专利名称:图像引导的脉管内治疗导管的制作方法
图像引导的脉管内治疗导管相关申请数据本申请要求2007年7月27日提交的美国临时申请序列号60/962,169的权益以 及要求2008年5月16日提交的美国实用新型申请序列号12/122,456的优先权,它们被并 入以供参考。
背景技术:
本申请涉及用于医疗用途的超声成像导管(catheter)。更具体地但不仅仅是,它 涉及具有能够提供高质量、实时、前视(forwardlooking)图像的高频超声成像阵列的脉管 内(intravascular)导管。可替换地或另外,本申请涉及在超声成像阵列的前面结合“看透 (see-through)”消融(ablation)电极以便于体腔内的图像引导治疗。脉管内超声(IVUS)已经被成功地实施为用于辅助脉管(vascular)疾病的诊断和 治疗的可视化工具。(参见例如 1995年Gary S. Mintz, Taylor & Francis 的 Intracoronary Ultrasound) 0然而,被设计用于小腔(例如,冠状血管)的现有脉管内超声成像装置要么 不能前向成像要么产生质量相对差的图像。而且,即使通常已提出了向超声成像导管内添 加治疗消融功能,但是市场上可买到的IVUS导管缺乏任何这样的治疗功能。因此,存在对 具有改进的成像能力的脉管内装置的需求并且还存在对将高质量成像与消融治疗的提供 进行成功集成的脉管内装置的需求。本申请提供用于解决那些需求中之一或两者的系统和 技术。本文描述的特定导管用于治疗部分或完全闭塞的(occluded)血管中(例如周边 或冠状动脉中)的阻塞(obstruction)。这些导管将微型高频超声成像阵列与“看透” RF电极进行组合以使得操作员可以 享受接受治疗的区域的基本无阻塞的直接可视化。在优选的形式中,电极和阵列两者都是 前向的(forward facing),并且导管可以用来在实时可视化下隧穿动脉阻塞。
发明内容
本文描述的一个实施例是一种独特的高频超声成像多维阵列,其可以被用于脉管 内以产生血管中的阻塞的高质量、实时前视图像。如本文所用的,多维阵列是具有以多于一 维布置的元件的阵列,诸如1.5D、1.75D或2D阵列。多维阵列能够在体积(volumetric)视 野内提供空间分辨率而不需要被相对平移(translate)(例如,被从一侧到另一侧铰接或 被旋转)。本文描述的其它实施例可以用ID阵列来实施,该ID阵列可以是可旋转的以便提 供体积视野的空间分辨率。另一些实施例包括用于在消融过程期间生成和检测超声成像信 息以提供实时引导的独特方法、系统、装置和设备。本发明的一个目的是提供用于高频脉管内超声应用的独特多维超声阵列。另一个目的是提供一种以便于可视化和治疗闭塞血管的方式结合高频超声可视 化和选择性消融能力两者的独特导管系统。另一个目的是提供将前视超声可视化与对超声基本透明(transparent)的前向消融电极进行组合的独特导管系统。通过详细描述以及由此提供的附图,本发明的进一步形式、目的、特征、方面、好 处、优点和实施例应变得显而易见。
图1是利用超声和RF治疗的导管系统的示意图。图2是图1导管的远末端(distal tip)的视图,为清楚起见以部分剖面图示出外 护套(outer sheath)。图3是示出在图1导管的远末端中结合平面超声2D阵列的视图,为清楚起见去除 了声匹配(acoustic matching)层。图4是示出在图1导管的远末端中结合可旋转超声ID阵列的视图,为清楚起见去 除了声匹配层。图5是示出在图1导管的远末端中结合锥形超声阵列的视图。图6是示出平滑弯曲末端(smoothly curved tip)与图3的2D阵列结合的视图。图7是示出平滑弯曲末端与图4的可旋转ID阵列结合的视图。图8是沿纵轴100邻近(proximalIy)观看的图6或7的平滑弯曲末端的端视图。图9是图8的平滑弯曲末端的截面图。图10是结合图6或7的平滑弯曲末端的导管的示意侧视图。图11是2D超声换能器(transducer)阵列组件的透视图。图12A-12C是所建模的脉管内换能器阵列的脉冲响应、阻抗和损耗的示例图,其 中通过不存在任何RF电极的导管末端来执行成像。图13A-13C是图12中所建模但通过1 μ m的金层执行成像的脉管内换能器阵列的 脉冲响应、阻抗和损耗的示例图。图14A-14C是图12中所建模但通过1. 5 μ m的钛层执行成像的脉管内换能器阵列 的脉冲响应、阻抗和损耗的示例图。图15是沿纵轴邻近观看的的没有引导线腔(guide wire lumen)的平滑弯曲末端 端视图。图16是图15的平滑弯曲末端的截面图。
