包括可生物降解的聚酯共混组合物的吸收制品的制作方法

文档序号:985274阅读:287来源:国知局
专利名称:包括可生物降解的聚酯共混组合物的吸收制品的制作方法
技术领域
本发明涉及具有韧性的、可延展的、可生物降解的、可堆肥处理的脂族聚酯共混组合物及制备这类组合物的方法。本发明涉及由这类共混组合物制成的产品,包括但不限于薄膜、纤维、无纺织物、片材、涂料、粘结剂、泡沫和用于包装的模制产品。这些产品理想地结合了高强度、延展性和韧性等特点,同时还保持了弹性、可生物降解性和可堆肥处理性。本发明中还描述了这类共混物的其它优点。本发明产品可用于各种可生物降解制品,例如尿布表层、尿布背衬层、一次性擦巾、购物袋和除草后的碎草屑/树叶收集袋、农用薄膜、院子废弃物收集网、渔网、育种模板、花盆、一次性衣服、一次性医疗用品、纸涂层、可生物降解包装、纤维素纤维或合成制品的粘结剂及类似物。
背景技术
本发明涉及缓解由过多塑料废弃物造成的日益增长的环境问题的需要,该些塑料废弃物在每年丢弃到垃圾场的垃圾中占越来越大的比例。尽管消费者具有环保意识,但他们仍不愿意放弃传统热塑塑料提供的有吸引力的和独特的性能和成本的平衡。因此,许多已知能提供环境有益效果和能通过微生物快速降解的天然聚合物(如,纤维素、淀粉等),由于它们缺乏其独特的一组物理性能(如柔韧性、延展性、强度、韧性等),以及其固有的可熔融加工性,而一直未能在现实生活中成为提供常规塑料的替代品。因此,明显存在对可生物降解的、可堆肥处理的聚合热塑性材料的需求,这类材料不会降低传统热塑塑料的方便性以及它们的柔韧性、强度和韧性,同时还提供了解决废弃物问题的另一种办法。
本发明还涉及开发新型塑料材料的需求,这种材料可用于一些应用中。在该些应用中,可生物降解性或可堆肥处理性等是这类应用的主要可取的特点。这类实例包括例如农用薄膜,以及当使用这类薄膜达到其目的后,不必将它们再收集起来所给农民提供的方便性。其它实例有花盆和育种模板,其中基材的临时性给使用者带来方便。也拓宽了卫生用品,例如面部擦拭制品、卫生巾、垫片或甚至尿布的处理手段,因为这类产品在使用完后可有利地直接丢弃到污水中,而不会堵塞现有的基础设施(化粪池或公共污水系统),因此避免了处理的烦恼并且提高了隐私性。目前典型用于制作这类卫生用品的塑料阻碍了这种不会产生有害材料累积的处理方式。用于上述实例的新材料理想地是需要表现出常规聚烯烃的物理性能;它们须具有水不可透过性、韧性、硬度,同时又具有柔软性、柔韧性、不格格响等特点,尽可能低成本,同时为了具有高的效能成本合算,它们须在标准的聚合物加工设备中进行生产。
树叶/除草后的碎草屑收集袋是可举例说明可堆肥处理的热塑性材料的直接优点的另一种应用。当今唯一可堆肥处理的袋是纸袋,这种袋不需要堆肥者承受将袋移除的额外负担,同时也无需承担堆肥污染的风险。然而,纸带未能提供塑料薄膜的柔韧性、韧性和防潮性,并且需要更大的贮存体积。用于制造树叶/除草后的碎草屑收集袋的可堆肥处理的塑料薄膜将提供这样的塑料袋,即其可更像纸袋一样进行处理,但同时又具有塑料袋的使用方便性。
从这些实例可清楚地看出,开发具有组合了可生物降解性、可熔融加工性和最终使用性能等优点的新型聚合物尤其令人感兴趣。在通过常规加工方法将材料转变为薄膜、涂层、无纺织物或注模制品中,可熔融加工性是关键。这些方法包括单层结构物的流延薄膜法和吹塑薄膜挤出法,及多层结构物的流延或吹塑薄膜共挤出法。其它适宜的薄膜加工方法包括将一种材料挤出涂敷于可堆肥处理的基材例如另一薄膜、无纺织物或纸幅的一侧或两侧上。其它加工方法包括传统制造纤维或无纺织物的方法(熔融吹制法、热压粘合法、瞬时纺丝法),和瓶或罐的注模法或吹塑法。聚合物的性质不仅对于确保最终使用期间的最佳产品性能(柔韧性、强度、延展性、韧性、热软化点和防潮性)是重要的,而且在实际的产品制造阶段中也是重要的,以确保连续的操作。
过去,已经对多种PHA的可生物降解性和物理性能进行了研究和报道。聚羟基链烷酸酯是半晶质的热塑性聚酯化合物,该化合物可通过合成方法或通过各种微生物,例如细菌和藻类进行制备。传统已知的细菌PHA包括聚(3-羟基丁酸酯)或i-PHB,即羟基丁酸的高熔点、高结晶性、脆性均聚物;和3-羟基丁酸酯-戊酸酯共聚物或i-PHBV,即结晶性稍低和熔点稍低的共聚物,但其具有同样的高结晶性和脆性的缺点。在许多情况下已经展示了在存在微生物的情况下,它们可容易地被生物降解的能力。但已知它们是脆性的聚合物,在机械约束力下它们倾向于表现出容易脆裂和/或撕裂的特点。显然它们不是合格的具有韧性的、可延展的或有柔韧性的聚合物。它们的可加工性也相当成问题,因为它们的高熔点要求加工温度有助于在其熔融过程中广泛的热降解。其它已知的PHA是所谓的长链PHA或PHO(聚(羟基辛酸酯))。与PHB或PHBV不同,由于沿主链规律间隔的重复存在的戊基和高级烷基侧链,这些聚合物实质上是非晶形态的。然而,当存在结晶部分时,它们的结晶部分具有非常低的熔点以及极慢的结晶速度,这两种主要缺点严重限制了它们作为本发明领域中提及的各类应用中使用的热塑塑料的可能。
共混物形式的聚(3-羟基丁酸酯)均聚物(i-PHB)和3-羟基丁酸酯-戊酸酯共聚物(PHBV)的使用记述于Dave等(Polym.Mater.Sci.,62,231-35(1990))和Verhoogt等(Polymer,35(24),5155-69,(1994))的文献中。然而混合不能轻易地在维持这类物质的可生物降解性的同时,解决这类高结晶性PHA的机械脆弱性和缺乏延展性的问题。
有数项专利已要求保护了改善i-PHB和PHBV的机械性能的混合方法,但仅取得了微小的成功。本发明不包括这类共混组合物。
Tokiwa等转让给日本AIST的美国专利5,124,371(也可参见JP03 157450,1991年7月5日)公开了一种由i-PHB和PCL(聚己内酯)制成的可生物降解的塑料组合物。报道了最佳使用第三种组分,例如共聚催化剂。该组合物没有包括在以下的Hammond的专利(参见美国专利5,646,217)中,后者旨在扩大与其它聚合物混合的范畴。它们的实施例中公开的机械性能证明,Tokiwa的PHB与PCL的共混物以及Hammond的共混物没有表现出各种应用中所需的延展性和韧性。
Hammond转让给Zeneca的美国专利5,646,217,08/97(也可参见WO-A-94 11440、EP669959 A1和JP08503500)公开了包括第一种聚羟基链烷酸酯组分和任选的第二种聚合物组分的聚合物组合物,该组合物通过在组合物中使用含无机氧的化合物改善了性能。含无机氧的化合物可用作酯基转移催化剂。它是周期表的IIA、IIIA或IVA族金属的氧化合物或周期表的B族的至少3价的准金属的氧化合物。
PHA据述具有下式的化学重复单元[-O-CmHn-CO-],m=1-13;n=2m或2m-2(m>2);其中具体提及PHB和PHBV化学结构。
在本发明中,我们出乎意料地发现,对于结晶性低于i-PHB和i-PHBV的具有较低结晶性和具有较好延展性的无规变化的PHA共聚物,无需加入酯基转移催化剂就可获得在与脂族酯类缩聚物的共混物中的卓越的机械相容性。此外,这类共混物表现出真正杰出的机械性能,特别是韧性和柔韧性,它们不仅大大优于Hammond的专利中公开的任何共混物,而且还可在与聚烯烃,例如LLPDE(线性低密度聚乙烯)或i-pp全同立构的聚丙烯)的竞争中占有有利的地位。例如,在Hammond专利中引证的所有实施例中,所有共混物的断裂伸长率未能超过20%,并且报告的韧性测定也很一般。相比之下,我们的共混物表现出实际上超过聚烯烃高达数个100%的断裂伸长率和韧性值。此外,本发明共混组合物的结晶性的改善也大大超过Hammond的专利中所述的那些共混物,并且我们的共混物易于在更低温度下熔融加工,而不会发生广泛的热降解,使其成为制作高性能、一次性的、可生物降解的和/或可堆肥处理产品的优选材料。
Hammond转让给Zeneca的美国专利5,550,173,05/96(也可参见WO94/11445、EP668893A1)公开了一种聚合物组合物,该组合物包括分子量至少为50,000的聚羟基链烷酸酯和至少一种选自下列聚合物的低聚物聚羟基链烷酸酯、聚交酯、聚己内酯及其共聚物。这类低聚物的分子量为2,000或更低,它们是非挥发性的,并且其Tg低于待改性的PHA。低聚物据述有助于通过降低杨氏模量,即弹性模数,提高PHA的柔韧性。它们还有助于加速生物降解进程,同时是非挥发性添加剂。基于该专利的数据,与加入选择的低聚物有关的韧性没有明显提高(参见表7的断裂伸长率或悬臂梁式冲击数据)。此外,公开的低聚物结构不包括本发明的共混组分之一的、基于酯类缩聚物的那些。
Montador等的转让给Zeneca的美国专利5,516,825,05/96(另外参见EP655077)公开了由羟基链烷酸得到的可生物降解的聚酯,它可使用具有至少三个酯基的酯化的羟基羧酸进行增塑,其中至少一些羟基被羧酸酯化,并且至少一些羧基被醇和/或酚酯化。
