一种抗凝血抗菌生物医用材料及其制备方法

文档序号:1184862阅读:458来源:国知局
专利名称:一种抗凝血抗菌生物医用材料及其制备方法
技术领域
本发明属于生物医用材料领域,具体涉及一种抗凝血抗菌生物医用材料及其制备 方法。
背景技术
随着人口老龄化进程的发展,心血管疾病患者在我国呈逐年增加的趋势,因此对 人工血管材料以及抗凝血的医用材料需求日益增大。无论是用于血管代替材料还是血管内 部支架材料,其血液相容性都是决定是否具备临床应用价值的先决条件。因此提高和改善 材料的血液相容性是血管修复材料领域研究重要方向之一。目前,制备抗凝血材料的方法 有很多,比如肝素固定化、提高材料的含水率以及形成微相不均勻结合等,其中肝素固定化 是研究最为活跃、应用最为广泛的一个领域。在材料进行肝素化(heparization)时,关键要从肝素化材料的牢固程度、肝素化 材料的生物活性以及材料表面的浓度等几个方面综合考虑。一般来说,分为物理吸附和化 学结合两大类。前者方法简便,但肝素量化难以控制,且抗凝血持续时间不长,易随血液溶 解而流失;后者则可以兼顾肝素化材料的利用率和稳定性,且可以大规模的工业化生产。目前用于血管组织工程的基底材料主要包括两大类,一类是天然生物材料,如胶 原、丝素、纤维素、海藻酸钠、透明质酸及硫酸软骨素等。这类材料本身来源于生物机体,具 有良好的细胞亲和力,能为细胞生长、增殖及分化提供三维支架空间,其功能十分类似于体 内细胞外基质(ExtracellularMatrix,ECM)0另一类是人工合成材料,聚乳酸、聚氨酯及聚 己内酯等。这类材料具有良好的生物惰性,优异的机械性能,形态及降解的可控性以及生产 的可重复性。天然生物材料生物相容性良好,降解产物无毒,但来源有限。人工合成材料的 优点是其强度、降解速度、微结构均可进行可控制备,但生物相容性不及天然材料。临床实际应用时发现,含有肝素化的抗凝血材料其抗凝性能表现较佳,但极容易 发生感染。其主要原因是肝素能够刺激体内金黄色葡萄球菌增殖,产生菌落薄膜,进而引起 血流感染。因此,在制备抗凝血材料的同时需要兼顾考虑材料的抗菌性能。壳聚糖(chitosan)作为一种天然有机抗菌材料,其抗菌机理是壳聚糖分子表面含 有很强的正电荷,而许多微生物(细菌、真菌等)的细胞膜表面则带负电荷,壳聚糖通过这种 静电效应破坏细胞膜的结构和功能,进而杀死微生物。随着这一机理的发现,现已在壳聚糖 材料的基础上开发了一系列正电荷性能更强的新型抗菌材料一壳聚糖衍生物,如季铵化壳 聚糖、胍基化壳聚糖等。但是,目前并没有关于肝素化抗凝血材料与抗菌材料材料结合运用 的报道。

发明内容
本发明所解决的技术问题是提出了一种抗凝血抗菌生物医学材料及其制备方法, 它克服了现有的肝素化抗凝血材料仅仅具备抗凝血功能,而缺乏抗菌功能,在实际临床应用中这类材料易引起金黄色葡萄球菌感染而失效。本发明中提出的一种抗凝血抗菌生物医用材料,其特征在于,它是基于对含 有氨基的天然生物材料(H2N-R)通过化学共价接枝的方法进行肝素化,得到表达式为 C26H41N2O36S5-HN-R的肝素化抗凝血材料,然后将肝素化抗凝血材料与以壳聚糖为基材的 抗菌材料壳聚糖及其衍射物进行混合,得到的抗凝血抗菌生物医用材料。所述表达式中 C26H42N2O37S5为肝素的分子式,而H2N-R则用来代表含有氨基的天然生物材料。优选的,所述含有氨基的天然生物材料主要包括胶原蛋白、丝素蛋白、海藻酸钠、 透明质酸中的任何一种。优选的,所述的以壳聚糖为基材的抗菌材料主要包括壳聚糖、季氨化壳聚糖、胍基 化壳聚糖中的任何一种。优选的,所述的化学共价接枝方法主要包括碳酰二亚胺/N-羟基琥珀酰亚胺 (EDC/NHS)的缩肽交联法将肝素接枝到上述含有氨基的天然生物材料分子上。本发明中提出的上述抗凝血抗菌生物医学材料的制备方法,其特征在于,该方法 包括以下步骤
步骤1、通过碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)的缩肽交联法将肝素接枝到上 述含有氨基的天然生物材料分子上,制备所述肝素化抗凝血材料;
步骤2、准备以壳聚糖为基材的抗菌材料,包括壳聚糖、季铵化壳聚糖、胍基化壳聚糖中 的任何一种;
步骤3、将所述肝素化抗凝血材料与抗菌材料按质量比为(1 士0. 5) (1 士0. 5)混合制 成抗凝血抗菌复合材料。优选的,上述方法包括步骤4 将所述抗凝血抗菌复合材料进行冷冻干燥,保存备用。优选的,所述步骤1包括将肝素的羧基Ofep-COOH)在2- (N-吗啉代)乙磺酸 (MES)缓冲液中通过所述EDC/NHS激活,在肝素的羧基被激活5—30分钟后,与含有氨基的 天然生物材料中的氨基发生缩肽反应,其中EDC:NHS:H印-C00H=2:1:1,MES缓冲液的pH值 ;^; 5. 5 6. 5 ο本发明首次描述了一种抗凝血抗菌生物医用材料及其制备方法,该发明填补了目 前抗凝血材料在抗菌方面的空白。实验结果表明,这种新型的抗凝血抗菌生物医用材料不 仅具有良好的血液相容性,而且还对金黄色葡萄球菌具有较强的抑制效果。这种同时具备 抗凝血抗菌的双功能生物医用材料具有广泛的临床应用前景。


下面结合附图和具体实施方式
对本发明的技术方案作进一步具体说明。图1天然生物材料通过EDC/NHS肝素化的流程图。图2实施例1肝素化的丝素蛋白与壳聚糖复合的抗凝血抗菌材料的SEM图。图3实施例5肝素化胶原蛋白与胍基壳聚糖复合的抗凝血抗菌材料的抗凝鉴定。图4实施例9肝素化透明质酸与剂铵化壳聚糖复合的抗凝血抗菌材料的抗金黄色 葡萄球菌鉴定。