具体实施例方式为了促进理解本发明的原理,现在参照附图中示出的实施例并且特定语言将用来 描述该实施例。不过要理解,由此不旨在限制发明的范围。如本发明所属领域中的技术人 员会正常想到的,预期所描述实施例中的任何更改和进一步修改以及本文所描述的发明原 理的任何进一步应用。本发明的一个实施例包括被结构化用于经皮肤插入人体中的超声装置。该装置包 括位于远端部处的压电元件阵列以及连接到该阵列的电缆线路,该电缆线路延伸到装置的 近端部并且连接到超声成像系统。阵列中的元件被设计成发送和/或接收高频(例如大约 15MHz及以上)超声以用于体积图像生成。在优选的形式中,这些元件是以密集的2D阵列 的形式,例如各个元件的长度和宽度尺寸均小于100μπι(即每平方毫米至少100个元件的元件密度),适合于产生所探询的体积的高质量3D图像。优选地,就每平方毫米大约400个 元件的元件密度而言,元件尺寸在大约50 μ mX 50 μ m的范围内。这个微型密集阵列提供高 分辨率成像信息然而小得足以用在各种诊断和治疗应用(包括但不限于脉管内超声可视 化)中。在一个所预期的应用中,换能器元件被定位在导管中以便提供邻近远末端的组织 的前向视图。许多RF消融电极被结合在远末端上,并且连接到电极的电缆线路经过导管延 伸到近端部且连接到RF治疗系统。RF电极被配置成用来当操作员基于阵列实时所提供的 超声成像信息而确定组织消融是必要的或合适的时消融(ablate)组织。在优选的方面中,换能器阵列和电极被配置成使得超声成像至少部分通过RF电 极进行。RF电极被直接定位在超声探询(interrogation)的通路中但被构造成使得它们 不会过度地衰减该超声。相反,电极包括导电层,该导电层足够薄以致它们通过在相关频 率(其优选地在20-40MHZ的范围内,诸如大约25MHz)下的大部分超声。建模已经证实, 1-2 μ m厚度的某些金属(例如诸如金、钛、铝、镁或铍之类的)层对25MHz下的超声将足够 透明。据认为,在实际中包括高达大约8 μ m厚度的这些金属导体的电极对高频超声也将充 分透明以致成像可以通过电极而发生。本文所描述的某些实施例可以被具体地配置用于通过脉管闭塞。一个这样的装置 包括具有近端、远端和远末端的脉管内导管。消融电极被定位在远末端上并且超声阵列位 于接近于电极的导管的远端处。导管被配置成传递到闭塞位置,并且该阵列被配置成由发 送和接收通过电极的超声来提供该闭塞的实时成像。电极被配置成被选择性地操作以传递 能量来消融闭塞。在使用中,闭塞和周围脉管壁的实时图像被显示在监视器上并且操作员 激活RF电极以在使导管前进通过闭塞时消融斑块(plaque)。一般系统设计参照图1,结合系统20来描述进一步的方面。系统20被布置成为医疗诊断和/或 医疗提供身体B内的图像。系统20包括控制站以及适当的操作员输入装置(例如键盘和鼠 标或者其它标准种类的指示装置)和操作员显示装置(例如CRT、IXD、等离子屏幕或OLED 监视器),该控制站包括超声成像系统40和RF治疗系统50,每个系统均可在操作中耦合到 探头装置60。装置60被配置用于放置经过开口 0并且进入人类患者或对象的身体B中,如图1 中示意性所示。装置60被优选地配置用于通过任何常规脉管插入技术而插入对象的血管 或类似腔L中。如图1所示,装置60包括从装置60的近端端口 42经过远末端70延伸的 引导线腔,该远末端70被用来通过经由常规跨线插入技术(conventional over thewire insertion technique)而预先插入的引导线(未示出)来插入装置60。引导线出口 199 可以与远末端邻近隔开,如图10所示。装置60可以被配置带有缩短的引导线腔以便采用 单轨(monorail)型插入技术,或者装置60可以被配置不带有任何引导线腔并且代替地被 配置成经过预先插入的引导导管腔而插入。参照图10的示意性图示,远末端70通常包括能够成像脉管组织的至少一个成像 阵列82以及能够对脉管组织施加治疗的一个或多个治疗电极172、176。该阵列82被包含 在末端70内并且与电极172、176邻近隔开,所述电极172、176沉积(cbposite)在末端70 的外表面上。阵列82和电极172、176两者都限定与末端70的纵轴100不平行的工作表面(operative surface),也就是说它们每个都是“前向的”。这允许装置被用来成像和治疗在 末端前面的脉管闭塞或斑块P。任选地,面向电极的一侧或多侧和/或面向阵列的一侧可以 被包括以允许装置60被用来成像和/或治疗该侧的脉管结构。阵列82被优选地配置成探询(interrogate)体积像场,该体积像场指的是可以导 出其内成像信息的所探询体积。如图所示,阵列82是通常与远末端70的纵轴100正交定向 的2D阵列。在这种布置中,阵列82限定了通常为锥形形状且以纵轴100为中心的像场,如 立体角B所指示的。阵列82的像场包括与阵列82的工作面正交的中心区域(由C指示) 以及包含在接受角A内的外围区域。如本文更全面描述的,预期成像阵列的其它配置和布 置。电极172、176被定位在像场中,但如上所述被构造成使得阵列82发送的超声能够 通过它们,这通常可以通过将金属导体的厚度限制为小于8、7、6、5、4、3或2 μ m来实现。因 为电极172、176对超声有效透明,所以电极可以覆盖末端70的远端部的大部分以便提供大 面积的潜在治疗而无损于阵列82成像相关组织的能力。例如,预期电极172、176可以共同 地覆盖阵列82前面的截面积C的50% -90%。要理解,视野B的一般形状取决于阵列的结构以及该阵列如何结合到导管中。可 以采用各种修改来更改视野的大小、形状或定向。例如,阵列82被示为具有是平面的工作 (远端)表面。阵列82的工作表面可以向外弯曲或凸出,这将具有扩大截面积C的边界并 且还可以提高接受角A的效果。阵列82可以可替换地具有凹入形状,这将具有缩窄视野的 效果。可替换地或另外,导管末端70的远端部182可以被构造以便影响视野。在一个优 选的实施方式中,远端部被构造以便作为超声透镜(ultrasound lens)进行工作。