阻抗测量设备以及用于紧急心脏血管护理的方法
【专利摘要】所公开的为一种用于确定心肺复苏(CPR)充分性的设备、方法和计算机可读介质。所述设备包括电源发生器、从所述电源发生器接收信号的电信号传感器以及微处理器。所述微处理器基于从所述电信号传感器接收的信号来确定病人的阻抗的变化。在所述微处理器上执行的软件基于病人的阻抗的变化确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个并且输出指示通气和按压的充分性的信号。
【专利说明】阻抗测量设备以及用于紧急心脏血管护理的方法
[0001]相关申请的引用
本发明要求于2011年7月20日提交并且题为〃Use of Impedance Measurements forMeasuring Intrathoracic Volume in Emergency Cardiovascular Care〃的美国临时专利申请N0.61/509952的优先权,其全部内容被结合。
[0002]本发明的背景 1.【技术领域】
本发明针对用于评价心肺复苏及其他紧急护理的充分性的方法和设备。具体地,本发明针对通过使用阻抗信号来评价和优化心肺复苏以及对其他紧急护理的管理来克服当前设备的缺陷的仪器和方法。
【背景技术】
[0003]存在评价心肺复苏(CPR)的充分性的需求,无论是通过人工按压还是通过自动按压。在CPR期间对操作者的反馈是至关重要的,这是因为其改善了 CPR的质量并且极大地增加了病人存活的机会。当前,存在来自诸如PhiIips、Laerdal、HeartSine和ZolI的、用于监控CPR的若干设备和方法。在CPR监控技术方面已取得进步并且现实世界CPR表现的改善已被Philips及其他公司记录。然而,当前在市场上的设备不足以在CPR期间提供最优的进行中的反馈。已被清楚地显示的是,CPR的质量对存活率和与心搏停止关联的总体病人结果有直接影响。不幸的是,救助者经常不在已建立的准则范围内执行CPR,无论他们是非专业人员还是专业人员。按压速率、深度、与完全释放关联的反冲、持续的按压活动(与“不干涉”时间相对)和/或通气速率和深度常常是次优的并且消极地影响结果。不充分的按压速率和深度在CPR期间是普遍的,这导致血液和氧气的不充分运动。过少的按压不提供充分的血液流动来维持脑部、心脏和其他器官的生存能力,而过多的按压能够导致肋骨骨折、软骨分离或者冠状动脉或心脏传导系统损伤。随着对与最佳结果关联的复苏参数的理解增加,评价并且修正救助者动作以改善存活率并且优化功能保全是重要的。能够提供对CPR所需要的各种动作的实现的监控的工具能够被用于开发CPR协议,从而改善CPR培训并且在临床设定中提供实时反馈。
[0004]基本生命支持(BLS)通气和胸部按压技能并不总是被非专业人员或健康护理提供者所精通或充分记住。已证明良好执行的旁观者CPR是从突发的心搏停止存活的决定性因素,但存活统计数字保持为低。已显示对所教授的准则的遵守即使是在CPR培训课程之后立即进行的情况下仍然很低。研究已证明包括过快通气、不适当地快速的按压、以不充分反冲的按压以及不适当地浅且慢的按压在内的几乎每种错误都已被医院护理人员执行过。值得注意的是,被开发用于在实际实践中测量CPR参数的所有方式都有缺陷,并且一般地,实际实践中的各种CPR参数的输送的质量一般来说并不真正已知。
[0005]为实现有效的CPR胸部按压,必须以适当的速率和深度提供按压。当前美国心脏协会(AHA)的推荐是以每分钟100次的速率输送按压。根据2010 AHA CPR准则,“针对成人、儿童和婴儿(不包括新生儿)的救助者”所推荐的“按压-对-通气的比率是30:2”。这解释为每分钟仅3-4次呼吸并且与按压一起被循环。针对CPR和紧急心脏血管护理(ECC)的2010 AHA准则继续推荐人工呼吸在大约I秒内被给予。一旦高级导气管就位,胸部按压能够持续进行(以至少100次/分钟的速率)并且不再与通气一起被循环。进而能够以大约每6到8秒I次呼吸(大约每分钟8-10次呼吸)来提供人工呼吸。应避免过量通气。推荐对成人采用至少2英寸(5厘米)的按压深度以及对婴儿和儿童采用胸部的前-后直径的至少三分之一(三分之一到二分之一)的按压深度(近似地对于婴儿为1.5英寸(4厘米)以及对于儿童为2英寸(5厘米))。应注意的是1.5至2英寸不再被用于成人,并且针对儿童和婴儿所规定的绝对深度与在针对CPR和ECC的AHA准则的先前版本中相比更深。迄今为止,没有特定的潮气量或分钟通气量参数被推荐,在为病人插管并且通气装置被附接上之前不可能估计或跟踪这些参数。
[0006]2010准则推荐“成人胸骨应被压下至少2英寸(5厘米)”。这不同于2005准则,其规定“成人胸骨应被压下大约1.5到2英寸(大约4到5厘米)”。CPR的基础概念是按压主要通过增加胸内压力以及直接给心脏加压而产生血液流动。按压产生关键的血液流动、氧气以及其他物质向组织的输送,尤其是向心脏和脑部的输送。不幸的是,尽管推荐“用力按”,但救助者经常没有充分地给胸部加压。重要的释放(或反冲)阶段经常没有被良好地执行,并且在不完全反冲的情况下,心脏在按压之间没有充分地加负荷。可获得的理论知识现在提出至少2英寸的按压比1.5英寸的按压更有效。由于这个原因,并且为了提供更容易的信息,用于CPR和ECC的2010 AHA准则为成人胸部的按压推荐单个最小深度。然而,通过简化过程,为给定个体提供最优护理(即提供最有效的按压而不损伤胸壁和胸内结构)的机会被降低。