具体实施例方式如图1所示的天然生物材料通过EDC/NHS肝素化的流程图。肝素的羧基 (Hep-COOH)在EDC/NHS催化下形成激发态的活化酯与含有氨基的天然生物材料分子上的 氨基进行缩肽反应,将肝素共价接枝在天然生物材料分子上。由于肝素分子中的抗凝血活 性基团磺酸基依然保留下来,因此这种化学共价接枝的方法不会影响肝素的抗凝活性。实施例1
1)取 0. 5g 的丝素蛋白(silkfibroin, SF)溶于 50ml 的 0. 05M、pH=5. 5—6. 5 的 MES 缓 冲溶液中,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0· 05M、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述丝素蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化丝素材料(ifep-SF)。4)取0. 5g壳聚糖(chitoSan,CS)溶于IOml的0. 5%醋酸溶液中,然后用MES缓冲 液稀释至100ml。5)将上述肝素化丝素(!fep-SF)溶液逐步滴加到壳聚糖溶液中,混合反应2h后,形 成乳白色粘稠悬浊液。6)将悬浊液放入截留分子量3500的透析袋中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。7)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。8)将冻干后的样品放入到60% (ν/ν)甲醇溶液中进行诱导,目的是使丝素蛋白材 料由无规则卷曲构象向折叠转变,增加力学强度。9)将在甲醇中诱导的材料用纯水清洗3次后,依次放入0. IM的Na2HPO4溶液中浸 泡12h,换液3次,4M的NaCl溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将清洗后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化丝素蛋白_壳 聚糖(H印-SF/CS)。将获得的肝素化丝素蛋白-壳聚糖(!fep-SF/CS)复合材料进行抗凝血实验评价, 结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化丝素蛋白-壳聚糖(ifep-SF/CS)复合材料进行溶血实验评价。结 果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞聚集在 离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血细胞聚 集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量血细胞 聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化丝素蛋白-壳聚糖(!fep-SF/CS)复合材料进行抗菌实验评价, 结果表明,肝素化丝素蛋白(Hep-SF)材料的菌落数显著高于空白对照组,肝素化丝素蛋 白-壳聚糖(ifep-SF/CS)复合材料的显著小于空白对照组。因此,该新型复合材料具有良 好的抗金黄色葡萄球菌功能。
图2是肝素化丝素蛋白与壳聚糖复合的抗凝血抗菌材料的环境扫描电镜(SEM) 图。图中显示丝状分子为肝素化丝素(SF),片层状分子为壳聚糖(CS),结果表明二者复合 完好。实施例2
1)取 0. 5g 的丝素蛋白(silkfibroin, SF)溶于 50ml 的 0. 05M、pH=5. 5—6. 5 的 MES 缓 冲溶液中,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0· 05M、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述丝素蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化丝素材料(ifep-SF)。4)取Ig壳聚糖(chitosan,CS)溶解于20ml0. 5%的醋酸溶液中,然后用MES缓冲 液稀释至100ml。5)取0. 5g精氨酸(arginine,Arg)溶于IOOml的MES缓冲溶液中,然后按照比例 EDC:NHS:Arg-C00H=2:l:l的比例加入EDC和NHS,反应15min用于激活精氨酸的羧基,再 将壳聚糖溶液与活化的精氨酸反应,制备带正电荷胍基的抗菌材料(guanidine-chitosan, Gua-CS)ο6)将上述肝素化丝素(Ifep-SF)溶液逐步滴加到胍基化壳聚糖(Gua-CS)溶液中, 混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入截留分子量为3500的透析袋中,在纯水介质中透析2天,主要去 除其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是 浓缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品放入到60% (ν/ν)甲醇溶液中进行诱导,目的是使丝素蛋白材 料由无规则卷曲构象向折叠转变,增加力学强度。10)将在甲醇中诱导的材料用纯水清洗3次后,依次放入0. IM的Na2HPO4溶液中 浸泡12h,换液3次,4M的NaCl溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。