例如,部 182可以由比周围环境(例如身体组织)更低地发送超声的材料构成以致当超声通过远末 端部182时向内吸引(draw)和聚焦波束。可替换地,部182可以由比周围环境更快地发送 超声的材料构成以致当超声平移经过远末端时使波束散焦。当作为超声透镜进行工作时, 部182的外表面的曲率半径会影响焦距,并且曲率半径一般约为远末端的总直径。例如,对 于4F导管(1.273mm直径),部182的曲率半径可以是1.5mm。在另一些备选方案中,可以通过在远末端182内铰接多维阵列82来更改视野。例 如,不是把阵列82固定在末端70内,阵列82可以被安装在显微操纵器的端部上以使得阵 列82相对于纵轴100的定向可以被更改。US 7,115,092描述了一种可以适用于铰接2D阵 列的显微操纵器。作为对多维阵列(例如1. 5D、1. 75D或2D阵列)的备选方案,可以采用ID阵列来 产生成像信息。图4示意性地示出ID阵列实施方式,其中该阵列被安装在轴上并且马达 110或类似旋转机构被配置成旋转该阵列以便采集体积(3D)图像。在实际中,使用机械旋 转的ID阵列采集3D图像所花的时间段可能比例如对于固定2D阵列的情况要长。还要理解,装置60可以酌情针对预计应用来调整大小。当适用于冠状动脉时,至 少装置60的远端部一般将具有从0. 75mm到3mm变化的外直径。当适用于治疗周边动脉疾 病时,远末端70的外直径可以在1到5mm的范围内。导管的总长度一般可以为大约150cm。为了便于阵列82与末端70内的其相关电部件的结合,可以采用柔性电路互连技 术。合适的柔性电路以及用于在柔性电路上安装压电阵列的有用技术通常是已知的且描述在例如 Eberle 的 US 7,226,417 和 Hadjicostis 等人的 US 2004/0254471 中。现在参照图2,根据一个实施例的阵列组件81包括压电元件82、吸声衬垫 (acoustic backing)层80和一个或多个声匹配层84的阵列。该阵列组件81被安装到柔 性电路衬底94,该柔性电路衬底94包括柔性衬底材料(例如聚酰亚胺薄膜)和金属互连电 路(未示出)。该互连电路包括沉积在柔性电路94的表面上的导线,其将阵列82耦合到一 个或多个集成电路芯片98、99,每个集成电路芯片结合适当的复用器、前置放大器以及诸如 滤波器、信号调节器等等的其它电气集成电路。超声电缆线路96邻近地蔓延以电连接柔性 电路94到超声成像系统40。被示为沉积在锥形远末端上的RF电极72、74经由贯穿或环绕 阵列组件81的线(未示出)也被电连接到柔性电路94,并且RF电缆线路97电连接柔性电 路94到RF治疗系统50。外护套62 (为清楚起见以部分剖面图示出)围绕阵列组件81和 接近于电极72、74的其余元件。柔性电路94附连到标记器(marker) 92。标记器92提供结构刚性以便于组装,并且 标记器92可以由不透射线的材料构成并且用来便于导管末端的荧光透视(fluoroscopic) 可视化。成像系统成像系统40被配置用于生成和处理与包含在装置60的远末端70中的超声换能 器阵列82相关联的信号和数据。换能器阵列82优选地为能够产生高质量3D可视化信息 的多维成像阵列,并且优选地通过将压电工件切割成适当数量的元件来构造阵列82,如本 文所描述的。然而,系统20可以用本领域已知的许多不同成像阵列来有用地实施,例如那 些在Eberle等人的美国专利号5,857,974和6,962,567、Shelgaskow等人的美国专利号 6,994,674和/或Seward等人的美国专利号7,156,812中描述的成像阵列。成像系统40连接到同轴电缆束96,该同轴电缆束96包括模拟信号线和数字控制 线以用于经由柔性电路94与阵列82双向通信。超声同轴束96可以包括模拟微型同轴电 缆(其每个一般具有直径46-54AWG)。数字控制线的规格可以是大约42-50AWG。模拟线的 数量可以从16变化到128且优选的实施例为32到64。数字控制线一般可以从5_20变化。 超声电缆束96邻近地端接在多管脚连接器中以便于与超声成像系统40对接。芯片98、99 中的复用器允许系统40能够分别地寻址每个单独元件(如果需要的话),即使束96中模拟 信号线的数量可能大大小于阵列中元件的数量。子系统40可以包括模拟接口电路、数字信号处理器(DSP)、数据处理器和存储 器部件。例如,模拟接口电路可以响应于来自DSP的控制信号以提供对应的模拟激励 (stimulus)信号到成像装置60。模拟电路和/或DSP可以被提供有一个或多个数字模拟 转换器(DAC)和一个或多个模拟数字转换器(ADC)从而便于以下文中更详细描述的方式对 系统20进行操作。数据处理器可以耦合到DSP以与其双向通信、以选择性地提供输出到显 示装置以及选择性地对来自操作员输入装置的输入做出响应。DSP和处理器依据操作逻辑执行,该操作逻辑可以由软件编程指令、固件、专用硬 件、这些的组合或者以本领域技术人员会想到的不同方式来限定。对于可编程形式的DSP 或处理器,这个操作逻辑的至少一部分可以由存储在存储器中的指令来限定,该存储器可 以具有固态种类、电磁种类、光种类或者这些形式的组合。DSP和/或处理器的编程可以具 有标准、静态类型;神经网络、专家辅助学习、模糊逻辑等等所提供的自适应类型;或者这些的组合。电路、DSP和处理器可以由适合于如本文所描述那样进行工作的任何类型的一个 或多个部件组成。