[0007]已进行了显著的努力来测量现实世界CPR的质量以及对CPR准则的遵守。已使用具有CPR质量测量传感器的原型除颤器设备在实际复苏期间进行了两个独立的CPR研究。该原型设备使用由Laerdal设计的、具有胸部按压传感器的Philips HeartStart 4000SP除颤器。Laerdal和Philips HeartStart已将测量和反馈技术结合到原型HeartStart4000SP除颤器中。该设备包括具有加速度计的胸部按压传感器和压力传感器(由Laerdal设计)以测量按压。该除颤器已被修改为包含触发CPR音频/可视反馈组件的CPR质量分析软件。HeartStart 4000SP在两个独立研究中被实现以评价CPR在现实世界中的质量。一个研究集中在医院外的心搏停止,而另一个研究集中在医院内的心搏停止。这些研究提供了报告向实际复苏病人输送的CPR(如国际准则所定义的CPR)的质量的客观数据并且发现在医院内和医院外两种情况下CPR质量都是不够的。
[0008]Philips报告了对176个有心搏停止的成人病人的医院外研究,该研究基于护理人员和麻醉护士对国际CPR准则的遵守检查了他们的表现。注意到通气速率在绝大部分时间内超出范围并且60%以上的时间高于20次通气/分钟。胸部按压仅在48%的时间期间被执行,其中没有自主循环被记录。仅28%的按压具有适当的深度。注意到以常规的再培训参加过先前的ACLS培训的护理人员和麻醉人员就在参与研究之前都全部完成了复习课程是有趣的。
[0009] 第二个医院内研究用由受过良好培训的基本生命支持(BLS)和高级生命支持(ALS)人员进行的67例针对心搏停止的复苏测量了 CPR参数的质量并且估计了对AHA和国际准则的遵守。所确定的是:在28%的时间内按压被过慢地执行(〈90次/分钟)、37%以上的所输送的按压过浅以及没有按压而病人处于心搏停止的时间的平均百分比过量(24%)。医院内心搏停止和医院外心搏停止两种情况的不良的CPR质量提出对CPR监控以及给操作者的CPR质量反馈的需求。
[0010]根据人类以及动物研究两者,恰当的胸部按压是有关良好质量、成功的CPR的最重要的因素,并且按压中的甚至短的4-到5-秒的中断会减少冠状动脉灌注压力。冠状动脉灌注压力或者大动脉压力与右心房压力之间的差异对于实现自主循环的回归是必要的。这意味着在CPR期间对胸部按压的中断可能不利地影响CPR表现。在已知从心搏停止存活的不良存活率的情况下,美国医学会杂志(JAMA)的评论谈到了 CPR的质量以及更新CPR和ECC准则的必要性。
[0011]在反馈协议被引入CPR管理的情况下,改进被注意到。这些改进包括以下各项:执行到正确深度的按压的百分率翻 倍、平均按压速率(其倾向于过高)下降以及过度高的通气速率被降低。除了支持实时CPR表现之外,已证明监控和记录CPR输送的设备能够提供在每次使用时强化技能的反馈、能够提供数据来证明对CPR规则的遵守水平并且能够示意待改进的方面。协议能够被改进并且这样的反馈能够支持对成功的CPR和功能保全中最关键的因素的研究。实时反馈也能够为在包括旁观者、医院内和医院前在内的各种设定下的复苏训练作贡献。这样的反馈在美国公布的专利申请N0.2007/0010764被论述,其全部内容被结合在本文中。
[0012]东卡罗莱纳大学医学院的空中医疗服务科先前的研究已证明胸部按压的效力在空中的B0-105直升机的设定下的缺陷。这个研究被进行以确定在飞行中的按压效力是否能够通过利用在心肺复苏(CPR)期间提供实时反馈的压力感测监控器来改进。十个班机护士每个都对人体模型执行了两分钟的在飞行中的胸部按压,该人体模型以电子学方法估计按压深度和手的放置。进而在加入从压力感测设备向护士的实时反馈的情况下重复该会话(session)。通过利用来自压力感测监控器的反馈所实现的正确按压的平均比例(95.7+/-3.2%)明显高于(p〈.01)对照组的对应比例(33.4+/-12.1%)。这个研究证明了执行有效的在飞行中的胸部按压的困难能够通过加入关于按压效力的实时反馈而有利地被影响。
[0013]根据Cirtical Care Medicine中的报告,EMS人员倾向于在医院外CPR期间给病人换气过度。人工通气在肺中产生正压并且导致减少的冠状动脉灌注压力。结果,较少的血液在按压之间返回心脏右侧,从而降低了 CPR的有效性。随后的动物研究显示诸如在实地发现的那些的通气速率导致降低的存活率。
[0014]研究者陪伴待命的EMS人员并且测量在CPR期间所给予的通气的次数和持续时间。所发现的是通气以每分钟37次的平均速率被给予,而由AHA推荐的速率过去为每分钟12-15次呼吸而现在针对不通气CPR为低至O。作为一次培训练习的部分,对EMS人员被给予特别地推荐降低通气次数的培训。结果,通气次数减少至每分钟22次,但通气的长度变得更长,平均为1.18秒而不是培训之前的0.85秒。即使在培训之后,肺中的正压被报告为在47%的时间内存在。在相关的动物研究中,研究者发现当通气以每分钟12次呼吸被执行时7头猪中有6头存活,而当通气以每分钟30次呼吸被执行时7头猪中只有I头存活。