11)将清洗后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化丝素蛋白_胍 基壳聚糖(H印-SF/Gua-CS )。将获得的肝素化丝素蛋白-胍基壳聚糖(!fep-SF/Gua-CS)复合材料进行抗凝血实 验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)均超过60秒(凝血 仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化丝素蛋白-胍基壳聚糖(!fep-SF/Gua-CS)复合材料进行溶血实验 评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞 聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血 细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量 血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化丝素蛋白-胍基壳聚糖(!fep-SF/Gua-CS)复合材料进行抗菌实验 评价,结果表明,肝素化丝素蛋白(ifep-SF)材料的菌落数显著高于空白对照组,肝素化丝素蛋白-胍基壳聚糖(ifep-SF/Gua-CS)复合材料的极显著小于空白对照组。因此,该新型复 合材料具有良好的抗金黄色葡萄球菌功能。实施例3
1)取 0. 5g 的丝素蛋白(silkfibroin, SF)溶于 50ml 的 0. 05M、pH=5. 5—6. 5 的 MES 缓 冲溶液中,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,H印)溶于 0. 05M、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述丝素蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化丝素材料(H印arin-silkfibroin,Hep-SF)04)取Ig壳聚糖(chitosan,CS)和Ig碘化钠(NaI)在60mlN_甲基吡咯烷酮(NMP) 催化下60°C反应2h,然后加入5ml,10%Na0H和5ml碘甲烷,仍在60°C反应2h。5)将得到的样品依次在乙醇溶液中洗涤3次,纯水中洗涤3次,最后将样品冻干, 得到季铵化壳聚糖(quaternaryammonium-chitosan,QA-CS)抗菌材料。6)将上述肝素化丝素(Ifep-SF)溶液逐步滴加到季铵化壳聚糖(QA-CS)溶液中,混 合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入截留分子量为3500的透析袋中,在纯水介质中透析2天,主要去 除其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是 浓缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品放入到60% (ν/ν)甲醇溶液中进行诱导,目的是使丝素蛋白材 料由无规则卷曲构象向折叠转变,增加力学强度。10)将在甲醇中诱导的材料用纯水清洗3次后,依次放入0. IM的Na2HPO4溶液中 浸泡12h,换液3次,4M的NaCl溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。11)将清洗后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化丝素蛋白_季 铵化壳聚糖(H印-SF/QA-CS )。将获得的肝素化丝素蛋白-季铵化壳聚糖(!fep-SF/QA-CS)复合材料进行抗凝血 实验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒 (凝血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化丝素蛋白-季铵化壳聚糖(!fep-SF/QA-CS)复合材料进行溶血实 验评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细 胞聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无 血细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大 量血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化丝素蛋白-季铵化壳聚糖(!fep-SF/QA-CS)复合材料进行抗菌实 验评价,结果表明,肝素化丝素蛋白(Ifep-SF)材料的菌落数显著高于空白对照组,肝素化丝 素蛋白-季铵化壳聚糖(ifep-SF/QA-CS)复合材料的极显著小于空白对照组。因此,该新型 复合材料具有良好的抗金黄色葡萄球菌功能。实施例41)取0. 5g的胶原蛋白(collagen,COL)溶于20ml的0. 5%醋酸溶液中,再用0. 05M、 pH=5. 5—6. 5的MES缓冲溶液稀释至50ml,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0· 05M、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述胶原蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化胶原材料(Ifep-COL )。4)取0. 5g壳聚糖(chitosan, CS)溶于醋酸(0. 5%,IOml)溶液中,然后用MES缓冲 液稀释至100ml。5)将上述肝素化胶原(!fep-COL)溶液逐步滴加到壳聚糖溶液中,混合反应2h后, 形成乳白色粘稠悬浊液。6)将悬浊液放入截留分子量为3500的透析袋中,在纯水介质中透析2天,主要去 除其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是 浓缩样品。