而且,应当明白,电路、DSP和处理器中的所有或任何部分可以被一起集 成在共同装置中和/或被提供为多个处理单元,和/或一个或多个信号滤波器、限幅器、振 荡器、格式转换器(诸如DAC或ADC)、电源或其他信号操作器或调节器可以被酌情提供从而 以下文更详细描述的方式对系统20进行操作。可以酌情利用分布式流水线和/或并行处 理。成像系统基于阵列的结构通过本领域已知的任何数量的技术来激活换能器阵列 以采集3D成像信息。例如,阵列82可以被操作为稀疏阵列或者为全采样阵列。该阵列可 以在一个维度或两个维度上被相控(phase)。在一种形式中,阵列82经由合成孔径方法 (syntheticaperture approach)进行工作。在合成孔径成像期间,阵列中的元件的预定子 集按顺序被激活并且所得到的响应被收集以形成完整图像。这个方法可以被用于任何类型 的阵列(例如ID或多维阵列),其中阵列中的元件的数量比模拟信号线的对应数量大很多。 例如,如果存在用来驱动324元件阵列的32个模拟线,则系统40被配置成每次用高达32 个元件进行发送和接收。来自一群元件(例如第一 32个)的信息被收集并且被存储,并且 以另一群元件(例如第二 32个)重复该过程直到阵列中的所有元件已经被寻址。然后处 理从所有元件接收的总信息以产生单个图像帧。除了用32个元件的子群来发送和接收之外,系统40还可以被实施为用元件的 第一子群来发送而用元件的所有其它子群来顺序接收。对于324元件阵列,将存在十个 (10) 32元件子群,其中有4个元件未被使用。从阵列中的所有接收子群中接收的信号被称 为“叉积(crossproduct) ”。收集该叉积有助于提高总图像质量。治疗系统参照图2,RF治疗子系统50被设计为生成电流并且将所得到的电流发送到装置 60的远末端70上的一个或多个治疗电极72、74,其中图2示意性示出远末端70,其近侧延 伸的外护套62以部分剖视图示出。电极72、74是沉积在远末端70的前端外部上的薄金属 层,该远末端70可以具有锥形(图3-5)或平滑弯曲(图6-10)形状。RF电极被电连接到 柔性电路94上的导电迹线并且通过该柔性迹线而连接到导管电缆97。电缆束97连接RF电极72、74到外部电子驱动系统,并且RF电缆束97邻近地端 接在多管脚连接器中以便于连接到RF治疗系统50。连接的数量可以在2到10的范围内。RF系统50包括(一个或多个)电压控制器、(一个或多个)电压发生器和(一个 或多个)电流检测器以及用于将电流引到治疗电极72、74中的各个电极的适当开关和控制 器。电压控制器设置发生器所产生的电压的频率和幅度以及其在时间上的先后顺序,这可 以基于预设配置、经由输入接口从用户接收的信息或者系统50中执行的测量来选择。电流 检测器确定向每个治疗电极发送的电流量。也可以包括温度监视系统以从治疗电极附近的 温度传感器(未示出)接收温度信息。当电极被邻近于组织放置时,从治疗系统50流到治疗电极72、74的电流传到组 织。当它穿入组织中时这个电流散开并且根据局部电流密度生成热,以消融(即去除)该 组织。不旨在受任何操作理论的约束,据认为在适当的条件下该消融过程能够被实施以使 得每次基本一个细胞层地发生斑块去除,从而减小并发症的机率。
选择向每个电极施加的电流的定时和量以获得期望的治疗结果,其在所预期的应 用中将涉及动脉斑块P以适当受控的侵蚀(erosion)速率(例如每次一个细胞层)的受控 侵蚀。例如,可能优选的是以短突发(burst)的形式施加能量(即在IOms内传递1. 0到 2.5J)以获得斑块的火花侵蚀,如Slager的J Am Coll Cardiol 1985 ;5 :1382_6中所描述 的。还可以以5%-25%占空比、峰间电压为500-1000V的IMHz正弦波的形式生成能量。RF 电极的优选工作频率在0. 25到5MHz的范围内。RF电极/末端构造治疗电极72、74是前向的,这允许装置60以隧穿方式操作,例如以便用于创建经 过部分或全部闭塞动脉的通道。电极72、74还优选地以关于装置60的纵轴100的隔开关 系被布置在远末端70上并且被配置成使得每个电极能够被单独地操作。这从而允许相对 于装置60的远末端70的纵轴100进行对称地或非对称地施加治疗。对称消融会有获得直 前(straight ahead)隧穿的倾向(即在装置60的纵轴方向上的隧穿中),而非对称消融会 导致在被激活的电极方向上的隧穿。在优选的实施方式中,操作员基于成像系统40提供的可视化信息来控制治疗系 统50。例如,如果操作员从超声图像中观察到导管正在靠近应当避免的结构(即动脉壁), 则操作员可以“关断”或“调低”一侧的治疗电极和/或提高施加到另一侧的电极的能量。RF治疗电极由金、钛、铝、镁、铍或任何其它具有高电导率、高声传播速度和/或低 密度的金属或金属材料薄层构成。在一种形式中,RF电极是足够薄以致超声在没有显著衰 减或干扰的情况下通过的金属带(metallic strip),例如具有小于大约8微米的厚度,诸 如在 0. 2 至Ij 8 μ m、0. 4 至Ij 6 μ m、0. 5 至Ij 4 μ m、0. 7 至Ij 2 μ m、或者 0. 9 至Ij 1. 5 μ m 的范围内。可 以通过汽相沉积技术或任何其它用于形成金属材料薄层的常规工艺来施加金属带。如果支承末端表面由合适的能够忍受电极所生成的高温的合成材料构成,则电 极材料可以被直接沉积或施加到末端上。