[0015]研究者推断,尽管看上去培训充分,专业的救助者一贯地在医院外CPR期间对病人换气过度。根据该研究,执行CPR的个体应监控通气速率并且将它们限制到不多于每分钟12次呼吸。该报告进一步提出这些新发现应对CPR研究和生物医疗设备的发展有显著的含意。
[0016]准确地报告对特定病人的胸部按压和人工呼吸的充分性的设备能够极大地增强CPR的有效性和安全性两者。还指示护理者如何改进和维持最优表现的设备能够是有用的并且潜在地是挽救生命的。另外,允许按压之间的完全反冲对于护理者或紧急救助者是特别难以在CPR期间记住、一贯地执行并且有效地监控的。在下一次按压的启动之前报告反冲充分性的设备将会是优势。
[0017]已开发传感器来测量CPR表现并且已开发算法来估计CPR推荐与其实际被执行之间的差异或缺口并且反馈已通过可视的、口头的或其他听觉的反馈被输送。这种类型的反馈已在先前被描述并且有具有下列特征的目标:
?当并且仅当按压和/或通气从所推荐的CPR准则偏离时提供校正。这能够帮助护理者和潜在的救助者既在培训期间也在现实世界CPR期间记住并且细调他们的CPR技能。
[0018].通过可视的或听觉的手段提供清楚的、简明的并且可容易解释的数据来优化护理者或救助者快速反应的能力。
[0019].提供来自特别地被编程的设备的一致、准确和客观的输入,与与来自从另一个体的主观信息或来自另一测量设备的零星数据相对。
[0020]?提供实时数据使得护理 者或救助者能够调节他们的动作以优化按压和通气。
[0021].提供分优先级的输入使得护理者和救助者能够通过确保CPR的最关键的方面首先被解决并且在适当的时候被细调来优化总的CPR表现。
[0022]现有设备
通过可视地和可听地指示CPR胸部按压应以其被执行的速率和深度来帮助救助者输送具有适当速率和深度的按压的设备是可获得的。当前可获得的CPR设备使用诸如节拍器、压垫、加速度计和经胸阻抗测量的方法作为它们监控CPR的质量和传送推荐的基础技术。所有这些CPR监控方法都具有能够导致不良的CPR表现的缺陷,这些缺陷通过在本专利中描述的发明被克服。针对机械地执行CPR的设备的专利也已被公布。
[0023]音频反馈已被证明改善CPR表现。一些设备以每分钟100个音的恒定速率输送可听音和/或以适当的速率输送可视的闪光来指示需要每隔多久给胸部加压一次以得到最佳CPR。这种节拍器方法有助于救助者为按压定时,但其不报告按压是否处于所建议的速率和深度。
[0024]若干专利已被授予机械地按压病人胸部的设备,但这些方法没有被示出为是在人工CPR之上的改进。2010 AHA准则报告“在2010国际共识会议的时候仍然没有足够的数据来证明任何药物或机械CPR设备在心搏停止之后改进长期的结果。很明显需要被充分地发动以检测在采用这些介入的情况下的临床上重要的结果差异的进一步研究”。迄今为止,使机械CPR适合个体的需要来改进结果的尝试还没有被实现并且机械CPR仍然没有被包括在该准则中。当前的机械CPR的缺点之一是没有对胸内容积的变化的充分反馈以优化其实现。因此,能够为按压速率和深度两者以及通气的充分性提供进行中的音频反馈的集成设备优选地优化CPR表现。
[0025]一种设备,即ZOLL的CPR-D-padz利用结合到放置在胸骨上的衬垫中的加速度计。该系统将加速度计随时间的运动转换为在每次按压期间移动的距离,从而提供对按压的速率和深度的实时估计。该设备在显示屏上示出CPR按压深度。它也提供自适应的节拍器以恰当的速率和深度帮助救助者,并且将根据需要进行推荐,即说“更用力地按”或“良好按压”。这种设备依赖加速度计的运动来提供每次按压的深度的测量结果,其被2010准则推荐为大于2英寸。最佳按压将根据病人的体型和骨骼而变化,但由于大多数CPR在没有这样的反馈的情况下被执行,所以该准则被简化。例如,实地的一些专家针对体型更大的男性推荐3英寸。
[0026]市场上的另一产品Philips Q-CPR提供实时CPR测量和反馈工具来提供客观测量以及关于CPR的按压和通气分量两者的实时校正反馈。这种特征在人工除颤以及AED模式两者下都是可用的。这个设备经由加速度计和压力传感器获得关于按压深度和速率的信息,但也使用通过除颤衬垫测得的胸内阻抗来计算通气速率以便提供额外的数据来促进护理者按照AHA/ILC0R准则对成人执行CPR。值得注意地,Philips Q-CPR没有使用胸阻抗测量来测量或输送与胸内容积或肺容积相关的信息,而仅仅报告通气速率,该通气速率被表示为每分钟通气次数(vpm)。这些系统不具有测量与心脏按压和/或通气装置通气量关联的胸内容积或胸内容积变化的能力。
[0027]对Philips Q-CPR设备、ZOLL CPR-D-padz及单独地依赖加速度计来确定按压的恰当深度的其他设备而言存在若干特定缺点。所测得的加速度中的小误差可能导致所报告的胸部位移中的无法接受地大的误差。已示出所测得的加速度中的小至0.02in/Sec2的误差会导致0.25英寸的位移误差。位移中的误差是一个难题,这是由于虽然AHA准则规定必须对胸部加压至少2英寸,但例如对小体型的女性的显著更大的按压可导致对肋骨的显著损伤。即使所推荐的2英寸按压对于具有骨质疏松症的较老的脆弱女性也可能是过多的。