沿着同样的增塑思路,Hammond等的转让给Zeneca美国专利5,753,782,05/98(另外参见EP701586A1、WO94/28061)公开了聚酯组合物,该组合物包括可生物降解的聚酯和增塑量的至少一种选自下列的增塑剂多元酸的高沸点酯;磷酸衍生物;亚磷酸衍生物;膦酸衍生物;取代的脂肪酸;高沸点二醇;聚乙二醇、聚氧化亚烷基和甘油(各自任选取代的和任选末端酯化的);季戊四醇及衍生物;磺酸衍生物;环氧衍生物;氯化石蜡烃;聚酯;Wolflex-But*;条件是柠檬酸酯不包括在其分子中具有至少3个酯基的双酯化羟基羧酸,并且甘油类不包括三乙酸甘油酯和二乙酸甘油酯。在这两篇专利中,报告了整体机械性能的改善(断裂伸长率、冲击数据)以及刚性明显降低(杨氏模量降低)。然而,例如断裂伸长率数据仍低于100%,而悬臂梁式冲击数据仅增高2至4倍。这大大低于在商业应用中典型要求的韧性提高超过10倍的要求。
Matsushita等的转让给Mitsubishi Gas & Chem.的JP08-157705(06/96)公开了一种包括由甘油、脂族二羧酸或其衍生物和聚-3-羟基丁酸酯制成的脂族聚酯的可生物降解的树脂组合物。可取的是聚-3-羟基丁酸酯的重均分子量为400千克/摩尔或更高。如果分子量低于该值,据报告其将不能进行令人满意的铸模。目的在于通过将特定的脂族聚酯与聚-3-羟基丁酸酯混合获得一种可生物降解的树脂组合物,其具有优良的可铸模性、机械性能和耐热性。通过将PHA的定义限制为具有降低的结晶性和较高的延展性和柔韧性的共聚物,本发明排除i-PHB、羟基丁酸的均聚物与二醇和脂族二羧酸的缩聚物的共混物。
同样,Miura等的转让给Mitsubishi Gas和Chem.的JP8027362A(01/96)公开了一种组合物,该组合物可取地包含99至50重量份数的脂族聚酯碳酸酯和优选1至50重量份数的聚-β-羟基丁酸,所述聚酯碳酸酯通过缩合脂族二元羧酸(优选琥珀酸)与脂族二羟基化合物(优选1,4-丁二醇)和二芳基碳酸酯(如二苯基碳酸酯)获得。再者,本发明不包括包含最硬的和脆性最强的PHA族成员,即i-PHB和PHBV。
Dabi等转让给McNeil-PPC,Inc.的EP606923A2和EP882765A2(01/94)公开了两类热塑性可生物降解组合物,它们据述表现出良好的机械性能,并在微生物存在下容易降解。该发明一方面公开了基于变性的淀粉-聚合物合金的可生物降解的组合物,该些合金不在本发明的范围之内。该发明另一方面提供了热塑塑料与含酯聚合物、增塑剂和任选的惰性填料的共混物。更具体地,这些组合物被描述为包括-10至70wt%的聚合物或共聚物,它们包含一种或多种下式的重复单元(I)[-O-CHR-CH2-CO-]n(~R=含1至9个碳原子的烷基);-5至35wt%的含酯聚合物,其分子量大于10,000并选自-下列类型的在主链中含有酯键的聚合物(II)[-O-CO-R1-CO-O-R2-]n-下列类型的具有侧链酯基的聚合物(III)[-CH2-CHX-CH2-CHOCOCH3-]n和(IV)[-CH2-CR4COOR5-]n-0至约30wt%的一种或多种增塑剂,例如甘油三乙酸酯;-0至约50wt%的惰性填料,例如碳酸钙或淀粉;说明这类组合物的实例包括与PCL(聚己内酯)或EVA(乙烯-乙酸乙烯基酯共聚物)共混的PHBV(市售的Biopol)。这两种聚合物都不在本发明的范围之内。基于可用的数据,虽然获得的机械性能好于纯的PHBV,但并不够突出,并且无论是在韧性或柔韧性上都不可能与聚烯烃相抗衡。仅在非常有限的情况下,共混物的断裂伸长率会超过100%;并且在任何情况下都没有达到300%伸长率。事实上,在不含添加剂的PHBV和PCL的70/30共混物中,报告的15%的断裂伸长率指示了脆性(没有延展性)。
聚丁二酸丁二酯或者丁二酸-己二酸丁二酯共聚物-本发明中用于与PHA共聚物共混的酯类缩聚物的最优选实施方案(参见下面的发明详述)既未在专利中引述,也未用于其实施例。
因此,上述发明者未能认识和明确本发明的新的PHA(其化学结构和机械性能不同于PHB或PHBV)与酯类缩聚物,如聚丁二酸丁二酯或者丁二酸-己二酸丁二酯共聚物的共混物如何能获得真正不连续的杰出的机械性能。在性能方面,出乎意料的结果是如下面的实施例中举例说明的一样,这类共混物不仅能超越与常规PHA,如PHB或PHBV共混的那些类似共混物,还能超越那些普通的延展性聚烯烃,如聚乙烯或聚丙烯。此外,本发明的共混物在其进行快速生物降解的能力上具有竞争力,并且易于加工,这使其成为制备高性能的、一次性产品的优选材料。
Tsai等转让给Kimberly-Clark的世界专利申请WO98/29493(07/98)公开了一种包括脂族聚酯聚合物与多元羧酸的未反应的混合物的热塑性组合物。这类热塑性组合物的一个实例是聚(乳酸)和己二酸的混合物。这种热塑性组合物可被挤出形成纤维,该纤维可形成无纺结构物,该结构物用于旨在吸收液体如体液的一次性吸收制品。第二项权利要求公开了由不同的脂族酯聚合物和其混合物以及这类聚合物的共聚物制成的组合物。Bionolle和PHBV是其中列出的聚合物,它们的共混物不包括在本发明范围之内。没有引述其它结晶性更低的并且更具柔韧性的PHA。
Wu等转让给Clopay Plastics Prod.Co.的美国专利5,200,247(06/92)公开了一种可生物降解的热塑性薄膜,该薄膜包括链烷酰聚合物和聚(乙烯醇)的共混物。该薄膜可伸展提供不透明性并增进其可生物降解性。该链烷酰热塑性聚合物据述构成90至75重量百分比的共混物,其选自下列a)二链烷酰聚合物(至少10%的重复二链烷酰单元),b)式O(CH2)xC=O(x=2-7)的氧链烷酰,及其混合物。
上面的定义不包括本发明的具体的PHA共聚物,并且在其最优选的实施方案中,氧链烷酰聚合物是PCL(即聚己内酯)。除了为使该薄膜必须是可拉伸的以使其具有延展性的事实外,没有薄膜性能的具体要求。
Matsumura等转让给Unicharm Corp.的美国专利5,464,689(11/95)公开了一种树脂组合物和通过公开的拉伸方法由该组合物制成的多孔薄膜,该树脂组合物包含40%至85%PHBV(8%至15%V);60%至15%PCL和5%至40%体积比的无机填料(粒径为0.1至10微米)。发明者要求对易于被微生物降解的多孔薄膜进行保护。这类可生物降解的聚酯共混物不属于本发明中包括的材料和组合物范围之内。
Kleinke等的转让给PCD Polymere Gesellschaft的美国专利5,231,148(11/91)公开了包含至少70%重量的聚羟基链烷酸酯和0.1至10%重量的包含至少两个酸和/或醇基的化合物或化合物的混合物。所述混合物在所述聚羟基链烷酸酯的熔点下熔融或软化和/或溶于所述聚羟基链烷酸酯的熔融物中和/或与该熔融物混溶,但不包括聚-D(-)-3-羟基丁酸与聚酯的混合物。本发明的酯类缩聚物通常既不溶于PHA共聚物中,也不与其混合,并且没有明显的证据表明化学反应的发生。
Yoon等,J.Poly.Sci.,Pol.Phys.,34,pp2543-2551(1996)检验了i-PHB与己二酸、乙二醇和乳酸的脂族三元聚酯的共混物的相容性和可生物降解性。他们确认,根据结构研究认为这类聚合物是相容的,但没有观察到任何化学变化,例如共混导致的酯基转移。
Kumagai等于,Polymer Degradation and Stability,36,241页(1992)公开了聚(3-羟基丁酸酯)与聚(ε-己内酯)、聚(1,4-亚丁基己二酸酯)或聚(乙酸乙烯基酯)的共混物。在前两种情况下,发现共混物是不混溶的,但对第三种共混物观察到了相混溶性。在一项平行的研究中,Kumagai等,Polymer Degradation and Stability,37,253页(1992)公开了具有高HV含量的聚(3-羟基丁酸酯)与聚(b-丙酸内酯)、聚(己二酸乙二酯)或(3-羟基丁酸酯-戊酸)共聚物的共混物。作者公开了由该共混物形成的薄膜的酶降解率高于每一聚合物组分薄膜的酶降解率。
Wnuk等的世界专利申请WO96/08535和WO97/34953公开了包括可生物降解的聚合物的共混物的一般组合物,并举例说明了包括可生物降解的聚羟基链烷酸酯和第二种可生物降解聚合物的聚合物组合物。所述第二种可生物降解聚合物选自脂族聚酯型的聚氨酯、聚交酯、聚己酸内酯及其混合物。上面提及的脂族聚酯型的聚氨酯是低结晶性的、与热塑性弹性体类似的等级,它们不同于本发明的半结晶性聚酯,该聚酯主要包含脂族二链烷酰重复单元。尤其是,这类聚氨酯无助于将结晶率提高到类似于本发明的一个实施例中描述的结晶率。另外,在使用常规的高结晶性的脆性PHA(如PHB或PHBV)制成的共混物的低性能与包含较低结晶性PHA的本发明共混物的高得多的延展性和韧性之间不存在差异。
