用“Geomview”来实现,“Geomview”是由明尼苏达大学研发的3D可视化软件环境。图7a和图7b是图6中的第一步骤“定义目标信息”的放大。
每个数据组被认为是在整个过程中变形的一个层次。其从外部立方体的坐标参数开始,所有的后续变形层次都从属于这些坐标。
在图6中的第二步是合成染色体的伪随机种群的产生。在该特定例子中,则生成了有1,500,000个合成染色体的种群,每个合成染色体具有有着范围在1-999之间的数值的四个合成基因。
图8是示出图6中的第三步骤的伪代码列表和发生实际变形的迭代环的第一部分。其描述了单个合成染色体扩展为一个状态模型,从而当其被“单步调试”或执行时,编码参数的试验矩阵将在值的范围内被产生,传给递归的子例程“GEOMGROW”。
每个这样构造的,即扩展的试验矩阵被与在规程中初始定义的目标数据相比较,并以升序排列其差。
迭代的下一个部分执行合成染色体交换,其量与各个扩展的状态模型的排列(ranking)成比例,其中使得对合成基因的小概率的变异在代码内是可能的。
迭代过程继续,直到对于当前层次的目标数据,实现了完美的匹配。整个过程被重复,直到所有层次的目标数据已经被这样变形。
因此,在该例子中,整个体数量的每个层次的复杂度(complexity)将有其自己的四个合成基因组(以外部立方体的坐标基因开始)、外部立方体的定义的特性,然后前进到内部立方体、它们的定义的特性等等。
图9示出了由该方法产生的实际的合成基因组。比较图7a和图7b与图9并注意在比例上的不同而同时在其中仍然使得合成基因忠实地抄写到最终的体形式,这是有趣的。
图10是通过使用合成基因的加密数据的过程的概观。本发明在数据加密方面的一个优点是,表示完全相同数据组的任何两组合成基因相同是极不可能的。即,该过程是不重复的。换言之,由本发明在单独的情况下被加密的同一数据组基本不会导致相同的合成基因组。实际上,这种事件的发生概率大致是大多数现今的伪随机数发生器的重复率,通常在3*1038左右。
所公开的方法的另一个特征是允许以各种途径利用加密“密钥”或信息数据组以外的其它信息,使得其被嵌入所编码的合成基因结构。该加密密钥可以遵循对称和/或公共密钥的比较标准的用法,正如上面在关于数据加密的背景技术部分中所讨论的那样,或者可以以比较新的方式被采用。因为其高度非线性的编码方案,该加密方法与现有技术相比,为各种形式的“类密钥”信息,包括索引的密钥、每字符密钥和复合密钥的可能性留下了空间。
图11是使用合成基因的示例加密过程的流程图。该示例加密还图示了将加密密钥嵌入从信息数据组这样产生的合成基因内的方法。通常,该规程是适应性选择过程,其中对特定子数据组的可能的精确匹配是由一系列对子例程CYPHER的递归调用来产生的。
下面使用单个加密密钥“secret”来加密短语“Fall not from grace”。在该例中,该短语被分解为三个字符的数据子组,即(“Fa)、(ll)、(not)等。加密密钥“secret”被转换为数字量,且是下面要描述的子例程CYPHER中的一个自变量,用于对特定子数据组的每次初始调用。
图12是描述在加密例子中使用的子例程CYPHER的伪代码列表。全局基因数组“dx[]”被在例程CYPHER前面定义,包含在变形过程中使用的试验基因。“ptype[]”也被全局定义,将包含具有从0到255的值的所得的被变形的数据。“cnt”是全局定义的计数器,用于“ptype[]”,且是CYPHER的终止量。CYPHER的目的是要将一系列数字的合成基因和任何加密密钥变形为在0到255的ASCII范围内的一系列数字量,其表示了在标准美国键盘上可打印字符的范围。通过简单改变模运算符除数就可以采用不同的范围。
任何加密密钥被初始地传入CYPHER作为在其调用中的一个自变量,随着每次对CYPHER的调用的进行时其初始值被递归地修改,其陷入了所得的变形中。即,合成基因和加密密钥值作为一个总和按模255运算,以产生对目标数据的数字的ASCII字符等价物的可能的答案。
在该特定例子中,加密密钥“secret”被转换为一数字量,表示其ASCII字符的每个的数字等价物的总和。该数字的密钥值被初始地传给CYPHER,用于表示信息数据组的所分解的短语的每个子数据组。在CYPHER对本身的后续调用中,由“m”表示的先前被修正的值“x”(初始值0)和由“nk”表示被修正的值“k”(初始值为加密密钥)都被以它们的被修正的形式传回以便被进一步修正,即以前修正的修正,以此类推。
图13示出了用加密密钥“secret”加密短语“Fall not from grace”的两个独立例子所产生的编码的合成基因。其示出本发明产生了两组完全不同的合成基因,每个都恰好表示了同一信息数据组和加密密钥。如果使用了加密密钥“secret”,则每组合成基因都可以被解密回到完全相同的短语“Fall notfrom grace”。
尽管示出和描述了本发明的某些实施例,但是应该理解本发明不限于此,而可以在下面的权利要求范围内被以各种形式实施。
权利要求