[0028]另外,当前设备易于有外部加速度错误和由于从初始起动位置的漂移引起的误差。因为加速度计不能确定加速度源自何处,所以由除CPR的应用以外的加速度引起的加速度误差可能出现。因此,如果病人正在救护车中被运送,则加速度计能够测量道路上的振动和颠簸并且产生位移误差。结果,操作者可能被指示以不准确的定时和按压深度来执行CPR。
[0029]在基于加速度计的设备中的另一个可能的误差原因是从加速度计的实际的或所报告的起动位置的漂移。加速度计被用于计算从起动位置的位移,该起动位置在按压之前位于胸部的上面。在第一次按压之后,加速度计仅检测起动点的相对位置,而不是确切的初始起动位置。随着重复的按压被施加,由于加速度计没有对初始起动位置的“记忆”,所报告的位移可能漂移。
[0030]举例来说,如果在按压之间没有允许胸部返回到完全放松的位置,则漂移可能出现。加速度计能够开始使用新的、更低的起动位置,就像它是原始的起动位置那样。结果,设备将指示操作者比必要的更用力并且更深地按压胸部,而可能地使病人的肋骨折断。漂移也可能由于加速度计在身体上的逐渐滑动或在与CPR同时地执行通气的情况下出现。
[0031] 即使在理想条件下恰当地被操作,在基于加速度计的CPR设备中仍会出现漂移。如果肋骨在CPR期间折断,则胸部将逐渐地改变形状并且使加速度计的起动位置漂移。其他类型的损伤或疾病也能够导致胸部逐渐地改变形状。同样地,由于电极和加速度计在这样的设备中是单个实体,放置被兼顾。前-后以及顶点-胸骨对CPR操作者而言是没有能力做的。因此,对于这样的设备的儿科使用不是可行的。CPR设备应能够指示操作者以正确的按压频率和按压深度执行CPR而没有错误的漂移并且不受外部加速度影响,这以当前的基于加速度计的CPR设备是不可能的。
[0032]由 Advanced Circulatory Systems, Inc.,开发的、被称为 ResQPOD 的一种产品是附接到面罩或气管内导管并且与通气气囊一起使用的单向阀。其本质上阻止空气在CPR的减压阶段进入肺部,由此在肺中产生真空。该真空产生吸力,其将更多的去氧血液从手臂和腿部的血管吸回,这又允许更多的血液流动出去,特别是到脑部。
[0033]市场上的一种产品(Philips的Q-CPR)提供实时CPR测量和反馈工具来提供客观测量以及关于CPR的按压和通气分量两者的实时校正反馈。这种产品在人工除颤和自动外部除颤器(AED)模式下都是可用的,以提供关于按压深度和速率以及通气速率的信息来促进护理者按照 AHA/Jfltemaiiimay L iaison Committee On Resuscitation (ILCOR)准则对成人执行CPR。
[0034]市场上的另一种Philips设备利用放置在病人胸部上的多功能衬垫,其中CPR计量器被施加在病人胸部的中心。在使用期间,CPR计量器测量胸部按压深度和速率,同时通气算法分析从多功能衬垫测得的胸部阻抗来产生通气速率。因为算法基于胸体/胸骨方位(placement)来解释阻抗变化,所以需要前部/前部的衬垫放置。按压和通气算法通过反馈算法在适当的时候产生可视的测量结果和相关的听觉/原文反馈。
[0035]在Philips设备中,按压深度被表示为波形,该波形表示大约10秒的按压,这从来自CPR计量器的信号中获得。在胸部被加压时,按压被表示为波的下行冲程,其在按压压力被释放时向上反弹至基线。以-38mm和-51mm (-1.5”和-2”)画出的、波区域中的两条水平线指示目标区以帮助实现良好的按压深度。计算得到的每分钟按压次数(cpm)速率被显示。如果按压深度或速率明显偏离AHA/ILC0R准则,监控器/除颤器提供可视的和校正的可听反馈。如果没有可检测到的按压,无流动(No Flow)时间值将对“不干涉”秒数进行计数,以2秒开始并且随每另外的一秒递增。
[0036]除颤衬垫通过检测胸阻抗的变化来采集通气数据。通气速率被表示为每分钟通气次数(vpm)。像按压一样,如果通气速率下降到AHA/ILC0R准则之外,则可视的和可听的反馈被给予。
[0037]可听的语音提示(在人工和自动外部除颤器(AED)模式下)和屏幕上的文本提示(在AED模式下-仅基本视图)向护理者警告在CPR表现中所需要的调整,包括按压活动中的疏忽。反馈被分优先级并且按临床重要性的顺序来输送。反馈也是阶梯式的,使得护理者首先接收可视的反馈并且进而接收语音提示,除非没有基于初始的可视提示进行校正。存在LED压力传感器以帮助操作者提供一致的胸部按压。一种这样的设备(CPREzy Pad,CPREzy, Herfordshire, UK)被设计使得当压力由手施加到衬垫上时,压力敏感的发光二极管指示每次胸部按压所需要的力的正确量。四个绿色LED存在于该设备上以指示不同体重和尺寸的病人所需要的目标压力。救助者需要估计病人的尺寸并且施加足够的压力来使对应的LED发光。黄色的灯能够警告救助者过大的压力正被施加。救助者通过仅施加足以使对应受难者的大概尺寸的LED发光的力来实现这种风险降低。救助者也需要在警示灯在按压期间发光时知晓增加的胸部损伤风险。而且,这样的设备是笨重的并且在CPR设定下不是容易地被实现的。