合适的合成材料包括高温塑料(例如,可从GA 的 Alpharetta 的 Solvay AdvancedPolymers LLC 购买的 Torlon)或硅橡胶材料(例如, RTV325, EagerPlastics 公司,Chicago,Illinois 或者 RTV560 GE Plastics)。可替换地或另外,可以提供隔热层180 (图8-9和15_16)以保护末端170不受电 极生成的热而损坏。层180可以包括陶瓷(诸如Al2O3)薄层并且可以形成为覆盖末端170 远端面的相对均勻涂层或壳体。这个陶瓷层180的厚度足以保护衬底182不受由于电极 172、176生成的热而热损坏,并且可能在05-5微米的范围内。要理解,如图9和16所示,末端170的近端面被设计为抵靠声叠层(acoustic stack) 81的远端面加以定位且声学耦合到该远端面,因此图9所示的末端170包括匹配引 导线腔90的中心腔。延伸经过远末端170的中心引导线的提供可以有益于控制和引导的目 的,但是对阵列的中断可能使图像质量降级。图16的末端170被设计用于其中没有引导线 腔中断该阵列82的实施例,例如因为引导线出口 99接近于阵列82而隔开,如图10所示。阵列构造本文描述的治疗导管可以用根据许多常规技术构造的许多不同成像阵列来有用 地实施。然而,优选该阵列很小且以高频进行工作以便提供极高质量的3D成像信息。结合 图11描述用于本治疗导管或用于其中经由微型高频阵列的超声成像将是有益的任何其它 应用中的微型高频成像阵列。
2D声叠层81包括压电元件82的切割阵列。通过切割市场上可买到的压电工件例 如 CTS 3257HD(CTS Electronic Components 公司,Albuque rque, NM)来形成元件。切割 锯用来产生第一方向(例如X方向)上以及然后第二方向(例如Y方向)上的一系列平行 切口(cut),并且在每个方向上切割之后所得到的切缝(kerf) 83充满合适的环氧树脂。金属化层110沉积在压电元件82的远端面上以用作共同地电极。每个元件82的 近端面与各个信号线91电接触,该信号线91延伸经过吸声衬垫层80。每个元件82的近 端面可以包括其本身的金属化层(未示出)以便于与各个信号线91电连接,并且一个或多 个声匹配层84a、84b被施加到元件82的远端面。柔性电路94具有接触垫(contact pad) (未示出),该接触垫在空间上被布置成对应于在衬垫层80的近端面处所暴露的各个信号 线91的布置。可替换地,元件82可以直接施加到柔性电路94并且吸声衬垫层80可以施 加到柔性电路的后侧,在这种情况下在衬垫层80中不需要信号线80。优选地,阵列82被切割成两个方向以使得所得到的元件通常为方形并且节距 (pitch)(即相邻元件的中心之间的间距)小于100 μ m,优选地小于75 μ m或大约50 μ m。 阵列82可以被构成使得其包括至少100、200、300、400、500、600或700个元件。阵列82可 以被构造成使得元件密度每mm2大于大约100、200或300个元件。在Hadjicostis等人的US 2004/0254471中描述一种用于产生切割一维阵列的有 用过程,该申请为此被并入本文。可以采用类似的技术来构造微型多维阵列。主要差别将 是引入附加的切割步骤以及在所述柔性(flex)中提供合适的接触垫。现在描述特定实施例的附加细节。如上所述,RF电极72、74被电连接到柔性电 路94上的导电迹线并且通过柔性迹线而连接到导管电缆97。该柔性上的RF迹线可以具 有等于15-25 μ m的宽度和等于1-5 μ m的厚度。柔性电路上的超声和数字线可以具有等于 5-15 μ m的宽度和等于1-3 μ m的厚度。导管的远端包括导管末端并且可以具有在0. 75到3mm范围内的外直径以用于冠 状动脉治疗。针对其它脉管内用途,末端的直径可以不同于上述范围的值。例如,对于周边 动脉系统,末端直径可以在l_5mm的范围。导管末端结合RF电极72、超声压电成像阵列82、 不透射线的标记器92、柔性电路互连(未示出,在94上)、IC复用器/前置放大器芯片98、 99以及到RF和超声电缆的连接。在若干实施例(图2-5)中,末端70的远端具有大体锥形形状,其中RF电极72、74 由沉积在实心圆锥(solid cone)顶部上的诸如金或其它具有高电导率的金属之类的金属 材料组成。圆锥结合开口 90以容纳引导线。锥形末端的优选材料是高温塑料诸如Torlon ; 然而也可以使用其它适当的材料。在一个实施例中,末端腔具有等于0.017”-0.018”的 直径,在其它实施例中该腔可以具有0.013”-0.014”的直径。RF电极被电连接到柔性 电路上的导电迹线并且通过柔性迹线连接到导管电缆。该柔性上的RF迹线具有等于 0. 015-0. 025mm的宽度和等于0. 001-0. 005mm的厚度。该柔性上的超声和数字线具有等于 0. 005-0. 015mm的宽度和等于0. 001-0. 003mm的厚度。超声阵列叠层81位于电极72、74的远端并且可以与电极隔开,如图3和4所示。 可替换地,阵列元件82b可以被布置在圆锥的外表面上或接近该外表面以便置于电极72、 74之下,如图5所示。阵列叠层81可以包括三层或四层吸声衬垫层80、切割的压电陶瓷 82以及一个或两个四分之一波长匹配层84(图11中的84a、84b)。