最后,关于聚酯共混物,Hubbs等转让给Eastman Kodak的世界专利申请WO94/00506公开了PHA与其它聚酯,包括脂族酯类缩聚物的多种共混物。公开的PHA是单独通过化学合成制成的,并且在性质上是无规立构的,即没有光学活性,因此表现出很少或根本不表现出结晶性。它们与本发明的PHA不同,本发明的PHA是完全全同立构的,即光学纯的(当通过生物合成制备时)或者是高度全同立构的(当使用特定的催化剂,例如烷基醇锌聚合b-取代的b-丙酸内酯时)(参见L.A.Schechtman等的转让给Procter and Gamble Co.的美国专利5,648,452)。
最近,新的聚(3-羟基链烷酸酯)共聚物组合物由Kaneka(美国专利5,292,860)、Showa Denko(EP440165A2、EP466050A1)、Mitsubishi(美国专利4,876,331)和Procter & Gamble(美国专利5,498,692;5,536,564;5,602,227;5,685,756)公开。所有这些文献描述了各种通过沿主链无规掺入控制量的、部分阻碍结晶过程的“缺陷”,将PHA的结晶性和熔点调整到比高结晶性的PHV或PHBV低的任何理想程度的方法。这类“缺陷”是不同类型的(3-羟基己酸酯和更高级酸的酯)支链和较短的(3HP,3-羟基丙酸酯)或较长的(4HB,4-羟基丁酸酯)直链脂族柔性间隔物或其组合。得到的是共聚结构,该结构在80℃至150℃的最有用温度范围内熔融,并且在加工期间不易于进行热降解。此外,由于它们的较低结晶性和对微生物的较高敏感性,这些新的共聚物的生物降解率典型地有所提高。但是,虽然这些聚合物的机械性能较PHB或PHBV有所改善,但当例如在长时间的物理老化后,它们的韧性仍不如聚烯烃。老化是这些共聚物发硬的原因,这进一步影响它们的延展性,即它们可发生大规模可塑变形但不会破裂的能力。它模拟了由G.J.M.deKoninck等报告的针对PHB和PHBV的老化作用,但程度稍差些。世界专利申请WO94/17121中,后者公开了能部分逆转老化作用的加温熟炼处理方法,但该方法未能使这些高结晶性聚合物具有足够的延展性。最终,新的更适宜的共聚物的结晶速率典型地较慢,并且在将它们通过常规加工方法加工仍具有挑战性。
虽然在设计更有用的PHA共聚物等的方面具有上述进展,但要找到一类表现出如下性能的材料仍具有挑战性,所述性能为突出的预期热塑塑料具有的聚烯烃样性能(如,柔韧性、延展性、韧性、不透水性),开发出除了垃圾场之外的处理垃圾的另一种方法的高生物降解率,以及使其易于在常规转化设备上进行处理但无需主要转化的加工特性。本发明提供了新型的组合物,现已发现该新型的组合物提供机械性能、高生物降解率和易于加工性之间的有效平衡。
发明目的因此,本发明的目的是提供可生物降解的聚羟基链烷酸酯型的组合物和方法,该组合物和方法克服了现有技术的不足和局限性。
本发明的目的是提供新型的聚合物组合物,其具有柔韧性、高度韧性和高强度、不透水、易于熔融加工性,并且可生物降解,并且在下面公开的各类应用遇到的最宽温度范围内可保持其完整性。从一般意义上讲,可生物降解是指当埋入地下或在丢弃到污水中时,或者在有益于生长的条件下它们与生物接触时,聚合物组分随着时间的流逝易于被微生物吸收。与其它已知的天然可生物降解物质例如淀粉或纤维素非常相象,这些材料在环境中最终生物降解为CO2、H2O和生物质。
本发明的目的还在于提供不混溶的、但机械上相容的聚合物共混物,该共混物无需增容剂或催化剂即可表现出优异的机械完整性,并且在许多环境中易于生物降解。
本发明的另一个目的是提供一种大大提高可生物降解的聚(羟基链烷酸酯)共聚物的延展性和韧性的方法,由此拓宽这些新材料在广泛应用领域的用途。
本发明的再一个目的是提供具有高强度的、可延展的、可生物降解的聚合物基材,该基材可以以固态通过已知的拉伸方法发生变形而不会断裂,得到的变形的基材比最初的基材表现出甚至更高的机械性能(增高的韧性、部分弹性恢复)。
本发明的再一个目的是提供可生物降解的聚合物组合物,该组合物表现出改进的熔融流变学性质和结晶速率,并且易于熔融加工成各种塑料制品。
本发明的再一个目的是提供一种使用可生物降解的聚合物组合物制造塑料制品的方法,该方法使用常规的转化方法,例如熔融或溶液纺丝、熔融吹塑、流延薄膜挤出或吹塑薄膜挤出、注塑或溶剂涂布。
本发明还有一个目的是提供有韧性的、高强度的、但有柔韧性的可生物降解的卫生和医用用品、可堆肥处理的塑料袋和农用薄膜、注塑罐、院子废弃物收集网、可堆肥处理的泡沫制品、可生物降解纸浆、纸涂层以及粘结剂。
本发明还有一个目的是提供新型的具有可生物降解的、可堆肥处理的背衬层的吸收制品或者具有其它结构特征的制品,它们可通过各种手段,包括通过污水进行处理。
发明概述本发明第一方面涉及新型的可生物降解的、可堆肥处理的热塑性聚合物组合物,该组合物表现出可有利地与大多数通用的延展性聚烯烃,例如聚乙烯和聚丙烯抗衡的柔韧性、延展性和韧性,它们易于经固态加工、熔融加工或溶液加工成各种成形制品,而且在存在微生物的条件下易于降解或分解。这类组合物包含至少两种聚合物组份;a)其中占该新的组合物20%至80%重量的第一种组份是一种聚羟基链烷酸酯共聚物或其混合物,它们包含至少两种无规重复单体单元;其中占聚羟基链烷酸酯单体单元至少50%的第一种无规重复单体单元具有通式(I)的结构 式中R1是H,或者C1或C2烷基,并且n是1或2。
可生物降解的聚羟基链烷酸酯共聚物中包括的第二种无规重复单体单元包含至少一种选自式(II)和式(III)的单体 式中R2是C3-C19烷基或C3-C19链烯基,和 式中m为2至约16。
b)其中占该新型组合物80%至20%重量的第二种组份是一种酯类缩聚物或其混合物,它们由下通式的脂族二链烷酰单元 ;及其混合物;式中s为约1至约10,优选约2至10,与下式的二元醇缩聚得到HO-(CH2)t-OH式中t为约2至约10。或者,缩聚物的至多50%的脂族二酸可用芳族二酸,例如下式的对苯二酸或萘二甲酸代替 为在保持聚羟基链烷酸酯共聚物的可生物降解性的同时,获得有利的物理特性的组合,至少约摩尔50%的共聚物包含结构为式(I)的第一种无规重复单体单元的无规重复单体单元。适合地是,聚羟基链烷酸酯共聚物适宜的数均分子量为大于约150,000克/摩尔。
在组合物中使用的聚羟基链烷酸酯共聚物的另一个实施方案中,可包括一种或多种附加的无规重复单体单元。适合地是,附加的无规重复单体单元可具有式(IV)的结构 式中R3是H、C1-C19烷基或链烯基,并且q是1或2,条件是附加的无规重复单体单元不同于第一种或第二种无规重复单体单元,并且如果R1是CH3,则R3不是C2H5。
聚合物组合物中可存在两种以上的聚合物组份,在这种情况下附加的聚合物组份具有a)和b)中描述的化学结构,并且符合上面定义的整体聚合物组合物的要求。
可任选地,本发明的共混组合物包含0至20%重量的一种或多种相容性增塑剂,旨在进一步调整柔韧性并拓宽使用的温度范围。此外,本发明的共混组合物可包括一种或数种附加的相容性聚合物,条件是后者的量不超过聚合物总量的10%重量。聚合物可尤其包括聚羟基丁酸酯均聚物(iPHB)或羟基丁酸酯-戊酸酯共聚物(PHBV),它们可通过负责产生本发明的低结晶性PHA共聚物的相同生物体以小量进行生产。
根据本发明的另一方面,本发明还涉及制备新型的可生物降解的、可堆肥处理的热塑性聚合物组合物的方法,包括以溶液或熔融物形式混合共混的组份,然后除去溶剂或简单地冷却。
本发明还涉及增韧PHA的方法,该方法包括精细分散包含至少50%的脂族二链烷酰单元的热塑性酯类缩聚物,以改善其韧性和延展性。
本发明还涉及可生物降解的塑料制品的制造方法,该方法包括将溶液或熔融物形式的本发明聚合物组合物加工并转变为成形制品,该成形制品基本上不含催化剂或增容剂。这类塑料制品包括薄膜、片材、纤维、涂层、模塑制品、无纺织物和泡沫制品。
本发明还涉及可生物降解的卫生和/或医用品的制造方法,所述用品包括卫生巾、擦巾、尿布、垫片等,以及可堆肥处理的袋,如树叶/除草后的碎草屑收集袋、农用薄膜、捕鱼网、院子废弃物收集网和育种模板、泡沫制品,如一次性杯子及涂层的或结合的纸浆或者纸制品,该方法包括使用本发明的高强度和韧性的共混组合物。
已知PHA在大多数典型遭遇的(需氧或厌氧)环境条件下,具有较高的生物降解率,这归因于它们的内在的酶性质以及它们的低结晶性。这使得它们成为与其它可生物降解的聚酯的共混物的理想组份,因为它们有助于促进共混物的可生物降解性,并扩大了处理它们的手段。因此,共混物在使用期间,包括在润湿条件下,表现出优异的机械完整性和强度,而且它们在大多数遭遇的环境中在较短的时间内就很容易分解。