[0038]被设计用来估计CPR的质量的另一设备是具有内建除颤器的HeartSineSamaritain PAD500P。Samaritain PAD500P 使用阻抗心电图(ICG)来估计 CPR 被执行得有多好。ICG波形表示心脏输出,并且能够被用于检测通过大动脉和肺部血管的血液流动。在微处理器中通过诊断算法来检查ICG信号,并且ICG信号被用于向操作者提供按压深度反馈。该设备也测量ECG,其被用于分析来自除颤器的电击何时应被输送
为得到ICG波形,使用电极来测量经胸阻抗。来自经胸阻抗测量的呼吸影响被故意地滤除以得到ICG。因此,PAD500P仅测量心脏输出并且不能被用于测量通气量或呼吸速率。
[0039]由于使血管收缩并且改变血液流经胸部的方式的、天然的儿茶酚胺或注入的肾上腺素的影响,阻抗心动描记在CPR期间固有地是不准确的。具有异常水化状态的病人通过改变基线阻抗而向阻抗心动描记提出了另外的问题,这就是为何将阻抗心动描记与阻抗呼吸描记结合是重要的。
[0040]测量胸内容积、潮气量和分钟通气量对于优化CPR来说是有用的。取决于状况,CPR可以包括或可以不包括人工呼吸。在CPR不包括人工呼吸的情况下,记录在按压期间进入和离开肺部的空气的量甚至更迫切。在人工呼吸或者通过嘴对嘴复苏或者通过呼吸导管被执行的情况下,应为病人优化人工呼吸。高速率和高通气量的人工呼吸可能对肺部造成损伤并且通过增加胸内压力而减少了胸部按压的效力。在CPR期间执行人工呼吸或通气的最好方法是采用每分钟8到10次通气的速率。这将具有低平均胸内压力的优先级与向病人供氧的优先级进行了平衡。低平均胸内压力允许心脏更容易地将血液泵送入周围的脉管系统。监控吸入的空气的量并且向CPR技师或通气单元提供反馈能够确保CPR的执行符合AHA或ERC的准则,并 且确保人工呼吸被优化以使病人存活率最大化。
[0041]在除颤和CPR被执行并且心脏恢复到足以开始靠其自己泵送之后,确保泵送需要尽可能少的能量是重要的。当胸内压力低时,心脏能够以较少的能量将血液泵送入周围的组织。维持低胸内压力的关键是通过降低呼吸速率而同时维持恒定的分钟通气量来控制呼吸。这确保了足够的空气被呼吸,而同时维持了低平均胸内压力,从而允许心脏恢复。
[0042]在尝试测量心脏活动的同时,Atlzer和Lehmann注意到经胸电阻抗随呼吸而变化。他们将呼吸阻抗变化看作假象并且要求病人在测量被进行的同时停止呼吸。在1940年,在同样研究心脏阻抗的同时,Nyboer在他的测量中注意到相同的呼吸阻抗假象。他作为通过同时记录经胸阻抗的变化和使用肺活量计获得的量的变化两者将它们相关联的第一人确认了该假象的起源。Goldensohn和Zablow作为将呼吸量与经胸阻抗定量地相关联的第一调查者使阻抗呼吸描记又前进了一步。他们报告了分离心脏信号假象时的困难并且也注意到在身体运动期间的假象。在通过最小二乘回归来比较阻抗变化与呼吸量变化之后,他们确定该两者是线性相关的。其他小组已确认了在经胸阻抗变化与呼吸气息之间的线性关系并且发现大约90%的肺活量测定信号能够通过胸阻抗信号来解释。尽管该关系已被示出为是线性的,许多小组发现针对病人本身和病人之间的校准常数在试验之间是高度变化的。校准常数中的这些差异能够被归因于各种生理特征和电极特征,这些特征必须被考虑在内。
【发明内容】
[0043]本发明克服与当前策略和设计相关联的问题并且提供监控病人的新系统及方法。当前CPR监控方法及设备具有可能导致不良的CPR表现的缺陷。本发明的设备及方法克服了在本文中所描述的缺陷。本发明也克服了与基于节拍器的、基于加速度计的以及基于其他形式的经胸阻抗的设备相关联的显著缺点。
[0044]在本发明中,与由节拍器设备提供的每分钟恒定100次按压不同,反馈基于CPR表现被给予。反馈能够建议操作者更快或更慢地加压。还与节拍器设备不同的是,本发明能够就胸部按压的深度向操作者提供建议并且能够指示通气参数。
[0045]与基于加速度计的设备(例如来自Philips和Zoll的设备)不同,本发明不受CPR监控期间的漂移或外部加速度的影响。这允许在移动的运载工具中的准确的CPR反馈。即使操作者在按压之间向胸部施加了一些力,本发明也允许操作者以恰当的深度给病人胸部加压。这经常在CPR期间发生并且在采用基于加速度计的设备的情况下将引起漂移误差。
[0046]与HeartSine PAD500P不同,本发明利用阻抗记录来报告胸部按压对胸内容积的效果并且能够被用于优化人工呼吸和胸部按压两者。胸阻抗测量能够被用于确定人工呼吸的潮气量、速率和分钟通气量。关于人工呼吸的可听和可视的反馈有助于防止在CPR期间的换气过度,已知在CPR期间的换气过度会引起有害的病人结果。
[0047]本发明的一个实施例针对一种用于确定心肺复苏(CPR)充分性的设备。该设备包括电流源发生器、感测由所述电流源发生器产生的电流的电压传感器、微处理器以及在所述微处理器上执行的软件,其中所述微处理器基于由所述电压传感器感测的电流来确定病人的阻抗的变化。所述软件基于病人的阻抗的变化来确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个,并且输出指示通气和按压中的至少一个的充分性的信号。