7)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。8)将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。9)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化胶原蛋白_壳聚 糖(H印-C0L/CS)。将获得的肝素化胶原蛋白-壳聚糖(ifep-COL/CS)复合材料进行抗凝血实验评价, 结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血仪的最 大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化胶原蛋白-壳聚糖(!fep-C0L/CS)复合材料进行溶血实验评价。结 果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞聚集在 离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血细胞聚 集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量血细胞 聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化胶原蛋白_壳聚糖(!fep-C0L/CS)复合材料进行抗菌实验评价, 结果表明,肝素化胶原蛋白(Hep-COL)材料的菌落数显著高于空白对照组,肝素化胶原蛋 白-壳聚糖(ifep-COL/CS)复合材料的显著小于空白对照组。因此,该新型复合材料具有良 好的抗金黄色葡萄球菌功能。实施例5
1)取0. 5g的胶原蛋白(collagen,C0L)溶于20ml的0. 5%醋酸溶液中,再用0. 05M、 pH=5. 5—6. 5的MES缓冲溶液稀释至50ml,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,H印)溶于 0. 05Μ、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲溶 液中,均勻搅拌30min后,按照EDC NHS Hep-C00H=2 1 1的比例加入EDC和NHS,反应15min
用于激活肝素。3)将上述胶原蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化胶原材料(Ifep-COL )。
4)取Ig壳聚糖(chitoSan,CS)溶解于20ml的0. 5%醋酸溶液中,然后用MES缓冲液稀释至100ml。5)取0. 5g精氨酸(arginine,Arg)溶于IOOml的MES缓冲溶液中,然后按 照比例EDC:NHS:Arg-C00H=2:l 1的比例加入EDC和NHS,反应5—30min用于激活 精氨酸的羧基,再将壳聚糖溶液与活化的精氨酸反应,制备带正电荷胍基的抗菌材料 (guanidine-chitosan,Gua_CS)。6)将上述肝素化胶原(!fep-COL)溶液逐步滴加到胍基化壳聚糖(Gua-CS)溶液中, 混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9 )将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化胶原蛋白_胍 基壳聚糖(H印-COL/Gua-CS )。将获得的肝素化胶原蛋白-胍基壳聚糖(!fep-COL/Gua-CS)复合材料进行抗凝血 实验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒 (凝血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。图3为肝素化胶原蛋白与胍基壳聚糖复合的抗凝血抗菌材料的溶血鉴定图片。图 中1 与2 样品为阴性对照组,4#和5#为阳性对照组,3#是实验组,阴性对照组是以生理盐 水为溶剂稀释血浆,阳性对照组是以三蒸水为溶剂稀释血浆,实验组是以材料的浸提液为 溶剂稀释血浆。结果表明,阴性对照组无血细胞溶解、胀破现象,溶液呈无色,离心后管底有 大量血细胞聚集;阳性对照组血细胞大量溶解和胀破,溶液呈深红色,离心后管底无血细胞 聚集;实验组仅有少量血细胞溶解,溶液略呈浅红色,离心后管底有大量血细胞聚集。因此, 该新型复合材料具有良好的抑制溶血功能。将获得的肝素化胶原蛋白-胍基壳聚糖(!fep-COL/Gua-CS)复合材料进行抗菌实 验评价,结果表明,肝素化胶原蛋白(Hep-COL)材料的菌落数显著高于空白对照组,肝素化 胶原蛋白-胍基壳聚糖(ifep-COL/Gua-CS)复合材料的显著小于空白对照组。因此,该新型 复合材料具有良好的抗金黄色葡萄球菌功能。实施例6