阵列82可以是一维或二维的。压电元件可以具有范围40% -100%的-6dB带宽和小于_20dB的插入损耗。压电元件的阵列被电连接到柔性电路94上的导电迹线并且通过柔性迹线(未示 出)连接到导管电缆96、97。柔性电路被安装在用于机械稳定性的不透射线的标记器上。 该不透射线的标记器使得用户能够采用χ射线检测来定位导管末端。通过使用倒装芯片 (flip chip)接合技术焊接到柔性电路94来安装定制的集成电路(IC)芯片98、99。这些 IC芯片98、99包括对超声信号起复用器作用以及对返回超声信号起前置放大器作用的电 路。IC芯片作为复用器的使用减小了为连接阵列到成像系统所需的电缆数量并且前置放大 器使得能够通过同轴电缆有效发送超声返回信号。图3、4、5和7示出了声叠层的三种基本结构。图3描绘了平面二维(2D)阵列。这 样的阵列可以具有100到1024个元件并且可以被复用成同轴束。使用2D阵列的潜在益处 在于(a)它不需要具有任何移动部件和(b)它在使用电子聚焦和波束控制来采集导管前面 的3D图像方面具有完全灵活性。使用2D阵列的潜在缺点是由于具有大量元件而引入电子 互连复杂度。图4描绘了一维阵列(ID)。这样的阵列可以具有16-128个元件并且可以被配置 用于通过采用连接到外部马达(未示出)的线轴或者经由在邻近阵列的导管内提供的微型 马达110进行旋转运动。使用ID阵列的潜在益处是相对容易构造和电互连而代价是引入 机械移动、附加机械部件以及采集3D图像的更长时间。在给定的定向中,ID阵列可以采集 导管末端前面的区域的二维图像。可以通过ID阵列的增量180度旋转、存储所采集2D图 像以及然后经过结合2D图像重构3D图像来构造三维图像。图5示出了又一个装置,其中换能器元件82b被布置成遵循锥形末端的曲率的锥 形图案。锥形换能器阵列可以提供描述垂直于末端圆锥的锥形表面的图像。这种结构的潜 在优点是构造相对简单而代价是可能被稍微恶化的图像质量。在这种情况下阵列元件82b 的数量可以从16-128变化。RF电极72、74在这种情况下直接位于超声成像阵列82b上万。图6-7示出了导管末端的又一个实施例。在这个方法中差别在于导管的末端是弯 曲的。弯曲的优选形状是球形,然而可以采用其它类型的弯曲表面,诸如椭圆形、抛物线或 其它。球形情况的直径可以在Imm到IOmm的范围内。在优选实施例的进一步改进中,半球 形末端可以涂有如图9所示的薄陶瓷材料180 (诸如Al2O3)。这个陶瓷涂层的厚度可以是 0. 5-5微米并且其目的是对末端提供保护以免热损坏。半球形末端的材料182可以是高温 硅酮(silicone),诸如由 Illinois,Chicago 的 Eager Plastics 公司生产的 RTV325。可以 使用其它RTV类型,诸如来自GE的RTV 560连同透镜上的陶瓷涂层。使用平滑弯曲(例如 半球形)末端相对锥形末端的优点在于RTV材料182可以起超声透镜的作用并且因此产生 更高分辨率和改进质量的图像。RF电极再次由本申请中先前描述的金属制成。又一个实施例是应用于2D阵列情况的实施例。在这种情况下2D阵列本身可以是 球形形状,其中RF电极沉积在阵列的匹配层之外(未示出)。在这种情况下,不需要附加末 端并且图像将具有改进的灵敏度和质量。然而,弯曲2D阵列的使用提供进一步电子互连复 杂度。超声阵列元件的优选工作频率在15-40MHZ的范围内,例如在20和35MHz之间、在 20和30MHz之间、或者大约25MHz。相控阵列(phasedarray)可以具有半波长元件间距以 用于最优超声波束形成。每个元件可以结合四分之一波长匹配层以便更好地传送功率。
示例现在参照示出发明实施例的某些特定特征的具体示例。然而,要理解,这些示例被 提供用于说明并且从而不旨在限制发明的范围。在计算机上建模2D超声换能器阵列的脉冲响应、阻抗和损耗,该超声换能器阵列 使用具有高介电常数(3500 ε J的压电陶瓷并且具有以下设计参数(图12A-12C)频率25MHz阵列孔径0. 9mm元件节距0·050mm元件数量324(1/4) λ匹配层数量2与驱动器电匹配的元件阻抗。然后通过添加金或钛的中间层(intervening layer),对相同的阵列元件进行建 模,并且结果分别绘制在图13A-13C和图14A-C中。所建模的金层的厚度是1 μ m而所建模 的钛层的厚度是1. 5 μ m。所建模的结果说明1. 5 μ m的钛层(图14A-C)不会显著影响阵列 的工作属性并且表示针对本文所公开的装置的有效材料选择。1. 0 μ m的金层(图13A-13C) 即使相对钛薄了 33%但更不利地影响阵列属性。在后者情况下,插入损耗变差了 IOdB并且 脉冲衰荡(ringdown)变差大约0. 3 μ sec。不过金看似是实际的选择,尤其是如果实施诸如 频率滤波的校正技术的话更是如此。尽管其较差的声属性,本公开中提及的金以及其它金 属预期是可接受的并且可以具有与金属材料属性有关的优点,诸如易于处理、在扩展操作 上耐氧化以及生物相容性。要明白,本文所描述的包括一种用于在患者的脉管系统中提供图像引导治疗的腔 内导管,该腔内导管包括细长导管体,适于插入到患者的脉管系统中,该导管体限定在工 作中位于患者的脉管系统内的远端部而近端部在患者外;在该远端部上的多个面向远端 (distalfacing)的电极,用于执行对患者的脉管系统中的斑块的受控消融;以及面向远端 的超声成像换能器阵列,被定位在接近于电极的导管体中且被配置成发送和接收通过电极 的超声脉冲以提供待由电极消融的斑块的实时成像信息。