[0048]在优选实施例中,所述电流源发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。优选地,所述电压传感器包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。优选地,所述设备包括两个解调器,并且第一解调器以发生器信号作为载波来对信号滤波,而第二解调器以90度相位旋转电路来对所述信号滤波。
[0049]优选地,所述电源发生器、所述电压传感器和微处理器被完全集成到引线阻抗电极衬垫中。优选地,所述设备还包括通气装置、自动按压设备以及除颤器中的至少一个。所述信号优选地为闭合的反馈,其指导所述通气装置、所述自动按压设备以及所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。优选地,所述设备指导除颤的定时。
[0050]在优选实施例中,所述设备还包括将病人与所述电源发生器以及所述电信号传感器耦合的引线。所述引线优选地与所述除颤器的叶片耦合。优选地,所述设备以电子学方法被保护以免受由除颤器产生的电击的影响。
[0051]本发明的另一实施例针对一种确定心肺复苏(CPR)充分性的方法。该方法包括在电流发生器处产生电流、使所述电流通过病人、在所述电流通过病人之后在电压传感器处接收该电流、以一个或多个频率测量病人的阻抗水平的变化、基于病人的阻抗的变化来确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个以及输出指示通气和按压中的至少一个的充分性的信号。
[0052] 优选地,所述电源发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。电压传感器优选地包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。所述方法优选地还包括指导除颤的定时。其中所述方法在包括两个解调器的设备上执行,并且第一解调器以发生器信号作为载波来对信号滤波,而第二解调器以90度相位旋转电路来对所述信号滤波。
[0053]优选地,所述方法还包括通气装置、自动按压设备以及除颤器中的至少一个。在优选实施例中,所述信号为闭合的反馈,其指导所述通气装置、所述自动按压设备以及所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。所输出的信号优选地指示通气的充分性从引线或阻抗电极衬垫可视或从引线或阻抗电极衬垫听见。
[0054]所述方法优选地包括将引线与所述病人、所述电流发生器以及所述电压传感器耦合。所述方法优选地包括将所述引线与所述除颤器的叶片耦合。所述设备优选地以电子学方法被保护以免受由除颤器产生的电击的影响。
[0055]本发明的另一实施例针对一种包含用于确定心肺复苏(CPR)充分性的程序指令的计算机可读介质,其使计算机在电流发生器处产生电流、将所述电信号注入病人、在所述电流通过病人之后在电压传感器处接收该电流、测量病人的阻抗水平的变化、基于病人的阻抗的变化来确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个以及输出指示通气和按压的充分性的信号。
[0056]优选地,所述电流发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。在优选实施例中,所述电压传感器包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。优选地,所述计算机与两个解调器耦合,其中所述介质还使计算机通过第一解调器以发生器信号作为载波来对信号滤波并且通过第二解调器以90度相位旋转电路来对所述信号滤波。优选地,所述计算机与通气装置、自动按压设备以及除颤器中的至少一个耦合。优选地,所述介质还指导所述通气装置、所述自动按压设备以及所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。
[0057]本发明的另一实施例针对一种心肺复苏(CPR)胸内容积指示器。该CPR胸内容积指示器包括与病人耦合的阻抗监控设备、与所述阻抗监控设备通信的阻抗处理设备以及指示器,其中所述阻抗监控设备确定所述阻抗是否落在预定的阻抗范围之外,并且所述指示器就阻抗超出预定的阻抗范围警告CPR给予者。
[0058]在优选实施例中,所述阻抗处理设备基于病人的阻抗的变化确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个。优选地,所述指示器为音频指示器和可视指示器中的至少一个。优选地,所述指示器与自动外部除颤器耦合,该除颤器包括向病人施加电击并且从病人处得到所述阻抗的病人电极。所述设备优选地被集成到引线阻抗电极衬垫中。
[0059]在说明书中部分地阐述了本发明的其他实施例和优点,这些其他实施例和优点遵循本说明书并且部分地可从本说明书中显而易见,或者可从本发明的实践中掌握。
【专利附图】
【附图说明】