袋典型是单层或多层结构,它们通过密封并以有规律的间距预先切割连续吹塑的薄膜制成。本发明的共混组合物具有独特的可加工性和薄膜性能,成为由传统聚烯烃制成的袋的有价值替代品。
现在发现,在共混和加工为各种制品之前,通过简单加入酯类缩聚物可出人意料地改善由聚羟基链烷酸酯制造的制品的延展性。聚羟基链烷酸酯和脂族酯类缩聚物的共混物得到一种可生物降解的、可堆肥处理的塑料组合物,该组合物具有突出的机械强度和韧性、高生物降解率、易于加工性和潜在的低成本。后一点得到这样一种事实的支持,即PHA和酯类缩聚物,例如聚琥珀酸丁二酯,大部分是基于C4化学的,并且在原则上可由日用品回收资源通过细菌合成或者发酵,然后通过缩聚反应得到。
发明详述共混物的物理性能本发明者发现,可成功地制备包含可生物降解的聚羟基链烷酸酯(PHA)和脂族酯类缩聚物(AEP),例如实施例1中所述的那些的半结晶的线性脂族聚酯共混物。这些聚酯通常形成不混溶的共混物。本发明中采用的“不混溶的[聚酯]共混物”是指当使用示差扫描量热法(DSC)进行研究时,表现出多个玻璃化点和/或多个熔点的共混物。混合可以很容易地在高于两种组份的熔点温度,在常用溶剂的溶液中或者在熔融物中进行。但避免熔融温度升高到150℃至160℃以上也是重要的,这种温度可引发PHA共聚物的热降解。本发明说明书的后面将给出共混组份的详细说明。
本发明的聚酯通常形成不混溶的共混物。但与大多数不混溶的共混物不同,后者具有较差的机械完整性。出人意料地发现本发明的共混物表现出优异的机械性能。事实上,它们的韧性和延展性与纯由PHA制成的材料相比显示出非常大的改善,因此使它们成为各类应用中的优选材料。这在实施例2和3中采用由这类薄膜样品获得的实验断裂韧性数据进行了说明。为展示测试的特定材料的高韧性,实施例中描述了两种不同的测试方法。当与共混物的各单独组份相比时,这类不混溶但“相容”的共混物在至少一种机械性能上表现出协同行为。例如,用聚酯共混物形成的薄膜与单一的共混物组份的预期韧性相比表现出强得多的韧性。这些材料的高性能的优点之一是,如果需要,可使用它们制造具有改善的韧性的一次性制品,例如高性能树叶/除草后的碎草屑收集袋,或者减少制造制品的聚合物组份的量,因此导致整体材料的减少。后者可有助于降低成本并有益于环境,同时使得制品更容易和更快速地进行生物降解。
由于延展性增强,这类材料可容易地进行固态转换加工,该加工包括拉伸和扩展材料,无论是均匀地或增量地进行,都不会过早破裂。本发明中使用的“延展性”是指制品能发生变形并且内部消散机械能量而不会破裂的能力。本发明中使用的“破裂”是指制品破碎或撕裂的倾向。例如,延展性塑料薄膜是这样一种薄膜,当在机械应力下,薄膜发生伸展和变形,而不是破裂,或者至少破裂发生在伸展和变形之后。延展性越强,该材料就越能适应施加的应力而不会发生破裂。已知聚烯烃具有延展性,并且在很大程度上利用该特性将聚烯烃制品加工为更有用的和功能性更强的物体。因此,开发可生物降解的聚酯共混物是非常可取的,该共混物可与聚烯烃相比拟,或者甚至超过聚烯烃。本发明共混组合物的特性在实施例4中进行了充分的说明。
此外,出人意料地发现进行了固态转换加工的共混物的机械性能与未拉伸的样本相比表现出更强的韧性。这在实施例5中进行了说明。再者,在导致使用所述材料的制品的性能全面提高的同时,它还进一步导致材料的减少,但不会造成任何性能的损害。这种情况可例如以接受了增量拉伸过程如SELFing的树叶/除草后的碎草屑收集袋的情况进行说明,结果在保持相同或更好的抗刺穿性的同时,袋的容量潜在增大。该关键性发现的一个重要结果是你在袋中装填得东西越多,袋的容量就越大,并且其抗撕裂和刺穿的能力就越强。通过预先拉伸的方法可赋予聚合物袋附加的功能,例如在实施例6中举例说明的一定量的可恢复弹性。这种弹性对可堆肥处理的袋提供了一种尺寸适合所有的概念的切入点。如果仅仅是增量或部分预拉伸的,可使用这类薄膜中残留的延展性或可塑性使尺寸或形状发生另外的变化,而薄膜没有过早破裂的风险,这归因于其极高的抗刺穿和抗撕裂性能。
由于其内在的结晶成核作用和结晶生长缓慢性,PHA通常结晶相当缓慢。需要加速结晶的技术指导,以使这些聚合物可以与其它普通聚合物的加工速度相当的速度加工,并加工为本发明的各种物体。为避开它们的内在结晶缓慢问题,的确需要高效成核包。文献中已经描述了数种符合这种要求的高效成核包。其它则是其它发明的主题。如实施例7中说明的那样,申请在任何速度下,酯类缩聚物都有助于加速共混物中PHA的结晶。发明人的数据表明,这不仅仅是由于共混物的酯类缩聚物部分结晶加速的事实;共混物的PHA部分的结晶也加速了。因此,就此而言,获得了整体有益效果,并且以更快的速率,即具有更好的经济性,将本发明的共混物转变为各种形式的能力也得到了改善。
由于共混物的不混溶性,聚合物组分发生相分离,结果它们各自的热转化对共混物构成整体影响。实施例8中给出了这如何可以拓宽制品中应用这些材料的温度范围。通常的理解是半结晶性聚合物在Tg和Tm之间的间隔中最有用。低于Tg,它们更容易变得发脆破裂,并且经常认为具有易碎性;高于Tm,它们将失去物理完整性。上述共混物可利用酯类缩聚物的较低Tg以及聚羟基链烷酸酯的较高Tm,以此作为拓宽酯类材料的应用范围的手段。
大多数聚合物的熔融加工一般利用这些材料的两个重要性质熔融弹性和剪切变稀行为。本发明中使用的“熔融弹性”描述了在加工时,聚合物熔融保持稳定的临时形状的能力,即在熔融物表现出一定合理的机械完整性。这在聚合物冷却和固化之前在其成形或变稀过程中提供了极大的柔韧性。相同分子量的PHA共聚物的熔融弹性比酯类缩聚物低得多,这归因于后者之中缠结之间的高分子量。结果,为表现出足够的熔融弹性,PHA需具有甚至更高的分子量。在共混物中,酯类缩聚物组分有助于建立熔融弹性,因此放松了对具有高分子量PHA的要求(参见实施例9)。聚合物的另一个有价值的典型特征是它们在加工期间能表现出剪切变稀行为。本发明使用的“剪切变稀”描述了熔融聚合物流动下剪切粘度的降低,由此降低其粘度,使材料的加工变得更容易。如实施例9的本发明的共混组合物所表明的那样,共混物的剪切变稀性比单独PHA组分更明显。
本发明的共混物是指可生物降解的。本发明使用的“可生物降解的”是指化合物通过微生物和/或自然环境因素最终能完全降解为CO2和水或者生物素。本发明的共混物符合最近采用的针对可堆肥处理的塑料的US ASTM标准(ASTM D6400-99),该标准与德国的DIN以及即将实施的欧洲标准(CEN)是一致的,预期这与开发旨在证明产品的可生物降解性符合ASTM标准的证明/标志一起,将有助于鉴别真正的可生物降解的材料。
已知本发明的PHA非常易于分解并且通过微生物矿物化,这与它们的组成无关。另外已知酯类缩聚物随时间的流逝发生分解并最终大多被微生物代谢。一些市售聚酯成功地符合由ASTM标准建立的标准。如果存在芳族单体,为确保不存在过多的不能被轻易代谢的芳族低聚残余物,芳族组分与脂族组分的比率需低于临界值。
在说明书全文中提到了出版物和专利。本发明引述的所有参考文献均结合到本发明中以供参考。
除非另有说明,本发明引用的所有共聚物组成比例是指摩尔比。除非另有说明,所有百分比均以重量计。
聚羟基链烷酸酯用于本发明共混物的聚羟基链烷酸酯可通过合成方法制备,或者可通过各种生物有机体,例如细菌或藻类制备。聚羟基链烷酸酯是共聚物,聚羟基链烷酸酯优选是具有两种或多种组份的共聚物。
聚羟基链烷酸酯可以基本上是光学纯的,即主要是全同立构的或间同立构的。本发明使用的聚羟基链烷酸酯优选是基本全同立构的(约90%至约100%重量是全同立构的)或者是完全全同立构的(约100%重量是全同立构的)。完全全同立构的聚羟基链烷酸酯可由生物有机体获得,本发明使用的聚羟基链烷酸酯优选由生物有机体通过发酵或者由转基因的绿色植物(真核细胞)获得。
聚羟基链烷酸酯共聚物或其混合物包括至少两种无规重复单体单元;其中包括至少50%聚羟基链烷酸酯单体单元的第一种无规重复单体单元具有下通式(I)结构 其中R1是H或者C1或C2烷基,并且n是1或2。在一个优选的实施方案中,R1是甲基(CH3),其中第一种无规重复单体单元具有下面结构 其中n是1或2。在第一种无规重复单体单元的另一个优选实施方案中,R1是甲基并且n是1,其中聚羟基链烷酸酯共聚物包括3-羟基丁酸酯单元。
包括在可生物降解的聚羟基链烷酸酯共聚物中的第二种无规重复单体单元包含至少一种选自式(II)和式(III)的单体 其中R2是C3-C19烷基或C3-C19链烯基,和 其中m为2至约16。通常,式(II)的无规重复单体单元中,R2的长度在一定程度上将影响共聚物的整体结晶性的降低。在一个优选的实施方案中,R2是C3-C10烷基或链烯基。在另一个优选的实施方案中,R2是C3-C6烷基,并且在另一个优选的实施方案中,R2是C3烷基,其中第二种无规重复单体单元是3-羟基己酸酯。在另一个优选的实施方案中,R2是C10-C19烷基或链烯基。在一个优选的实施方案中,关于包含式(III)单体的第二种无规重复单体单元中,m为2至约10,并且更优选为4或5。在另一个实施方案中,可生物降解的聚羟基链烷酸酯共聚物包括式(I)的第一种无规重复单体单元和式(II)及式(III)的附加无规重复单体单元。