1)取0. 5g的胶原蛋白(collagen,C0L)溶于20ml的0. 5%醋酸溶液中,再用0. 05M、 pH=5. 5—6. 5的MES缓冲溶液稀释至50ml,均勻搅拌lh。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0· 05M、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述胶原蛋白溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化胶原材料(Ifep-COL )。4)取Ig壳聚糖(chitosan,CS)和Ig碘化钠(NaI)在60mlN_甲基吡咯烷酮(NMP)催化下60°C反应2h,然后加入5ml,10%Na0H和5ml碘甲烷,仍在60°C反应2h。5)将得到的样品依次在乙醇溶液中洗涤3次,纯水中洗涤3次,最后将样品冻干, 得到季铵化壳聚糖(quaternaryammonium-chitosan,QA-CS)抗菌材料。6)将上述肝素化丝素(Ifep-COL)溶液逐步滴加到季铵化壳聚糖(QA-CS)溶液中, 混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化胶原蛋白_季 铵化壳聚糖(H印-C0L/QA-CS )。将获得的肝素化胶原蛋白-季铵化壳聚糖(!fep-C0L/QA-CS)复合材料进行抗凝血 实验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒 (凝血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化胶原蛋白-季铵化壳聚糖(!fep-C0L/QA-CS)复合材料进行溶血实 验评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细 胞聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无 血细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大 量血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化胶原蛋白-季铵化壳聚糖(ifep-COL/QA-CS)复合材料进行抗菌实 验评价,结果表明,肝素化胶原蛋白(Hep-COL)材料的菌落数显著高于空白对照组,肝素化 胶原蛋白-季铵化壳聚糖(ifep-COL/QA-CS)复合材料的极显著小于空白对照组。因此,该 新型复合材料具有良好的抗金黄色葡萄球菌功能。实施例7
1)取 0. 5g 的透明质酸(hyaluronicacid,HA)溶于 0. 05Μ、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述透明质酸溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化透明质酸材料(Hep-HA )。4)取0. 5g壳聚糖(chitosan, CS)溶于醋酸(0. 5%,IOml)溶液中,然后用MES缓冲 液稀释至100ml。5)将上述肝素化透明质酸(Ifep-HA)溶液逐步滴加到壳聚糖溶液中,混合反应2h 后,形成乳白色粘稠悬浊液。6)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓缩样品。7)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。8)将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。9)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化透明质酸_壳聚 糖(H印-HA/CS)。将获得的肝素化透明质酸-壳聚糖(ifep-HA/CS)复合材料进行抗凝血实验评价, 结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血仪的最 大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化透明质酸-壳聚糖(ifep-HA/CS)复合材料进行溶血实验评价。结 果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞聚集在 离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血细胞聚 集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量血细胞 聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化透明质酸-壳聚糖(!fep-HA/CS)复合材料进行抗菌实验评价, 结果表明,肝素化透明质酸(Ifep-HA)材料的菌落数显著高于空白对照组,肝素化透明质 酸-壳聚糖(ifep-HA/CS)复合材料的显著小于空白对照组。因此,该新型复合材料具有良 好的抗金黄色葡萄球菌功能。实施例8
