基于超声图像的肌肉厚度测量方法和系统的制作方法

文档序号:921634阅读:550来源:国知局
专利名称:基于超声图像的肌肉厚度测量方法和系统的制作方法
技术领域
本发明涉及图像处理领域,特别是涉及一种基于超声图像的肌肉厚度测量方法和系统。
背景技术
骨骼肌的力学特性是和它的结构形态相关的,任何的身体活动和体育运动,都是由骨骼肌的收缩完成的,这直接影响了人体的力量和耐力。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度,肌肉的弹性可以减缓外力对人体的冲击,因而在运动中扮演着至关重要的作用。而肌肉的构成又十分复杂,定量分析和评估肌肉功能状态是运动医学和运动功能康复研究中的难点和热点。目前对于肌肉的厚度的测量,如厚度的测量大部分采取的是人工手动测量,因手动测量对环境等诸多主观因素相当敏感,使得测量缺乏客观性,测量精度难以控制,并且对于测量大批量的肌肉厚度图片,操心过程费时费力,测量效率低。另外骨骼肌在运动过程中肌肉厚度的变化在每帧图像中比较细微,测量容易失真,从而影响测量结果。

发明内容
基于此,有必要针对现有技术中测量效率低且测量不准确的问题,提供一种能提高测量准确度和测量效率的基于超声图像的肌肉厚度测量方法。此外,还有必要针对现有技术中`测量效率低且测量不准确的问题,提供一种能提高测量准确度和测量效率的基于超声图像的肌肉厚度测量系统。一种基于超声图像的肌肉厚度测量方法,包括以下步骤从捕捉的超声图像中提取感兴趣图像;获取在所述感兴趣图像中选择的多个初始跟踪窗口的位置;对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置;对每帧图像的多个跟踪窗口中与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理;计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为经过中心点处理后的跟踪窗口与经过边缘检测法处理后的跟踪窗口之间的肌肉厚度值。一种基于超声图像的肌肉厚度测量系统,包括提取模块,用于从捕捉的超声图像中提取感兴趣图像;获取模块,用于获取在所述感兴趣图像中选择的多个初始的跟踪窗口的位置;跟踪模块,用于对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置;处理模块,用于对每帧图像的多个跟踪窗口中与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理;计算模块,用于计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为经过中心点处理后的跟踪窗口与经过边缘检测法处理后的跟踪窗口之间的肌肉厚度值。上述基于超声图像的肌肉厚度测量方法和系统,通过对选取的多个跟踪窗口进行跟踪,通过跟踪算法确定在后续每帧图像中的多个跟踪窗口的位置,计算每帧图像中的经过中心点处理的跟踪窗口的位置与边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,作为肌肉厚度值,该测量方法基于超声图像,并采用图像算法进行修正处理得到的肌肉厚度值较为准确,提高了测量的准确度以及测量效率,且能跟踪后续每帧图像的跟踪窗口,并测量每帧图像中的肌肉厚度值,达到了实时测量的目的。


图1为一个实施例中基于超声图像的肌肉厚度测量方法的流程示意图;图2为预处理后的超声图像;图3为图像中跟踪窗口的界定与精确定位的示意图;图4为对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续图像帧的跟踪窗口的位置的流程示意图;图5为一个实施例中基于超声图像的肌肉厚度测量系统的结构示意图;图6为一个实施例中跟踪模块的内部结构示意图;图7为另一个实 施例中基于超声图像的肌肉厚度测量系统的结构示意图。