换能器阵列可以具有大于15MHz 的特性工作频率,并且电极可以每个都包括具有小于大约8 μ m的厚度的金属层。电极可以 被定位在导管的远末端,该远末端可以具有锥形或平滑凸面形状。平滑弯曲末端可以对于 超声而言起透镜作用,并且其外表面可以限定小于大约IOmm的曲率半径。超声阵列可以是 具有大于100个元件/mm2的元件密度的平面相控阵列。超声阵列可以是多维阵列,该多维 阵列在至少一个维度上具有至少15个元件。该阵列可以包括耦合到旋转机构的ID阵列。已经描述的是一种用于提供来自患者内的高质量实时平面(2D)或体积(3D)超声 可视化的腔内导管,该腔内导管包括细长导管体,适于插入到患者的脉管系统中,该导管 体限定在工作中位于患者内的远端部而近端部在患者外;在导管体的该远端部中的压电元 件的多维相控阵列,被配置成发送和接收具有大于20MHz的特性频率的超声脉冲以提供实 时成像信息;其中该阵列限定大于300个元件/mm2的元件密度。导管的远端部可以限定纵 轴并且该阵列可以被定位在导管的远端部中以使得该纵轴在阵列的像场内。压电元件可以 被构造成使得它们被安装到衬垫层,该衬垫层具有大量从中延伸的导电通路,其中导电通 路电耦合每个压电元件到电路衬底上的对应垫。电路衬底可以包括至少一个复用器/前置放大器IC芯片,其电耦合到电路衬底且耦合到延伸到导管的远端部的电缆线路,其中电缆 线路中各个信号线的数量基本小于阵列中压电元件的数量。阵列中压电元件的数量可以大 于300而电缆线路中各个信号线的数量小于100。导管还可以包括一个或多个面向远端的 电极。还已经描述的是一种新颖方法,该方法包括提供经由复用器耦合到电缆线路的 阵列,该阵列限定大于电缆线路中的各个信号线的数量的许多压电元件,该压电元件在工 作中用于发送和接收具有大于20MHz的特性频率的超声且限定大于100个元件/mm2的元件 密度;通过移动经过循环系统来将该阵列定位在对象身体内的期望区域,电缆线路的近端 部被定位在对象身体外而该阵列被定位在该期望区域;用该阵列超声地探询对象身体的内 部;在该阵列和耦合到对象身体外的电缆线路的近端部的设备之间发送多个信号;以及根 据该信号,显示对应于该内部的一个或多个图像。对象身体的内部包括血管或心脏。在显 示该一个或多个图像的同时对该内部执行过程。例如,该阵列可以被定位在导管中并且该 过程可以涉及激活定位在该导管的外表面上的一个或多个消融电极。可以提供多个选择性 地可操作的电极并且该过程可以包括基于所显示的图像选择要激活电极中的哪些电极。可 以通过包括电极部分或更优选地多个间隔开的电极的导管的外表面上的金属材料薄层来 发生探询。还已经描述的是一种用于执行引导组织消融的新颖装置,该新颖装置包括细长 体,具有适于插入到人类对象的腔中的远端部而近端部在该对象外,该细长体具有外直径 小于5mm的远端部且被配置成定位在对象的血管内而近端部在患者外,该远端部限定远 末端;在该远末端上的至少一个治疗电极,在工作中用于传递治疗能量到邻近远末端的组 织;以及体内的二维压电元件阵列,接近于治疗电极且在工作中用于发送和接收具有大于 20MHz的频率的超声以提供RF电极附近的脉管结构前面的组织的实时成像信息;其中治疗 电极包括金属材料薄层,该金属材料薄层被定位成使得由换能器接收的且用于成像的超声 的至少一部分通过该金属材料薄层。该远末端可以包括合成材料并且可以提供陶瓷材料薄 层以将该合成材料与电极生成的热进行热隔离(thermally insulate) 0本文描述的另一种新颖方法包括提供包括在超声成像阵列前面的电极的细长 体;通过移动经过循环系统,将RF电极阵列定位在对象身体内的期望区域;用该阵列发送 和接收通过RF电极的超声,以探询对象身体的内部;以及显示对应于该内部的一个或多个 图像。该超声频率可以是至少20MHz,并且该阵列可以是前向2D阵列。该阵列可以作为稀疏 阵列或全采样阵列进行工作。可以采用在一个以上方向上的合成孔径成像和相控。可以提供 多个电极,并且操作员可以基于图像选择性地操作电极之一。电极可以用来消融动脉斑块。还已经描述的是一种适于穿过(cross)脉管闭塞的医疗装置,该医疗装置包括 脉管内导管,具有近端、远端和远末端;位于导管的远末端上的一个或多个消融电极,其中 该电极被配置成传递足以消融闭塞部分的能量并且从而辅助导管穿过该闭塞;以及超声阵 列,被定位在接近于电极的导管的远端处,其中该阵列被配置成由发送和接收通过电极的 超声来提供闭塞的实时成像,其中该超声具有大于15MHz的频率。权利要求44的医疗装置, 其中该近端耦合到超声成像系统并且该阵列在至少一个维度上被相控。该阵列可以被配置 成提供对于远末端而言远端的区域(area distal to the distal tip)的实时平面(2D) 或体积(3D)成像。
权利要求
一种用于在患者的脉管系统中提供图像引导治疗的腔内导管,包括细长导管体,适于插入到患者的脉管系统中,该导管体限定在工作中位于患者的脉管系统内的远端部而近端部在患者外;在该远端部上的多个面向远端的电极,用于执行对患者的脉管系统中的斑块的受控消融;以及面向远端的超声成像换能器阵列,被定位在接近于电极的导管体中且被配置成发送和接收通过电极的超声脉冲以提供待由电极消融的斑块的实时成像信息。