为获得物理性能的有利组合,同时维持聚羟基链烷酸酯共聚物的可生物降解性,至少约50%摩尔的共聚物包括具有式(I)的第一种无规重复单体单元结构的无规重复单体单元。适合地是,共聚物中第一种无规重复单体单元与第二种无规重复单体单元的摩尔比为约50∶50至约99∶1。当将本发明的共混物加工为普通纤维或塑模制品(如注塑或吹塑)时,优选约80%至约99.5%、更优选约90%至约99.5%、甚至更优选约95%至约99.5%的PHA的共混物无规重复单体单元具有第一种无规重复单体单元的结构。当将本发明的共混物加工为弹性体或者粘合剂时,优选约50%的PHA的无规重复单体单元具有第一种无规重复单体单元的结构。当将本发明的共混物加工为无纺织物时,优选约85%至约99.5%、更优选约90%至约99.5%、甚至更优选约95%至约99.5%的PHA的无规重复单体单元具有第一种无规重复单体单元的结构。不受理论的束缚,据信第二种无规重复单体单元链和/或支链长度的组合以及所示的摩尔量足以降低第一种无规重复单体单元的结晶性,以形成具有预期应用所需的物理性能的共聚物。
此外,聚羟基链烷酸酯的分子量优选大于约150,000、更优选约150,000至约2,000,000、甚至更优选约250,000至约1,000,000。
在组合物中应用的聚羟基链烷酸酯共聚物的另一个实施方案中,可包括一种或多种附加的无规重复单体单元。适合地是,附加无规重复单体单元可具有式(IV)的结构 其中R3是H、C1-C19烷基或链烯基,并且q是1或2,条件是附加的无规重复单体单元不同于第一种或第二种无规重复单体单元,并且如果R1是CH3,则R3不是C2H5。共聚物优选包括至少2种、更优选约2至20种不同的无规重复单体单元。至少50%的无规重复单体单元优选具有第一种无规重复单体单元的结构。
适宜的聚羟基链烷酸酯包括下列文献中公开的那些Noda,美国专利5,498,692;5,502,116;5,536,564;5,602,227;5,618,855;5,685,756;和5,747,584,以及由KaneKa(美国专利5,292,860)、Showa Denko(EP440165A2、EP466050A1)、Mitsubishi(美国专利4,876,331)公开的其它聚(3-羟基链烷酸酯)共聚物组合物,这些文献引入本发明以供参考。
脂族酯类缩聚物本发明中使用的脂族酯类缩聚物由脂族多元醇和脂族多元羧酸化合物合成得到。本发明使用的“多元醇”是指具有至少2个羟基的醇。“多元羧酸化合物”则是指具有至少2个选自羧酸基或酸衍生基团的基团的化合物,包括酸酐和酰卤。多元醇与脂族多元羧酸化合物的摩尔比优选为约1.05∶1至约1.2∶1。
多元醇优选是二元醇。适宜的二元醇包括乙二醇、丙二醇、1,4-丁二醇、1,6-己二醇、1,9-壬二醇、癸二醇、1,3-丁二醇、3-甲基-lis-戊烷、新戊二醇、2-甲基-1,3-丙二醇、1,4-环己烷二甲醇及其混合物。
优选的二元醇具有包含偶数个碳原子的直链亚烷基,更优选的二元醇具有2、4、6、8或10个碳原子。甚至更优选地,二元醇选自乙二醇、1,4-丁二醇和1,4-环己烷二甲醇及其混合物。
适宜的脂族多元羧酸化合物包括脂族多元羧酸、脂族多元羧酸酐、脂族多元酰卤及其混合物。脂族多元羧酸化合物优选是脂族二元羧酸化合物,更优选是脂族二元羧酸或脂族二元羧酸酐。适宜的多元羧酸化合物包括琥珀酸、琥珀酸酐、己二酸、己二酸酐、辛二酸、癸二酸、十二碳二酸、环己烷二羧酸及其混合物。
优选的脂族二元羧酸化合物具有包含偶数个碳原子的直链亚烷基,更优选的是脂族二元羧酸化合物具有2、4、6、8或10个碳原子。甚至更优选地,二元羧酸选自琥珀酸、琥珀酸酐、己二酸、辛二酸、癸二酸、十二碳二酸及其混合物。优选地,脂族多元羧酸化合物包括至少70%摩尔,更优选至少90摩尔%的选自琥珀酸、琥珀酸酐及其混合物的酸化合物。优选地,脂族多元羧酸化合物包括不超过约30%、优选不超过约10%的除琥珀酸和/或琥珀酸酐以外的酸化合物。琥珀酸和/或琥珀酸酐与其它脂族多元羧酸化合物的摩尔比优选为约70∶30至约100∶0。
脂族酯类缩聚物可由二元羧酸化合物合成得到,所述二元羧酸化合物选自下式化合物 ;及其混合物;其中s为约1至约10,优选约2至10,二元醇具有下式结构HO-(CH2)t-OH其中t为约2至约10。
脂族酯类缩聚物可由优选的成分混合物制备,例如乙二醇和琥珀酸或其酸酐;1,4-丁二醇和琥珀酸或其酸酐;1,4-丁二醇、琥珀酸或其酸酐和己二酸或其酸酐;1,4-丁二醇、琥珀酸和癸二酸;1,4-环己烷二甲醇和己二酸;以及1,4-环己烷二甲醇和癸二酸。更优选的是乙二醇和琥珀酸或其酸酐;1,4-丁二醇和琥珀酸或其酸酐;以及1,4-丁二醇、琥珀酸或其酸酐和己二酸或其酸酐的混合物。
脂族酯类缩聚物可包括某些以无规方式或小嵌段形式引入的芳族酯组份,条件是芳族酯的含量保持低于50%。缩聚物还可包括如上定义的PHA的单体或聚合序列。当脂族酯类缩聚物中包含氨基甲酸酯键时,氨基甲酸酯键的量为脂族酯类缩聚物的0.03%至3.0%重量,优选0.05%至2.0%重量,并且更优选0.1%至1.0%重量。这通常用作增加链的分子量的手段。
优选地,缩聚物的分子量大于约20,000、更优选约50,000至约500,000、甚至更优选约100,000至约400,000。
适宜的脂族酯类缩聚物包括下列文献中公开的那些Takahashi等,美国专利5,525,409;Takiyama等,美国专利5,310,782,以及Imaizumi等,美国专利5,314,969和5,714,569,这些文献引入本发明以供参考。
聚酯共混物的配制聚酯共混组合物通过共混聚羟基链烷酸酯和脂族酯类缩聚物制备。共混物可以通过在足以熔融两种聚合物的温度下熔融共混,或者通过在普通溶剂中的溶液共混制备。优选地,溶剂是氯化的溶剂,更优选是氯仿。溶剂可在聚合物共混后除去。将聚羟基链烷酸酯和脂族酯类缩聚物充分地共混形成复合结构。
优选地,聚酯共混组合物基本上不含、优选不含表面活性剂、增容剂、引发剂和无机填料。本发明使用的“引发剂”是指酯基转移催化剂,包括无机氧化合物,如钙、铝、钛、锆、锡、锑或锌的醇盐、酚盐、烯醇化物或羧酸盐。本发明使用的“无机填料”是指填料,例如金属,如选自周期表的IIA、IIIB和IVA族的金属的氧化物、氢氧化物、碳酸盐和硫酸盐。本发明使用的“基本上不含表面活性剂、引发剂和无机填料”是指表面活性剂、引发剂和/或无机填料各自以小于聚酯共混组合物重量的约1%、更优选小于约0.5%的含量存在。
本发明使用的“增塑剂”是指加到聚合物中以改善柔韧性的分子量不超过约2000克/摩尔的化合物和低聚物,并且当将它们与聚合物混合时,典型地降低聚合物的玻璃转化温度。增塑剂包括二乙酸甘油酯、甲苯二乙酸酯、甲苯磺酰胺、二-2-乙基己基己二酸酯、丁基乙酰基蓖麻油酸酯、三甘醇二乙酸酯、三甘醇辛酸酯、卤代石蜡烃、二-异丁基邻苯二甲酸酯、二-异庚基邻苯二甲酸酯、二-异辛基邻苯二甲酸酯、二-异壬基邻苯二甲酸酯、二-异癸基邻苯二甲酸酯、丁基苄基邻苯二甲酸酯、二癸基邻苯二甲酸酯、聚(氧化乙烯)(4)月桂基醚、环氧化大豆油、马来酸二丁酯、月桂酸甲酯及其混合物。优选地,聚酯共混组合物仅包含有限量的增塑剂。本发明使用的“有限量的增塑剂”是指含量小于聚酯共混组合物重量的约10%、更优选小于约5%。增塑剂还有助于改善材料的韧性和延展性,但为获得上述性能的有利组合,组合物中无需加入增塑剂。
组合物还包括各种非聚合的组份,包括成核试剂、防结块剂、防静电剂、滑动剂、抗氧化剂、颜料或其它惰性填料等。这些组份可以以常规量使用,但为获得这些材料的韧性、延展性和其它特性,组合物中通常不需要这些添加剂。一种或多种增塑剂可以以常规量应用于组合物中,但同样,增塑剂通常不是获得上述性能的有益组合所必需的。
聚羟基链烷酸酯的存在含量为聚羟基链烷酸酯和脂族酯类缩聚物的总重的至少约20%、优选约30%至约70%、并且更优选约40%至约60%。脂族酯类缩聚物的含量为聚羟基链烷酸酯和脂族酯类缩聚物的总重的至少约20%、优选约30%至约70%、并且更优选约40%至约60%。聚羟基链烷酸酯与脂族酯类缩聚物的重量比为约20∶80至约80∶20,或者约0.25∶1至约4∶1。更优选地,聚酯共混物包含重量比为约40∶60至约60∶40的聚羟基链烷酸酯和脂族酯类缩聚物。在这些接近平衡的比例下,两种材料的组合有助于使所需的性能最佳化。
虽然可将附加的聚合物与聚羟基链烷酸酯和脂族酯类缩聚物共混,但附加的聚合物不是获得延展性产品所必需的。通常聚酯共混物基本上不含任何附加的聚合物,即包含小于共混物总重10%重量的附加聚合物。优选地,聚酯共混物基本上由聚羟基链烷酸酯和脂族酯类缩聚物组成。