具体实施例方式下面结合具体的实施例及附图对基于超声图像的肌肉厚度测量方法和系统的技术方案进行详细的描述,以使其更加清楚。如图1所示,在一个实施例中,一种基于超声图像的肌肉厚度测量方法,包括以下步骤步骤S110,从超声图像中提取感兴趣图像。本实施例中,通过实时B型超声波扫描仪与一个电子线阵探头获取肌肉的超声图像。具体的,超声波探头的长轴方向垂直地被安排在实验者的大腿上,放置于约40%膝盖的长轴距离处。运用大量的超声凝胶确保探头与皮肤在肌肉收缩期间是声耦合的,调整探头以最优化对比度显示超声图像中的肌肉束。采用B型超声波扫描仪获取超声图像并传送到视频捕获卡,由其进行数字化处理,并以速度约25帧/秒的采样率采集到计算机内数字化图像采集卡。对捕捉的超声图像进行裁剪得到感兴趣图像。感兴趣图像即为包含有所需测量的肌肉厚度信息的图像。 在 Iv实施例中,在从捕捉的超声图像中提取感兴趣图像的步骤之后,还包括步骤对该感兴趣图像进行预处理,包括对所述感兴趣图像进行灰度变换及调整图像对比度。如图2所示为预处理后的超声图像。
步骤S120,获取在该感兴趣图像中选择的多个初始的跟踪窗口的位置。具体的,首先手动在感兴趣图像中选择多个初始的跟踪窗口的位置。本实施例中,多个为三个,可手动选择三个初始跟踪窗口,分别跟踪股骨、股直肌上部和股直肌下部边界,如图3所示,窗口 A、B和C分别表示上述三个初始跟踪窗口。步骤S130,对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续图像帧的跟踪窗口的位置。具体的,跟踪算法为压缩跟踪算法、互相关跟踪算法、形心跟踪算法、质心跟踪算法、波门跟踪算法、边缘跟踪算法、区域平衡跟踪算法等。互相关跟踪算法是基于图像的相似性度量,在当前图像中寻找最接近基准图像模板区域的一种跟踪算法,它对场景图像质量要求不高,不需分割目标和背景,对与选定的跟踪目标图像不相似的其他一切景物不敏感,能跟踪较小的目标以及目标区域的某一特殊部分或对比度比较差的目标,具有较强的局部抗干扰能力。互相关算法将基准图像在当前图像上以不同的偏移值位置,根据测量两幅图像之间的相关度函数判断跟踪窗口在当前图像中的位置,跟踪窗口是两个图像匹配最好的位置,即相关函数的峰值。步骤S140,对每帧图像的多个跟踪窗口中与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行 处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理。其中,与周围图像模态相似是指窗口内的图像与其附近的图像很相似,通常通过先验知识来确定,在本例超声图像中靠近皮肤的那部分模态是相似的。如图3所示,由于与周围图像模态相似,跟踪窗口 A采用取对角线交点为中心点的中心点法进行处理,跟踪窗口 B和C采用边缘检测法进行处理,该边缘检测法可为canny算子的边缘检测法。采用canny算子的边缘检测将窗口图像变换成为二进制图像,参数被调整以确保获得更多的组织细节,再运用最大连通区域搜索技术寻找每个窗口的确切边界。步骤S150,计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为经过中心点处理后的跟踪窗口与经过边缘检测法处理后的跟踪窗口之间的肌肉厚度值。具体的,以如图3中跟踪窗口 A、B和C为例,计算每时刻每帧图像中跟踪窗口 A与B之间的最大垂直距离,得到股直肌的厚度(Rectus femorisThickness, RFT),跟踪窗口 A与C之间的最大垂直距离,得到股四头肌的厚度(QMT )。上述基于超声图像的肌肉厚度测量方法,通过对选取的多个跟踪窗口进行跟踪,通过跟踪算法确定在后续每帧图像中的多个跟踪窗口的位置,计算每帧图像中的经过中心点处理的跟踪窗口的位置与边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,作为肌肉厚度值,该测量方法基于超声图像,并采用图像算法进行修正处理得到的肌肉厚度值较为准确,提高了测量的准确度以及测量效率,且能跟踪后续每帧图像的跟踪窗口,并测量每帧图像中的肌肉厚度值,达到了实时测量的目的。进一步的,在一个实施例中,如图4所示,跟踪算法为压缩跟踪算法。步骤S130具体为步骤S131,对跟踪窗口所在帧图像进行采样,得到属于跟踪窗口位置范围内的样本集合。具体的,输入第t帧图像,对t帧图像的一系列图像片段进行采样,依据条件为
权利要求
1.一种基于超声图像的肌肉厚度测量方法,包括以下步骤 从超声图像中提取感兴趣图像; 获取在所述感兴趣图像中选择的多个初始跟踪窗口的位置; 对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置; 对每帧图像的多个跟踪窗口中与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理; 计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为经过中心点处理后的跟踪窗口与经过边缘检测法处理后的跟踪窗口之间的肌肉厚度值。