[0060]图1示意本发明的系统的一个实施例。[0061]图2示意本发明的设备的一个实施例。
[0062]图3示出本发明的设备用在病人上的实施例。
[0063]图4示意通过表示本发明的实施例的设备的不同部分的电流和信息的流。
[0064]图5示意本发明的用户界面的实施例。
[0065]图6示出与吸入的空气的量相关的、胸阻抗的相对水平。
【具体实施方式】
[0066]如本文中具体化和广义描述的那样,本文中的公开内容提供本发明的详细实施例。但是,所公开的实施例仅为本发明的示例,其可以各种的以及备选的形式具体化。因此,不存在特定结构和功能细节应为限制性的意图,而相反地,意图是它们为权利要求提供基础并且作为用于教导本领域的技术人员多样地使用本发明的有代表性的基础。
[0067]已令人惊讶地发现胸阻抗的测量是一种简单的方法,其能够产生与胸内容积相关的间歇读数或持续示踪而不需要侵入式的导管、不需要将笨重的设备放置在胸体上、不用阻止空气流动、不用限制身体运动、在CPR正被输送的地点不需要设备被插入并且不用将对胸部和气道的访问限制于执行CPR。
[0068]阻抗被表示为复数量(Z)并且术语复阻抗可以可互换地被使用;极坐标形式方便地捕获幅值和相位特征两者,
Iz=|z|ejθ,其中幅值1z1表示电压差幅度与电流幅度的比率,而幅角f给出电压与电流之间的相位差。J是虚数单元,并且在这个上下文中代替i被使用以避免与用于电流的符号混淆。按笛卡尔形式为z = R +JX ,其中阻抗的实部为电阻W而虚部为电抗
[0069]阻抗被用作对交变电流的反相的测量。在数学上,阻抗由下列等式测量,其类似于欧姆定律:
Z=V/I(I)
其中电压=V,电流=I并且阻抗=z。以未知阻抗导电的对象能够从简单的电路中确定。跨对象施加已知交变电流而同时跨该对象测量电压以及使用等式(I)产生阻抗。胸体表示容积导体,并且由于此,可应用支配离子导体的定律。另外,在呼吸或按压期间的器官运动以及胸廓的放大产生能够被测量的导电性变化。通过引入已知电流并且用电极测量跨胸体的电压的变化来测量跨胸体的阻抗。
[0070]形成胸体及腹部的组织层全都影响对经胸阻抗的测量。各组织具有不同的导电性,其影响电极之间的电流流动的幅值和方向。从最外层开始,身体的表面被皮肤覆盖,其呈现高电阻率,但仅大约Imm厚。在皮肤之下是脂肪层,其也具有高电阻率。然而,这层的厚度是高度变化的并且取决于身体位置以及对象的身体类型。从后部移动到前部,在皮肤层和脂肪层之下是姿势肌,其为各向异性的。它们在长度方向上具有低电阻率而在所有其他方向上具有高电阻率,这导致在平行于皮肤的方向上导电的趋势。在肌肉下面是肋骨,作为骨头,其是高度绝缘的。因此,通过胸体的电流仅能够在骨头之间流动。一旦电流抵达肺部,就假定电流穿过血液,血液具有任何身体组织的最低电阻中的一个。肺部的换气以及对胸部的按压改变了肺部的尺寸以及电流流动的通路,并且表现为能够被测量的电阻或阻抗的变化。
[0071]由于组织的各向异性属性,通过胸部的辐射状电流流动比所预期的少得多。许多电流绕过胸部而不是通过胸部。结果,阻抗变化来自于胸部周界的变化、肺部尺寸的变化以及横膈膜-肝脏群的运动。在较低胸部高度处的测量归因于横膈膜以及肝脏的运动,而在较高胸部高度处的测量归因于肺部的换气以及扩张。在通常状况下以及在CPR期间,阻抗测量反映如与按压关联的从肺部的空气排出以及通过自然和人工手段对肺部的通气两者,所述自然和人工手段包括与CPR本身相关联的空气进入、嘴对嘴、面罩通气、端气管套管的气囊通气或机械通气。在任何状况下,对阻抗信号的分析反映胸内容积。这能够被分析并且算法被开发和用于输送关于总的胸部容积的信息,该信息反映CPR期间的通气和循环两者,并且另外地,所述算法被用于分离出并且量化通气以及分离出并且量化循环。这能够通过分析总的信号或通过组合来自呼吸变化监控(RVM)的有关肺容积和速率的数据与来自阻抗心动描记(ICG)的有关循环生理机能的数据来执行。由于心脏按压对胸内容积的影响以及由于内生或外生的儿茶酚胺以及其他药物或静脉注射液的给予,仅ICG对于报告与CPR相关联的变化是不够的。在一个实施例中,本发明输送与CPR期间的整体阻抗变化相关的信息,而没有滤波,所述信息集中于血液动力学信息以及组织中的血液或流体的状态。在另一实施例中,本发明输送仅与阻抗的变化相关的信息,所述阻抗与在按压期间从胸部的空气排出相关。在另一实施例中,与ICG相似或一致,阻抗信号内的关于血液动力学的信息能够被加入RVM测量以向护理者输送有关按压充分性、通气充分性或CPR总体而言的充分性的信息。在CPR的情形下,阻抗信号为来自肺部的扩张和换气以及胸腔的按压以及横膈膜-肝脏群的运动的变化之和。在有证据显示除颤的定时与心脏的或者基于固有心脏动作或者基于胸部按压的加负荷状态有关的情况下,在一个实施例中,除颤与胸部按压的定时协调来优化结果。在一个实施例中,通过语音或其他信号来推荐除颤,或者在由反映自动的或救助者输送的胸部按压以及机械或气囊通气的阻抗测量所确定的时间自动地输送除颤。