制品的制造本发明的聚酯共混物可加工为各种具有超级韧性和延展性的塑料制品,包括薄膜、片材、纤维、卷材、无纺织物和模塑制品。它们还可用作有关制品制造中的韧性涂层或粘结剂,所述制品是涂层制品或者用聚酯共混物制造的制品(在变形时通常表现出较高程度的剪切屈服而非碎裂)以及用包含聚羟基链烷酸酯和脂族酯类缩聚物的聚酯共混物制造的制品(与仅用聚羟基链烷酸酯制造的可比性制品相比,具有较小的碎裂性和脆性)。用聚酯共混物制造的制品表现出与用聚烯烃制备的类似制品相同或更强的韧性和延展性。
本发明使用的“薄膜”是指具有高长度与厚度比和高宽度与厚度比的极薄的连续片状物质。虽然对厚度的精确上限没有要求,但优选上限为约0.254毫米、更优选约0.01毫米、并且甚至更优选约0.005毫米。本发明的薄膜可用作液体不能透过的背衬,该背衬具有增强的可生物降解性和/或可堆肥处理性。它们还可用于制备可堆肥处理的垃圾袋或农用薄膜。薄膜可在常规薄膜制造设备上采用生产单层或多层薄膜的常规方法进行加工。
本发明使用的“薄片”是指具有高长度与厚度比和高宽度与厚度比的非常薄的连续的片状物质,其中材料的厚度大于约0.254毫米。在性能和制造方面,薄片具有许多与薄膜相同的特性,不同的是薄片较硬,并且具有自我支持性。
本发明使用的“纤维”是指具有高长度-与-宽度比和较小截面的柔韧的显微镜下均匀的物体。它们可用于制造院子废物收集网或渔网。本发明使用的“泡沫”是指由于分布在整个物体中的许多孔的存在致使其表观密度大大降低的本发明聚酯共混物。例如,泡沫可用于制造一次性杯子。在本发明的另一个实施方案中,塑料制品是模塑制品。本发明使用的“模塑制品”是指借助气体将聚合物共混物注射、压缩或吹制形成模具限定的形状而形成的物体。它们可用于制造可堆肥处理的包装或餐具。
本发明还涉及包括本发明的聚酯共混组合物的一次性个人护理产品。例如,可堆肥处理的吸收制品,该制品包括可透过液体的表层、包括聚酯共混物形成的薄膜的不可透过液体的背衬层和位于表层与背衬层之间的吸收核芯。这类吸收制品包括婴儿尿布、成人尿失禁的三角裤和衬垫以及妇女卫生护垫和薄垫。吸收制品可包括例如尿布上常用的带形突出扣件或例如妇女卫生护垫中常用的粘合背衬。
在本发明的吸收制品,例如一次性尿布中作为不可透过液体的背衬层使用的本发明薄膜的厚度典型为约0.01毫米至约0.2毫米,优选约0.012毫米至约0.051毫米。在优选的实施方案中,除提高可生物降解性和/或可堆肥处理性外,本发明的薄膜还具有一种或多种下列特性a)沿机器方向(MD)拉伸模量为约10,000至约100,000磅/平方英寸(约6.895×108达因/平方厘米至约6.895×109达因/平方厘米),b)MD撕裂强度为至少约70克/25.4微米的厚度,c)机器截面方向(CD)撕裂强度为至少约70克/25.4微米的厚度,d)通过球下落方法测定时,撞击强度为至少约12厘米,e)每16小时,水份转移率小于约0.0012克/平方厘米,f)60℃时的模量至少为约5.52×107达因/平方厘米(约800磅/平方英寸),和g)厚度为约12微米至约75微米。
背衬层可由根据本发明的聚酯共混物形成,该共混物包括相对重量比为4∶1至1∶4的PHA和AEP。在一个实施方案中,AEP由1,4-丁二醇和琥珀酸或其酸酐制备;在另一个实施方案中,AEP由1,4-丁二醇、琥珀酸或其酸酐和己二酸或其酸酐制备。在一个实施方案中,PHA包括至少两种无规重复单体单元,其中第一种无规重复单体单元具有下式结构 其中R1是H或者C1或C2烷基,并且n是1或2。
可生物降解的聚羟基链烷酸酯共聚物中包括的第二种无规重复单体单元包含至少一种选自式(II)和式(III)的单体 其中R2是C3-C19烷基或C3-C19链烯基,和 其中m为2至约16。
通常,PHA中至少50%、优选约50%至约99.9%、更优选约80%至约99.5%、甚至更优选约90%至约99%的无规重复单体单元具有第一种无规重复单体单元的结构。
表层优选具有柔软感,并且对穿着者的皮肤没有刺激性。此外,表层是可透过液体的,使液体很容易穿透其厚度。适宜的表层可使用广泛的材料,例如多孔泡沫、网状泡沫、开孔泡沫、天然纤维(如,木材或棉纤维)、合成纤维(如,聚酯或聚丙烯纤维)制造或者结合使用天然和合成纤维制造。优选地,表层使用将穿着者的皮肤与吸收核芯中的液体分隔开的疏水性材料。
在一个实施方案中,表层是由根据本发明制备的聚酯共混物制成的无纺材料。在一个实施方案中,AEP由1,4-丁二醇和琥珀酸或其酸酐制备;而在另一个实施方案中,AEP由1,4-丁二醇、琥珀酸或其酸酐和己二酸或其酸酐制备。
PHA包括至少两种不同的无规重复单体单元,其中第一种无规重复单体单元具有下式结构 其中R1是H或者C1或C2烷基,并且n是1或2。
可生物降解的聚羟基链烷酸酯共聚物中包括的第二种无规重复单体单元包括至少一种选自式(II)和式(III)的单体 其中R2是C3-C19烷基或C3-C19链烯基,和 其中m为2至约16。
通常至少50%、优选约85%至约99.5%、更优选约90%至约99.5%,甚至更优选约95%至约99.5%的无规重复单体单元具有第一种无规重复单体单元的结构。
表层与背衬层可以以任何适合的方式连接在一起。本发明使用的术语“连接”包括其中通过将表层直接固定于背衬层使表层与背衬层直接相连的构型;和通过将表层固定于中间层,再使中间层固定于背衬层,从而使表层间接连接于背衬层的构型。背衬层和表层可以使用包括PHA的粘合剂连接。
在一个实施方案中,连接表层与背衬层的粘合剂包括本发明的聚酯共混物,该共混物包括PHA和AEP。PHA包括至少两种不同的无规重复单体单元,其中第一种无规重复单体单元具有下式结构 其中R1是H或者C1或C2烷基,并且n是1或2。
可生物降解的聚羟基链烷酸酯共聚物中包括的第二种无规重复单体单元包括至少一种选自式(II)和式(III)的单体 其中R2是C3-C19烷基或C3-C19链烯基,和 其中m为2至约16。
至少50%的无规重复单体单元优选具有第一种无规重复单体单元的结构。
吸收制品的吸收核芯位于表层和背衬层之间。吸收核芯可以使用广泛的各种材料制成各种尺寸和形状。但吸收核芯的吸收容量应与设计用于计划使用吸收制品的液体负荷量相一致。
吸收核芯可包括木浆纤维、PHA、吸收性凝胶材料及其混合物。在一个实施方案中,吸收核芯包括本发明的聚酯共混物,其中PHA包括至少两种无规重复单体单元,其中第一种无规重复单体单元具有下式结构 其中R1是H或者C1或C2烷基,并且n是1或2。
可生物降解的聚羟基链烷酸酯共聚物中包括的第二种无规重复单体单元包含至少一种选自式(II)和式(III)的单体 其中R2是C3-C19烷基或C3-C19链烯基,和 其中m为2至约16。
通常,至少50%、优选约80%至约99.5%、更优选约90%至约99.5%、甚至更优选约95%至约99.5%的无规重复单体单元具有第一种无规重复单体单元的结构。
在一个实施方案中,吸收制品包括一个或多个趋于与制品的外周相邻的弹性部件。该弹性部件可包括PHA。在一个实施方案中,该弹性部件包括PHA,PHA包括两种无规重复单体单元,其中第一种无规重复单体单元具有下式结构 其中R1是H或C2烷基,并且n是1或2;并且第二种无规重复单体单元具有下式结构 通常,至少50%、优选约50%至约99.9%、更优选约80%至约99.5%、甚至更优选约90%至约99%的无规重复单体单元具有第一种无规重复单体单元的结构。
本发明的薄膜可使用制造薄膜的常规方法(如,吹塑成膜、流延成膜等)用于制造可堆肥处理的塑料袋。如下面实施例中描述,袋可以进一步进行成形后的转化加工,例如,以下实施例中描述的加工,以改善袋的性能或者减少原材料(降低规格)。袋可以与它们的可堆肥处理的内容物一起在堆肥处理设备中进行处理,而无需分离,也没有堆肥污染的风险。
本发明的组合物可用作各种底物,最优选纸坯的可生物降解涂层。它们可以以熔融或溶液形式施用,并且作为其它水份敏感材料的水份屏障。这类产品的实例是具有改善的耐用性的带涂层的纸杯或纸板。但这类制品可以以与纸坯相同的方式进行处理。
实施例下列实施例说明本发明的实施,而非有意对本发明进行限制。要求保护的本发明范围内的其它实施方案和改变对于本领域普通专业技术人员是显而易见的。因此,本发明的范围应根据以下权利要求认定,而不应理解为仅限于说明书中描述的方法。