2.根据权利要求1所述的基于超声图像的肌肉厚度测量方法,其特征在于,所述跟踪算法为压缩跟踪算法或互相关跟踪算法。
3.根据权利要求1所述的基于超声图像的肌肉厚度测量方法,其特征在于,所述跟踪算法为压缩跟踪算法; 所述对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置的步骤为 对跟踪窗口所在帧图像进行采样,得到属于所述跟踪窗口位置范围内的样本集合; 采用稀疏矩阵对样本集合中的每个样本进行降维处理,得到压缩特征向量; 对所述压缩特征向量采用分类器进行分类; 从所述样本集合中进行抽样得到两组图像样本; 对所述两组图像样本提取哈尔特征,并采用所述分类器迭代得到后续相邻帧图像相应的跟踪窗口的位置。
4.根据权利要求3所述的基于超声图像的肌肉厚度测量方法,其特征在于,所述对所述压缩特征向量采用分类器进行分类的步骤包括 对所述压缩特征向量采用朴素贝叶斯分类器分类,且分类器中的条件概率满足高斯正态分布。
5.根据权利要求1所述的基于超声图像的肌肉厚度测量方法,其特征在于,在所述从捕捉的超声图像中提取感兴趣图像的步骤之后,还包括步骤 对所述感兴趣图像进行预处理,包括 对所述感兴趣图像进行灰度变换及调整图像对比度。
6.一种基于超声图像的肌肉厚度测量系统,其特征在于,包括 提取模块,用于从捕捉的超声图像中提取感兴趣图像; 获取模块,用于获取在所述感兴趣图像中选择的多个初始的跟踪窗口的位置; 跟踪模块,用于对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置; 处理模块,用于对每帧图像的多个跟踪窗口中与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理; 计算模块,用于计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为经过中心点处理后的跟踪窗口与经过边缘检测法处理后的跟踪窗口之间的肌肉厚度值。
7.根据权利要求6所述的基于超声图像的肌肉厚度测量系统,其特征在于,所述跟踪算法为压缩跟踪算法或互相关跟踪算法。
8.根据权利要求6所述的基于超声图像的肌肉厚度测量系统,其特征在于,所述跟踪算法为压缩跟踪算法; 所述跟踪模块包括 采样模块,用于对跟踪窗口所在帧图像进行采样,得到属于跟踪窗口位置范围内的样本集合; 降维模块,用于采用稀疏矩阵对样本集合中的每个样本进行降维处理,得到压缩特征向量; 分类模块,用于对所述压缩特征向量采用分类器进行分类; 抽样模块,用于从所述样本集合中进行抽样得到两组图像样本; 迭代模块,用于对所述两组图像样本提取哈尔特征,并采用分类器迭代得到相邻的后续图像帧的跟踪窗口的位置。
9.根据权利要求8所述的基于超声图像的肌肉厚度测量系统,其特征在于,所述分类模块还用于对所述压缩特征向量采用朴素贝叶斯分类器分类,且分类器中的条件概率满足高斯正态分布。
10.根据权利要求6所述的基于超声图像的肌肉厚度测量系统,其特征在于,所述系统还包括 预处理模块,用于对所述感兴趣图像进行预处理,所述预处理包括对所述感兴趣图像进行灰度变换及调整图像对比度。
全文摘要
一种基于超声图像的肌肉厚度测量方法,包括以下步骤从超声图像中提取感兴趣图像;获取在所述感兴趣图像中选择的多个初始跟踪窗口的位置;对多个跟踪窗口进行跟踪,并通过跟踪算法确定后续每帧图像相应的多个跟踪窗口的位置;对每帧图像的多个跟踪窗口中的与周围图像模态相似的跟踪窗口采用取对角线交点为中心点进行处理,对每帧图像中其余跟踪窗口采用边缘检测法进行处理;计算每帧图像中经过中心点处理后的跟踪窗口的位置与每个经过边缘检测法处理后的跟踪窗口的位置之间的最大垂直距离,将所述最大垂直距离作为肌肉厚度值。上述基于超声图像的肌肉厚度测量方法和系统,提高了测量的准确度以及测量效率,达到了实时测量的目的。
文档编号A61B8/08GK103027713SQ20121056305
公开日2013年4月10日 申请日期2012年12月22日 优先权日2012年12月22日
发明者芦祎, 李济舟, 周永进, 刘骏识, 王磊 申请人:中国科学院深圳先进技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1