1)取 0. 5g 的透明质酸(hyaluronicacid,HA)溶于 0. 05Μ、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,H印)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC NHS H印_C00H=2 1 1的比例加Λ EDC和NHS,反应 5-30min用于激活肝素。3)将上述透明质酸溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化透明质酸材料(Hep-HA )。4)取Ig壳聚糖(chitoSan,CS)溶解于醋酸(0. 5%,20ml)溶液中,然后用MES缓冲 液稀释至100ml。5)取0. 5g精氨酸(arginine,Arg)溶于IOOml的MES缓冲溶液中,然后按照比例 EDC:NHS:Arg-C00H=2:l:l的比例加入EDC和NHS,反应15min用于激活精氨酸的羧基,再 将壳聚糖溶液与活化的精氨酸反应,制备带正电荷胍基的抗菌材料(guanidine-chitosan, Gua-CS)ο6)将上述肝素化透明质酸(!fep-HA)溶液逐步滴加到胍基化壳聚糖(Gua-CS)溶液 中,混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化透明质酸_胍基壳聚糖(Hep-HA/Gua-CS )。将获得的肝素化透明质酸-胍基壳聚糖(!fep-HA/Gua-CS)复合材料进行抗凝血实 验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝 血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化透明质酸_胍基壳聚糖(ifep-HA/Gua-CS)复合材料进行溶血实验 评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞 聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血 细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量 血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化透明质酸-胍基壳聚糖(Hep-HA/Gua-CS)复合材料进行抗菌实验 评价,结果表明,肝素化透明质酸(ifep-HA)材料的菌落数显著高于空白对照组,肝素化透明 质酸-胍基壳聚糖(ifep-HA/Gua-CS)复合材料的极显著小于空白对照组。因此,该新型复 合材料具有良好的抗金黄色葡萄球菌功能。实施例9
1)取 0. 5g 的透明质酸(hyaluronicacid,HA)溶于 0. 05Μ、ρΗ=5· 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述透明质酸溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化透明质酸材料(Hep-HA )。4)取Ig壳聚糖(chitosan,CS)和Ig碘化钠(NaI)在60mlN_甲基吡咯烷酮(NMP) 催化下60°C反应2h,然后加入5ml,10%Na0H和5ml碘甲烷,仍在60°C反应2h。5)将得到的样品依次在乙醇溶液中洗涤3次,纯水中洗涤3次,最后将样品冻干, 得到季铵化壳聚糖(quaternaryammonium-chitosan,QA-CS)抗菌材料。6)将上述肝素化透明质酸(Ifep-HA)溶液逐步滴加到季铵化壳聚糖(QA-CS)溶液 中,混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品依次放入0. IM的Na2HPO4溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化透明质酸_季 铵化壳聚糖(H印-HA/QA-CS )。将获得的肝素化透明质酸-季铵化壳聚糖(!fep-HA/QA-CS)复合材料进行抗凝血 实验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化透明质酸-季铵化壳聚糖(Ifep-HA/QA-CS)复合材料进行溶血实 验评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细 胞聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无 血细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大 量血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。图4为肝素化透明质酸与季铵化壳聚糖复合的抗凝血抗菌材料的抗金黄色葡萄 球菌鉴定图片。图中A组是空白对照(基础培养基+MES),B组是阳性对照(肝素化透明质酸 材料+MES+基础培养基),C组是实验组(肝素化透明质酸与季铵化壳聚糖+MES+基础培养 基),B组材料支持金黄色葡萄球菌的增殖,其菌落数显著高于对照组A,C组材料则对金黄 色葡萄球菌具有明显的抑制效应,其菌落数极显著低于对照组A。因此,该新型复合材料具 有良好的抗金黄色葡萄球菌功能。实施例10