实施例1该实施例表明了共混物的制备,该共混物包括与一种或数种酯类缩聚物混合形成本发明的一种共混组合物的聚(羟基链烷酸酯)支化聚合物。按照数种可供选择的途径成功地制得了这类共混物。它们可通过下列方法获得在常用溶剂(如氯仿)的溶液中共混两种或多种上述聚合物,随后在非溶剂中沉淀共混物。基于实际的观点,如果需要使用溶剂将聚羟基链烷酸酯共聚物从其生物生长介质中提取,则溶液共混方法才具有吸引力。这类共混物可以在班伯里类型的密炼机中制备,该密炼机是用于制备小批量的物料的理想的混合器,也是用于性能表征和评价性能的理想的混合器。较大量的共混物典型使用Haake双螺杆挤出机在工厂中进行制备。通过在整个4个不同加热区域选择温度分布和施加于螺杆的扭矩来控制混合条件是可能的。在使条状物冷却并在控温水浴中结晶后,通过圆形冲模挤出和切割条状的共混物,获得颗粒。或者,可将薄膜材料通过流延膜模头挤出,在其中聚合物共混物可固化的一系列加热辊上收集薄膜。
通过上述方法成功制备的共混物的实例包括-80/20或60/40细菌性PHBHx共聚物(聚(3-羟基丁酸酯-11.3%3-羟基己酸酯)共聚物,即包含11.3%的本发明定义的第二种无规重复单体单元,Mw>500k)与Bionolle 3001的共混物(包含一部分尿烷键的高Mw聚琥珀酸-己二酸丁二酯共聚物,购自Showa HighpolymerCo.,LDT,Tokyo,JP)。它们在不同挤出温度(155℃、165℃)下易于熔融挤出形成流延薄膜,然后被收集到加热辊上;-80/20或60/40细菌性PHBHx共聚物与较低分子量(较高熔体流动速率)的Bionolle 3020(MFR=20)的共混物,也购自ShowaHighpolymer。
-80/20或60/40不同组成的细菌性PHBHx(即不同摩尔比的3-羟基丁酸酯和3-羟基己酸酯)与EastarBio(包括脂族羧酸和与脂族二醇缩合的邻苯二甲酸的酯类缩聚物)的共混物,该共混物也可通过常规薄膜流延方法挤出形成薄膜。
-60/20/20 PHBHx/Bionolle 1020/EastarBio的共混物。
-如上述的共混物,其中加入20%的增塑剂,例如马来酸正丁酯。
实施例2该实施例说明在PHA共聚物与酯类缩聚物的共混物中观察到韧性显著增强。使用单一切口尺寸表征方法测定压模薄膜的劲度-韧性数据。该方法包括对在其中央包含一切口的宽样本施加负荷,切口代表破裂开始的位置,并且代表当对样本施加拉伸负荷时裂口穿过样本纽带的延续。曲线的初始斜率提供了纽带的劲度或刚性的量度,它也可以反过来衡量其柔韧性。它通过弹性模量定义,弹性模量基本上描绘了在施加负荷时聚合物如何在负荷-移位曲线的线性范围内(胡克定律)开始变形。它也经常提供合理的负荷量,即材料在进行大幅度(可塑的)变形或破裂之前可承受的负荷的信息。材料预计的应用类型决定了所需的劲度或柔韧性水平。例如,具有良好覆盖感的薄膜将需要低硬度,即高柔韧性的聚合物,但刚性包装瓶将需要依赖于较硬的聚合物。本发明共混组合物预期的较宽的应用范围决定了我们的共混物具有一定范围的硬度,该硬度可主要通过选择共混物的组份(它们的结晶度量,该量可逆地根据共聚单体的含量而改变)以及共混物的组成来控制。
韧性是材料的重要选择标准。在许多应用中,材料在制造和使用期间表现出抗灾难性破裂(脆性)或进行性破裂(延展性)是重要的。如果裂缝延伸不稳定,则认为材料是脆性的;相反,稳定的裂缝生长表示材料是延展性的。已经开发了一种定量方法,该方法定量材料在受到拉伸负荷时吸收或消散传递到系统的机械能量的能力。带切口的双轴撕裂试验是科学团体评价薄膜韧性的常用方法。单点表征的韧性通过测定至负荷降至在裂口开始延伸之前样本能承受的最大负荷的2/3的点处的破裂能量(即拉伸负荷曲线下的能量)获得。这种标准的定义不仅包括了引发破裂需要的机械能量,也包括破裂穿过样本延伸所需要的能量。
下表概括了我们在测试各种压模薄膜后的实验结果。
这些数据清楚地表明,与单独包含PHA的共混物相比,观察到包含Bionolle的共混物的韧性显著增强。再者,以主要的半结晶性聚烯烃为基点,证实了与聚烯烃相比,我们的共混组合物具有相同或更强的韧性,因此与聚烯烃相比,开启了薄膜降低规格和减少材料但不会降低性能的可能性。
实施例3该实施例是表明在PHA共聚物与酯类缩聚物的共混物中观察到韧性非常明显增强的另一个实施例。使用破裂测试领域已知为“Essential Work Method”的多样本方法,获得众多包含各种切口尺寸的挤出/流延薄膜样本破裂韧性数据。该测试较前面的测试更精确,并且要求测试样本具有不同的初始切口长度。薄膜破裂领域的专业人员已知并运用该方法,该方法并且是有价值的,因为它提供了薄膜材料抗破裂的双参数表征。另外,下表可用于比较各种薄膜材料的相对性能。在这种情况下,在沿机器方向(MD)和截面方向(CD)上测试市售的由聚乙烯制备的高性能垃圾袋(Glad Quick-Tie,0.74mil厚度),并与由聚(3HB-3Hx(11.3%))共聚物和Bionolle 3001的60/40共混物制备的熔融挤出的流延薄膜样本进行比较。下表给出了多样本测试的结果,结果通过厚度进行归一化。不仅使用脂族聚酯共混物制备的薄膜的MD和CD撕裂数据的平均值超出近20%,两个方向上性能的各向异性也低得多。因此,我们的共混物的方向虽然较弱,但也并没有PE那样弱,故不容易意外破裂。
实施例4该实施例报告以高速固态拉伸操作加工改变实施例1中所述的共混组合物的薄膜。本发明共混组合物增强的破裂韧性使这种改变可行。在技术性和专利文献中都描述了数种这类施加于固态聚合物基材的高速拉伸方法。均匀拉伸方法,例如通过拉幅的方法所示(参见J.H.Briston,Plastic Films,2nded.Longman Inc.New York(1983)83-85页)典型用于单轴或双轴拉伸薄膜、片材或者纤维/无纺织物,并且如果双轴拉伸,拉伸步骤可顺序、同时或二者任意地结合进行。非均匀拉伸方法,例如环-辊压拉伸方法(美国专利4,116,892和5,296,184)或SELFing(美国专利5,518,801和5,691,035)也已经公开,并且包括增量和定位拉伸薄膜部分,这通过强迫卷材通过一对可表现出各种不同图案的凹槽辊而实现。同样可以使用本领域已知的用于改变聚合物基材的其它方法,无论它们是否包括形成针孔(加氢重整)、形成许多小的凹坑,或者通过较大附件产生的加大幅度的变形/拉伸。
我们发现,PHA共聚物基材通常脆性过强,使得在不使其发生撕碎的情况下,在这种转变加工方法中很不容易处理,尤其是在高张力-速度(>1s^-1)和低温(即室温)条件下,在这类操作中这样的条件最为典型。PHA薄膜随时间推移发生的物理老化也对其韧性产生不利影响。后者迫使对材料进行热退火处理以使其“复原”。在高温和高变形速率下,塑料发生变形而不较早破裂,但在快速卸去负荷时可以看到材料大大恢复,并且材料趋于恢复到其拉伸前的初始状态。已经发现,高温和低变形速率的结合是防止撕碎和广泛恢复所必需的。但这对方法的实施增加了数种限制,并且可大大影响其经济性。
我们发现,实施例1所描述的共混组合物的破裂韧性的增强使我们成功地拓宽了可成功进行固态拉伸的条件范围,包括在高张力率和低温的最不利的但经济上优选的条件下,并且薄膜不会撕碎或者发生广泛的恢复,和无需任何“复原”的热预处理。基于这种成功,测试了数种固态拉伸薄膜样本的机械特性。实施例5中报告了结果。
实施例5该实施例表明了通过上述高-张力-速率固态加工操作改变的薄膜的高韧性。下表比较了与实施例3相同的薄膜在两个金属辊之间进行固态增量拉伸之前和之后的韧性。用于该特定试验的凹槽上的图案选择是SELFing的图案选择,之前已描述,其能够在未拉伸材料上和与拉伸成对角的方向上印制狭窄区带,所述区带与垂直于卷材方向上规律交替的拉伸的和未拉伸的区带重叠。通过上述“Essential WorkMethod”方法再次测定韧性,该方法提供两种重要参数,该重要参数描述了与破裂引发和延伸有关的薄膜的相关性能。
如该实施例清楚说明的那样,用本发明的共混组合物制备的薄膜的高韧性甚至可进一步通过经SELFing加工薄膜得到改进,得到在高性能应用中增值的超韧性薄膜材料(高度抗刺穿的袋)。作为SELFing的效果,在市售PE袋中观察到的韧性变化较小。
实施例6该实施例表明在使用本发明的共混物制备的拉伸的薄膜中观察到的部分恢复性。采用与上述相同的SELFing方法,在~75℃、高张力-速率条件下拉伸薄膜。下表表示了在随后通过增量拉伸时,SELF后的薄膜在SELFing方向上恢复的能力。这可简单地使用Instron张力检验器如下进行测定在将样本拉伸到不同长度后,逐渐卸下样本上的负荷直至样本上没有张力,然后测定样本残留的延伸。测试的薄膜样本包括市售的由聚乙烯制备的Glad袋、由Biocorp Inc.销售的可堆肥处理的袋、由60/40 PHBHx(11.5%)/EastarBio的共混物制备的挤出流延薄膜(后者由Eastman Chemicals,USA提供)和由60/40PHBHx(11.3%)/Bionolle 3001共混物制备的挤出流延薄膜(后者由Showa Denko,Japan提供)。
如这些数据所证明,包含PHA共聚物的聚酯共混物在拉伸达150%时,与PE Glad或市售的袋相比表现出更强的恢复性。在SELFing后,本发明共混物的更强弹性代表了材料能够呈现各种形状的另一个宝贵的有益效果,使用这种材料制备的产品更易于适合各种基材。