1.一种用于表示数据组的方法,包括产生合成基因序列的步骤,该合成基因序列在被扩展时产生所述数据组的精确复制件。
2.如权利要求1所述的方法,其中一系列规则被定义,通过所述规则给定的合成基因序列可以被扩展从而产生特定数据组的精确复制件。
3.如权利要求1所述的方法,其中多个合成基因序列被定义。
4.如权利要求3所述的方法,其中所述多个合成基因序列是伪随机选择的合成基因序列,作为扩展为特定数据组的精确复制件的潜在候选者。
5.如权利要求4所述的方法,其中一系列规则被定义,用于合成基因序列的系统的和最终的选择,而所述合成基因序列将使用一系列定义的规则被扩展为特定数据组的精确复制件,通过所述一系列规则,一个给定的合成基因序列可以被扩展从而产生特定数据组的精确复制件。
6.如权利要求1所述的方法,其中所述数据组以外的信息被合并到特定合成基因序列中。
7.如权利要求6所述的方法,其中一系列规则被定义,用于将所述以外的信息作为从属于所述数据组的特定子数据组来表示。
8.如权利要求7所述的方法,其中一个二级系列规则被定义,通过该一系列规则,给定的合成基因序列可以被扩展从而产生特定数据组和所述以外的信息的精确复制件的混合。
9.如权利要求8所述的方法,其中一系列规则被定义,用于合成基因序列的系统的和最终的选择,而所述合成基因序列将使用一系列规则和一系列二级的规则被扩展为特定数据组和所述以外的信息的精确复制件,前述的一系列规则用于将所述以外的信息作为从属于所述数据组的特定子数据组来表示,通过前述的一系列二级的规则,给定的合成基因序列可以被扩展从而产生特定数据组和所述以外的信息的精确复制件的混合。
10.如权利要求1-9之一所述的方法,还包括通过扩展所述合成基因序列来恢复所述数据组的步骤。
11.如权利要求1-9之一所述的方法,还包括以下步骤通过扩展所述合成基因序列来恢复所述数据组;和其中从通过包括以外的信息在所述数据组中、和定义用于将所述以外的信息表示为从属于所述数据组的特定子数据组的规则、所产生的所述合成基因序列中,恢复所述数据组以外的信息。
12.如权利要求1-9之一所述的方法,还包括以下步骤通过扩展所述合成基因序列来恢复所述数据组;其中从通过包括以外的信息在所述数据组中、和定义用于将所述以外的信息表示为从属于所述数据组的特定子数据组的规则、所产生的所述合成基因序列中,恢复所述数据组以外的信息;和其中一系列规则被定义,通过该一系列规则,给定的合成基因序列可以被扩展从而产生特定数据组和所述以外的信息的精确复制件的混合。
13.如权利要求1-9之一所述的方法,还包括以下步骤通过扩展所述合成基因序列来恢复所述数据组;其中从通过包括以外的信息在所述数据组中、和定义用于将所述以外的信息作为从属于所述数据组的特定子数据组来表示的规则、所产生的所述合成基因序列中,恢复所述数据组以外的信息;其中一系列规则被定义,通过该一系列规则,给定的合成基因序列可以被扩展从而产生特定数据组和所述以外的信息的精确复制件的混合;和其中一系列规则被定义,用于实现与特定数据组相结合的所述以外的信息。
14.如权利要求1-9之一所述的方法,还包括以下步骤通过扩展所述合成基因序列来恢复所述数据组;其中从通过包括以外的信息在所述数据组中、和定义用于将所述以外的信息表示为从属于所述数据组的特定子数据组的规则、所产生的所述合成基因序列中,恢复所述数据组以外的信息;其中一系列规则被定义,通过该一系列规则,给定的合成基因序列可以被扩展从而产生特定数据组和所述以外的信息的精确复制件的混合;其中一系列规则被定义,用于实现与数据组的特定子组相结合的所述以外的信息;和其中一系列规则被定义,用于使用所述以外的信息解密所述数据组的特定子组。
15.一种计算机数据结构,包括通过产生合成基因序列的步骤产生的电子数据,该合成基因序列在被扩展时重现特定数据组,所述基因序列是从所述特定数据组合成的。
16.一组编程指令,其当由计算机执行时,执行产生合成基因序列的步骤,该合成基因序列在被扩展时重现特定数据组,所述基因序列是从所述特定数据组合成的。
17.一种用于解决使用基因算法的问题的系统,包括计算机,具有处理器、用于数据和编程指令存储的存储器、数据输入和数据输出;和一系列编程指令,当由计算机执行时执行产生合成基因序列的步骤,该合成基因序列在被扩展时重现特定数据组,所述基因序列是从所述特定数据组合成的。
全文摘要
一种通过使用合成基因使得基因算法更准确地平行于生物基因范型的方法和系统。基因型合成染色体被递归地扩展以产生表型状态模型、位串或其他形式的编码的种群,其适合于表示特定问题。使用合成基因,类性的重组在合成染色体层次上发生,而适应性评估和选择在充分发展即扩展和编码的结构的层次上发生。另外,也讲述了用于将复杂数据结构编码为合成基因的系统和方法,以及利用基因算法非重复地加密信息数据组的系统和方法,其中诸如加密密钥的数据组以外的信息可以被嵌入合成基因结构内。
文档编号C12N15/00GK1376282SQ00812665
公开日2002年10月23日 申请日期2000年9月5日 优先权日1999年9月10日
发明者威廉·L·克劳利 申请人:威廉·L·克劳利