1)取 0. 5g 的海藻酸(alginicacid,AA)的钠盐溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,H印)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述海藻酸钠溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化海藻酸材料(Ifep-AA)。4)取0. 5g壳聚糖(chitosan, CS)溶于醋酸(0. 5%,10ml)溶液中,然后用MES缓冲 液稀释至100ml。5)将上述肝素化海藻酸(Ifep-AA)溶液逐步滴加到壳聚糖溶液中,混合反应2h后, 形成乳白色粘稠悬浊液。6)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。7)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。8)将冻干后的样品依次放入0. 1M的Na2HP04溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。9)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化海藻酸_壳聚糖 (Ifep-AA/CS)。将获得的肝素化海藻酸-壳聚糖(Hep-AA/CS)复合材料进行抗凝血实验评价,结 果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血仪的最大 标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化海藻酸-壳聚糖(Hep-AA/CS)复合材料进行溶血实验评价。结果 表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞聚集在离 心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血细胞聚集 在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化海藻酸_壳聚糖(Hep-AA/CS)复合材料进行抗菌实验评价,结果 表明,肝素化海藻酸(Hep-AA)材料的菌落数显著高于空白对照组,肝素化海藻酸-壳聚糖 (Ifep-AA/CS)复合材料的显著小于空白对照组。因此,该新型复合材料具有良好的抗金黄色 葡萄球菌功能。实施例11
1)取 0. 5g 的海藻酸(alginicacid,AA)的钠盐溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述海藻酸钠溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化海藻酸材料(Ifep-AA)。4)取lg壳聚糖(chitoSan,CS)溶解于醋酸(0. 5%,20ml)溶液中,然后用MES缓冲 液稀释至100ml。5)取0. 5g精氨酸(arginine,Arg)溶于100ml的MES缓冲溶液中,然后按照比例 EDC:NHS:Arg-C00H=2:l:l的比例加入EDC和NHS,反应15min用于激活精氨酸的羧基,再 将壳聚糖溶液与活化的精氨酸反应,制备带正电荷胍基的抗菌材料(guanidine-chitosan, Gua_CS)06)将上述肝素化海藻酸(Ifep-AA)溶液逐步滴加到胍基化壳聚糖(Gua-CS)溶液 中,混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除 其中的醋酸和盐离子(MES,EDC,NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓
缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品依次放入0. 1M的Na2HP04溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化海藻酸_胍基 壳聚糖(Hep-AA/Gua-CS )。将获得的肝素化海藻酸-胍基壳聚糖(Hep-AA/Gua-CS)复合材料进行抗凝血实验 评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝血 仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化海藻酸-胍基壳聚糖(Hep-AA/Gua-CS)复合材料进行溶血实验评 价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞聚 集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血细 胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量血 细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化海藻酸-胍基壳聚糖(Hep-AA/Gua-CS)复合材料进行抗菌实验 评价,结果表明,肝素化海藻酸(H印-AA)材料的菌落数显著高于空白对照组,肝素化海藻酸-胍基壳聚糖(Ifep-AA/Gua-CS)复合材料的极显著小于空白对照组。因此,该新型复合 材料具有良好的抗金黄色葡萄球菌功能。实施例12