实施例7该实施例表明通过共混PHA共聚物与酯类缩聚物,例如Bionolle3001所观察到的结晶动力学优点。如前面所述,PHA结晶通常较缓慢,这是由于其内在的缓慢结晶成核作用和晶体生长所造成的。需要加速结晶的技术指导,以使这些聚合物的加工速度上可与其它普通聚合物的加工速度相比。本发明的共混物提供了加速PHA结晶速率的手段。
这可通过下表中概括的数据证明;数据代表在熔融物迅速冷却到所述温度(在该具体实施例中为50℃)后,在给定温度下结晶进行大约一半所需的时间。对于共混组合物,可以有两个独立的最小值,它们代表了每种共混组份结晶进行一半的时间。示差扫描量热仪(DSC)可提供在等温条件下操作测定的与结晶过程有关的全部结晶放热数据。
基于这些数据,与纯的PHA相比,结晶进行一半的时间减少了30%至80%,这取决于共混物中Bionolle 3001的相对含量。
实施例8该实施例说明共混组合物可以使用的温度范围的拓宽。的确,聚合物领域通常认为半结晶聚合物就应用而言的使用范围是在低温下限以玻璃化温度(Tg)、在高温上限以熔点温度来描述的。在我们的数种共混组合物的实施例中,我们发现双组份保持不相混溶,因此表现出各自的玻璃化温度和熔点。酯类缩聚物的Tg经常低于PHA共聚物的Tg(甚至在增塑剂存在的情况下),但后者的熔点经常要高数十度(见下表由DSC确定的热转化值)。因此,共混组合物享有酯类缩聚物的较低Tg与PHA的较高熔点之间的较宽温度范围,所以拓宽了共混组合物在各种应用中的使用范围。
实施例9该实施例说明共混时聚合物的流变学行为发生的变化;如缠结之间的高分子量证实的那样,由于它们相对较高的内在刚性(参见J-PAutran等,8thAnnual meeting of the Bio/EnvironmentallyDegradable Polymer Society,Aug.21st1999,New Orleans),PHA的复合粘度一般低于酯类缩聚物,因此需要足够的高分子量以使材料建立易于熔融加工的足够的粘度和熔融弹性。下面显示的合成聚(3HB-3Hx(11%))等级共混物和Bionolle 3001的流变学数据表明,酯类缩聚物可有助于提高与PHA的共混物的熔融粘度,特别是在高温或低剪切率下,所述数据基于在150℃温度下的熔融物中进行的动态力学测定。再者,在测试的频率范围内,通过加入Bionolle 3001,PHA的剪切变稀性也得到提高,该性质在许多加工应用中是一种有利的性质。
实施例10该实施例表明共混组合物与传统聚烯烃或酯类缩聚物相比具有改善的气味屏蔽特性。将挤出流延薄膜样品热密封形成较小的容器,将食品置于其中,所述食品表现出强烈的引入注意的味道(例如洋葱、薄荷等)。然后将该小信封形状的容器完全密封并置于密闭的罐中。通过监测罐中随着时间的流逝形成的气味强度,可以来定性评价聚合物包含小分子的能力,所述小分子是产生包封在信封内的强烈气味的原因。在我们的所有测试中,我们发现与聚烯烃(线性低密度聚乙烯)或酯类缩聚物(Bionolle 3001,Eastar Bio)进行比较时,PHA型的薄膜,例如60/40聚(3HBHx(11.3%))/Bionolle 3001共混组合物在较长的一段时间内系统地提供较好的芳香容纳性。
实施例11该实施例表明共混组合物的生物降解性。如同已知共混组分在可堆肥处理的环境中随时间会进行生物降解一样,本发明的共混组合物也同样可生物降解。与预期的一样,我们发现生物的、有氧的和湿的环境一般提供最适合于使材料分解和有益于生物降解、并最终使共混组分矿化的条件。虽然预期不同形状和形式的物体产生不同的生物降解速率,但在标准的堆肥处理测试中发现,60/40聚(3HBHx(11.3%))/Bionolle 3001共混物或者60/40 PHBHx(11.5%)/EastarBio共混物几乎发生完全生物降解(>90%)。
实施例12该实施例表明这类共混组合物在制造除草后的碎草屑/树叶收集袋中的用途。这里描述的步骤可应用于,但不限于,挤出流延薄膜。也可使用其它类型的薄膜,例如吹塑薄膜。在标准薄膜挤出设备上制备共混组合物的挤出流延薄膜,该薄膜的厚度通常为0.01毫米至0.1毫米,宽度为30厘米至100厘米。该薄膜材料通过热密封方法很容易加工成不同尺寸的袋,所述密封方法用于形成袋的底部和侧边。最后,沿着密封的接合线切割该密封的薄膜,使其分割为单个的袋。然后,对袋进行例如上述的固态加工方法。在一个实施例中,将袋加热到70℃,然后使其在有图案的金属辊之间受力,这种力作用于通过未拉伸区域分隔局部拉伸区域。薄膜中这些图案的空间排列取决于辊的图案。形成图案的结果旨在进一步增加其容量和其拉伸性的同时,增强袋的破裂韧性,从而使得产品整体材料减少。
权利要求
1.一种吸收制品,包括(a)可透过液体的表层;(b)不可透过液体的包含聚酯共混组合物的背衬层;和(c)位于表层和背衬层之间的吸收核芯;其中聚酯共混组合物的特征在于其包括(i)80%至20%重量的聚羟基链烷酸酯共聚物,其包括至少两种无规重复单体单元,其中第一种无规重复单体单元具有式(I)的结构 式中R1是H或者C1-C2烷基,并且n是1或2;第二种无规重复单体单元包括至少一种选自式(II)和式(III)的单体 式中R2是C3-C19烷基或C3-C19链烯基,以及 式中m是2至16;以及(ii)20%至80%重量的脂族酯缩聚物,该缩聚物由脂族多元醇和脂族多元羧酸化合物合成。
2.一种吸收制品,包括(a)可透过液体的包含聚酯共混组合物的表层;(b)不可透过液体的背衬层;和(c)位于表层和背衬层之间的吸收核芯;其中聚酯共混组合物的特征在于其包括(i)80%至20%重量的聚羟基链烷酸酯共聚物,其包括至少两种无规重复单体单元,其中第一种无规重复单体单元具有式(I)的结构 式中R1是H,或C1-C2烷基,并且n是1或2;第二种无规重复单体单元包括至少一种选自式(II)和式(III)的单体 式中R2是C3-C19烷基或C3-C19链烯基,和 式中m是2至16;和(ii)20%至80%重量的脂族酯类缩聚物,该缩聚物由脂族多元醇和脂族多元羧酸化合物合成。
3.如权利要求1或2所述的吸收制品,其中多元醇是二元醇,并且进一步地其中多元羧酸化合物是选自二元羧酸、二元羧酸酐,及其混合物的二元羧酸化合物。
4.如权利要求1至3中任一项所述的吸收制品,其中第一种无规重复单体单元选自其中R1是C1烷基并且n是1的单体、其中R1是C2烷基并且n是1的单体、其中R1是H并且n是2的单体、其中R1是H并且n是1的单体,及其混合物。
5.如权利要求1至4中任一项所述的吸收制品,其中聚羟基链烷酸酯共聚物(i)进一步包括第三种具有式(IV)的无规重复单体单元 式中R3是H或C1-19烷基或链烯基;并且q是1或2;并且其中第三种无规重复单体单元不同于第一种无规重复单体单元或第二种无规重复单体单元。
6.如权利要求5所述的吸收制品,其中第三种无规重复单体单元选自其中R3是C1烷基并且q是1的单体、其中R3是C2烷基并且q是1的单体、其中R3是H并且q是2的单体、其中R3是H并且q是1的单体,及其混合物。
7.如权利要求1至6中任一项所述的吸收制品,其中共聚物(i)中至少50%的无规重复单体单元具有第一种单体单元的结构。
8.如权利要求1至7中任一项所述的吸收制品,其中脂族酯类缩聚物由二元羧酸化合物和二元醇合成,所述二元羧酸化合物是选自下式的化合物 ;及其混合物;式中s是1至10;并且二元醇具有下式的结构HO-(CH2)t-OH式中t是2至10。
9.如权利要求1至8中任一项所述的吸收制品,其中脂族酯类缩聚物包含小于50%重量的芳族二元酸。
10.如权利要求1至9中任一项所述的吸收制品,其中所述制品呈一次性尿布、卫生巾或垫片形式。
全文摘要
本发明涉及具有韧性和延展性的、可生物降解的脂族聚酯共混组合物以及制备这类组合物的方法。本发明涉及由这类共混物制成的产品,包括但不限于薄膜、纤维、无纺织物、薄片、涂料、粘结剂、泡沫和用于包装的模制产品。这些产品表现出高强度、延展性和韧性的理想组合,同时保持了柔韧性、可生物降解性和可堆肥处理性。本发明还涉及吸收制品(如尿布、卫生巾、垫片等),所述吸收制品包括一可透过液体的表层、不可透过液体的包括含本发明的聚酯共混组合物的薄膜的背衬层和位于表层与背衬层之间的吸收核芯。本发明的聚酯共混物包括(a)包括两种无规重复单体单元的共聚物,其中第一种无规重复单体单元具有下式结构式中R
文档编号A61F13/53GK1468114SQ01816958
公开日2004年1月14日 申请日期2001年10月5日 优先权日2000年10月6日
发明者J·-P·M·奥特兰, J -P M 奥特兰 申请人:宝洁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1