2.权利要求1的导管,其中换能器阵列具有大于15MHz的特性工作频率。
3.权利要求2的导管,其中电极每个都包括具有小于大约8μπι的厚度的金属层。
4.权利要求1的导管,其中电极每个都包括具有小于大约8μ m的厚度的金属层并且换 能器以大约20和40MHz之间的特性频率进行工作。
5.权利要求4的导管,其中电极被定位在导管的锥形远末端上。
6.权利要求4的导管,其中电极被定位在对于超声而言起透镜作用的凸面上。
7.权利要求6的导管,其中电极被定位在限定小于IOmm的曲率半径的表面上。
8.权利要求4的导管,其中电极是可分别操作的。
9.权利要求1的导管,其中超声阵列是具有大于100个元件/mm2的元件密度的相控阵列。
10.权利要求9的导管,其中超声阵列是平面的。
11.权利要求1的导管,其中超声阵列包括多维阵列,该多维阵列在至少一个维度上具 有至少15个元件。
12.权利要求1的导管,其中超声阵列包括耦合到旋转机构的ID阵列。
13.权利要求1的导管,其中超声阵列是锥形的。
14.一种方法,包括提供经由复用器耦合到电缆线路的阵列,该阵列限定大于电缆线路中的各个信号线的 数量的许多压电元件,该压电元件在工作中用于发送和接收具有大于20MHz的特性频率的 超声且限定大于100个元件/mm2的元件密度;通过移动经过循环系统,将该阵列定位在对象身体内的期望区域,电缆线路的近端部 被定位在对象身体外而该阵列被定位在该期望区域; 用该阵列超声地探询对象身体的内部;在该阵列和耦合到对象身体外的电缆线路的近端部的设备之间发送多个信号; 根据该信号,显示对应于该内部的一个或多个图像;以及 在显示该一个或多个图像的同时对该内部执行过程。
15.权利要求14的方法,其中该阵列在导管中并且该过程涉及激活定位在该导管的外 表面上的一个或多个消融电极。
16.权利要求15的方法,其中提供多个选择性地可操作的电极并且该过程包括基于所 显示的图像选择要激活电极中的哪些电极。
17.权利要求14的方法,其中该阵列在具有远末端的导管中并且该阵列限定包括该导 管的远末端的像场。
18.权利要求17的方法,其中该导管的远末端限定纵轴并且该阵列的像场一般以该纵轴为中心。
19.权利要求18的方法,其中通过包括电极部分的导管的外表面上的金属材料薄层来 发生探询。
20.权利要求19的方法,其中通过导管的外表面上的多个间隔开的金属材料薄层来发 生探询。
21.一种用于执行引导组织消融的装置,包括细长体,具有适于插入到人类对象的腔中的远端部而近端部在该对象外,该细长体具 有远端部,该远端部具有小于5mm的外直径且被配置成定位在对象的血管内而近端部在患 者外,该远端部限定远末端;在该远末端上的至少一个治疗电极,在工作中用于传递治疗能量到邻近远末端的组 织;以及体内的二维压电元件阵列,接近于治疗电极且在工作中用于发送和接收具有大于 20MHz的频率的超声以提供RF电极附近的脉管结构前面的组织的实时成像信息;其中治疗电极包括金属材料薄层,该金属材料薄层被定位成使得由换能器接收的且用 于成像的超声的至少一部分通过该金属材料薄层。
22.权利要求21的装置,其中该远末端包括合成材料并且陶瓷材料薄层将该合成材料 与电极生成的热进行热隔离。
23.一种方法,包括提供包括在超声成像阵列前面的电极的细长体; 通过移动经过循环系统,将RF电极阵列定位在对象身体内的期望区域; 用该阵列发送和接收通过RF电极的超声,以探询对象身体的内部;以及 显示对应于该内部的一个或多个图像。
24.权利要求23的方法,其中该超声具有至少20MHz的频率。
25.权利要求24的方法,其中该阵列是前向2D阵列。
26.权利要求25的方法,其中该阵列经由合成孔径方法进行工作。
27.权利要求25的方法,其中该阵列作为稀疏阵列或全采样阵列进行工作。
28.权利要求23的方法,其中该电极包括具有小于8μπι的厚度的金属层。
29.权利要求28的方法,其中提供多个电极。
30.权利要求29的方法,还包括基于图像选择性地操作电极之一。
31.权利要求30的方法,其中电极用来消融动脉斑块。
32.一种用于穿过脉管闭塞的医疗装置,包括 脉管内导管,具有近端、远端和远末端;位于导管的远末端上的一个或多个消融电极,其中该电极被配置成传递足以消融闭塞 部分的能量并且从而辅助导管穿过该闭塞;以及超声阵列,被定位在接近于电极的导管的远端处,其中该阵列被配置成由发送和接收 通过电极的超声来提供闭塞的实时成像,其中该超声具有大于15MHz的频率。
33.权利要求32的医疗装置,其中该近端耦合到超声成像系统并且该阵列在至少一个 维度上被相控。
34.权利要求33的医疗装置,其中该阵列在二个维度上被相控。
35.权利要求34的医疗装置,其中该阵列被配置成提供对于远末端而言远端的区域的 实时平面(2D)或体积(3D)成像。
全文摘要
提供具有成像阵列和消融电极的脉管内超声导管。成像阵列和消融电极是前向的并且导管可以用来在实时超声可视化下对部分或全部闭塞的血管中的斑块进行消融。消融电极被集成到导管的远端面内并且允许超声通过它们,这就提供了实现经受治疗的组织的高准确、实时可视化的能力。
文档编号A61B8/12GK101902972SQ200880107549
公开日2010年12月1日 申请日期2008年7月24日 优先权日2007年7月27日
发明者A·哈吉科斯蒂斯 申请人:默里蒂安心血管系统公司