1)取 0. 5g 的海藻酸(alginicacid,AA)的钠盐溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲溶液,均勻搅拌lh,充分溶解。2)取 0. 5g 的肝素(h印arin,Hep)溶于 0. 05M、pH=5. 5—6. 5 的 50ml 的 MES 缓冲 溶液中,均勻搅拌30min后,按照EDC:NHS:Hep-C00H=2:l:l的比例加入EDC和NHS,反应 5-30min用于激活肝素。3)将上述海藻酸钠溶液加入到激活的肝素溶液中,搅拌5h,让其充分反应后,得到 肝素化海藻酸材料(Ifep-AA)。4)取lg壳聚糖(chitosan,CS)和lg碘化钠(Nal)在60mlN_甲基吡咯烷酮(NMP) 催化下60°C反应2h,然后加入5ml,10%Na0H和5ml碘甲烷,仍在60°C反应2h。5)将得到的样品依次在乙醇溶液中洗涤3次,纯水中洗涤3次,最后将样品冻干, 得到季铵化壳聚糖(quaternaryammonium-chitosan,QA-CS)抗菌材料。6)将上述肝素化海藻酸(Ifep-AA)溶液逐步滴加到季铵化壳聚糖(QA-CS)溶液中, 混合反应2h后,形成乳白色粘稠悬浊液。7)将悬浊液放入透析袋(截留分子量3500)中,在纯水介质中透析2天,主要去除其中 的醋酸和盐离子(MES,EDC, NHS)。然后在聚乙二醇20000的介质中脱水4h,目的是浓缩样品。8)将浓缩后的样品吸出,倒入12孔板中塑形,随后冻干样品。9)将冻干后的样品依次放入0. 1M的Na2HP04溶液中浸泡12h,换液3次,4M的NaCl 溶液浸没12h,换液3次,纯水中浸泡12h,换液3次。10)将洗涤后的样品进行冻干,即获得抗凝血抗菌复合材料肝素化海藻酸_季铵 化壳聚糖(H印-AA/QA-CS )。将获得的肝素化海藻酸_季铵化壳聚糖(Hep-AA/QA-CS)复合材料进行抗凝血实 验评价,结果表明,凝血酶原时间(PT)和活化部分凝血活酶时间(APTT)分别超过60秒(凝 血仪的最大标本检查时间为60秒)。因此,该新型复合材料具有良好的抗凝作用。将获得的肝素化海藻酸-季铵化壳聚糖(Hep-AA/QA-CS)复合材料进行溶血实验 评价。结果表明,阴性对照中,血细胞不溶解、不胀破,溶液为无色,低速离心后,大量血细胞 聚集在离心管底部。阳性对照中,血细胞大量溶解、胀破,溶液为深红色,低速离心后,无血 细胞聚集在离心管底部。实验组中,血细胞极少量溶解,溶液略显浅红色,低速离心后,大量 血细胞聚集在离心管底部。因此,该新型复合材料具有良好的抑制溶血功能。将获得的肝素化海藻酸-季铵化壳聚糖(Hep-AA/QA-CS)复合材料进行抗菌实验 评价,结果表明,肝素化海藻酸(H印-AA)材料的菌落数显著高于空白对照组,肝素化海藻 酸-季铵化壳聚糖(H印-AA/QA-CS)复合材料的显著小于空白对照组。因此,该新型复合材 料具有良好的抗金黄色葡萄球菌功能。最后所应说明的是,以上具体实施方式
仅用以说明本发明的技术方案而非限制, 尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对 本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均 应涵盖在本发明的权利要求范围当中。
权利要求
一种抗凝血抗菌生物医用材料,其特征在于,它是对含有氨基的天然生物材料(H2N-R)通过化学共价接枝方法进行肝素化,得到表达式为C26H41N2O36S5-HN-R的肝素化抗凝血材料与以壳聚糖为基材的抗菌材料混合制备的复合材料。
2.根据权利要求1所述的抗凝血抗菌生物医用材料,其特征在于,所述含有氨基的天 然生物材料为丝素蛋白、胶原蛋白、透明质酸、海藻酸中的任何一种。
3.根据权利要求1所述的抗凝血抗菌生物医用材料,其特征在于,所述以壳聚糖为基 材的抗菌材料为壳聚糖、胍季化壳聚糖、季铵化壳聚糖中的任何一种。
4.一种制备如权利要求1所述的抗凝血抗菌生物医用材料的方法,其特征在于,该方 法包括以下步骤步骤1、通过碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)的缩肽交联法将肝素接枝到上 述含有氨基的天然生物材料分子上,制备所述肝素化抗凝血材料;步骤2、准备以壳聚糖为基材的抗菌材料,包括壳聚糖、季铵化壳聚糖、胍基化壳聚糖中 的任何一种;步骤3、将所述肝素化抗凝血材料与抗菌材料按质量比为(1 士0. 5) (1 士0. 5)混合制 成抗凝血抗菌复合材料。
5.一种制备如权利要求4所述的抗凝血抗菌生物医用材料的方法,其特征在于,该方 法包括步骤4、将抗凝血抗菌复合材料进行冷冻干燥,保存备用。
6.根据权利要求4所述的抗凝血抗菌生物医用材料的方法,其特征在于包括以下步 骤将肝素的羧基Ofep-COOH)在2- (N-吗啉代)乙磺酸(MES)缓冲液中通过所述EDC/NHS 激活,在肝素的羧基被激活5-30分钟后,与所述含有氨基的天然生物材料中的氨基发生 缩肽反应,其中 EDC:NHS:!fep-C00H=2:l 1,MES 缓冲液的 pH 值是 5. 5—6. 5。
全文摘要
本发明具体涉及一种抗凝血抗菌生物医用材料及其制备方法,该抗凝血抗菌材料是对含有氨基的天然生物材料通过化学共价接枝方法进行肝素化,得到肝素化抗凝血材料与以壳聚糖为底材的抗菌材料混合制备的复合材料。本发明的抗凝血抗菌双功能材料不仅具有良好的血液相容性,还具有很好的抗金黄色葡萄球菌的功能,该新型材料首次兼顾抗凝血与抗菌双重功能,在临床血管修复中具有广泛应用前景。
文档编号A61L33/10GK101837149SQ20101020258
公开日2010年9月22日 申请日期2010年6月18日 优先权日2010年6月18日
发明者刘群, 张胜民, 王江林 申请人:华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1