[0072] 已令人吃惊地发现阻抗测量能够反映在CPR情形下与肺容积和心脏容积相关的总胸内容积。CPR通过对胸体加压并且迫使血液离开心脏到脑部和身体而起作用。在未插管病人上的每次按压既将血液按出心脏也将空气按出肺部。在这种情况下,所测得的阻抗减少。这恰恰是在CPR期间血液被泵送到身体、脑部以及心脏的时间和方式。在于未插管病人上通过嘴对嘴或面罩通气进行复苏呼吸的期间或在于插管病人上进行气囊通气(或机械通气)期间,空气被推送到肺部及胸体中。当胸内压力在通气期间被提升并且肺部被扩张时,阻抗上升。与通气相关联的胸内压力增加能够或者是协同的或者是与心脏按压竞争的,以迫使血液离开心脏以向身体供给。监控阻抗的变化能够优化心脏按压的有效性。本发明能够采集和分析数据并且基于将按压和通气两者考虑在内的阻抗向护理者提供反馈来优化CPR的输送。
[0073]定时
在有证据显示除颤的定时与心脏的或者基于固有心脏动作或者基于胸部按压的加负荷状态有关的情况下,在一个实施例中,除颤与胸部按压的定时协调来优化结果。在一个实施例中,通过语音或其他信号来推荐除颤,或者在由反映自动的或救助者输送的胸部按压以及机械或气囊通气的阻抗测量所确定的时间自动地输送除颤。
[0074]电极布置的影响
对于给定的容积变化,仰卧在呼吸期间产生最大的信号幅度和最低的信噪比。所有CPR病人都优选地为仰卧。[0075]本发明的一个实施例提供对胸阻抗的绝对测量;本发明的另一实施例提供胸阻抗的趋势。不是胸内容积的绝对测量就是趋势对于CPR提供者可能是有用的。
[0076]尽管具有相同的电极布置,用于不同尺寸的个体的校准常数和信号幅度显示可变性。针对给定容积变化的阻抗变化一般地对瘦胸部的人而言是最大的,而对尺寸更硕大的人则更小。这些观察到的差异是由于在电极与体型更大的对象的肺部之间的诸如脂肪组织和肌肉的大量电阻性组织引起的,从而对于体型更大的对象而言针对给定容积变化产生总的更小百分比的阻抗变化。另一方面,在儿童中的阻抗迹线的心脏分量一般地比在成人中的大。这是由于与在儿童中相比在成人中围绕心脏有更多的脂肪沉积,这起到使心脏免于被结合到阻抗测量中的作用。
[0077]在实验中,在第六肋骨的高度处附接到腋窝线中部的电极产生在呼吸期间测量阻抗变化的准确方式。通过将电极布置在胸体上的更高处获得两个变量之间更大的线性。阻抗测量中的可变性可与在诸如血压的其他生命信号的测量中可看到的那些相比。胸阻抗测量对于临床用途是足够准确的。数字信号处理允许对实时阻抗测量结果的接近瞬时的滤波及平滑,这允许假象及噪声的最小化。胸阻抗被用在长期病人监控中。只要电极保持相对不动,则阻抗变化与容积变化的关系在长时期内是稳定的。这个信息能够在病人脱离CPR时被用于确保通气和循环的充分性。
[0078]在一个实施例中,阻抗变化或能被用于计算按压量。对阻抗曲线有两个主要的影响。第一个是到心脏和离开心脏的血液流动,而第二个是进入肺部和离开肺部的空气流动。这两个过程产生了能够容易地相互区分的信号。由于为低阻抗流体的血液被从电路去除,对应于血液流动的信号导致阻抗在每次按压结束时的减少,从而迫使电流流过更高阻抗的通道。由于不导电的空气从电路中去除,空气通过肺部的流动导致阻抗在按压结束时的减少。
[0079]由于每个过程以其影响阻抗信号的速率不同,这两个信号能够容易地从彼此中滤出。在大多数情况下,对流出肺部的空气而言将几乎没有阻力,而为了泵送血液,心室中的压力必须超出动脉中的压力。这将在由心脏中的血液流动产生的信号中引起明显的延迟以及引起清楚的阈值,在该阈值处主动脉瓣和肺动脉瓣打开并且血液流出心室。
[0080]相同的电极能够被用于除颤以及阻抗读数。然而,为了使数据的保真度最大化,优选的是将四极电极或五到六个电极的配置用于阻抗记录。这些电极能够被集成到现有的除颤器衬垫中。在一个实施例中,六个电极被建成两个衬垫,其中每个衬垫中的一个电极被用于输送除颤电击,每个衬垫中的一个电极被用于输送用于测量阻抗的电流并且每个衬垫中的一个电极被用于记录用于测量阻抗的电压。
[0081]在另一实施例中,所述两个衬垫中的每一个都具有两个电极。每个衬垫中的一个电极被用于输送用于阻抗测量的电流,并且每个衬垫中的一个电极被用于记录电压以及测量阻抗。每个衬垫中的一个或两个电极进而被用于输送除颤电击。在五个电极的实施例中,一个电极既产生信号也记录信号。在另一实施例中,两个衬垫中的每一个仅具有单个电极,该单个电极被用于输送阻抗测量电流、记录电压以及输送除颤电击。
[0082]在全部实施例中,优选地通过保护电路来保护阻抗测量电路免受除颤电击的影响,所述保护电路包括但不限于在除颤电击被输送之前关断的电子开关、保险丝、断路器以及产生保护性短路的开关。[0083]在实际中,重要的不是按压深度,而是胸内容积的变化,其驱使血量离开心脏以向身体、脑部及心脏本身供给。本发明的一个实施例提供与三维胸内容积的变化更好地关联的特定测量,该特定测量比沿单线位移的当前测量更有优势。迄今为止,设备仅能够测量这种一维胸骨位移并且所述推荐没有规定技术上的差异来解决与病人的尺寸相关联的差异,除了对于儿科推荐的是按压处于胸部前后径的1/3与1/2之间。本发明的设备的一个实施例测量给定病人的胸内容积的变化并且提供胸部按压有效性的更适当的度量。在一个实施例中,本发明的设备提供基于胸内容积的测量用于对救助者的反馈以帮助他们输送适于给定病人的尺寸和胸内骨骼的CPR。
[0084]在一个实 施例中,测量胸内容积的设备也同时输送关于通气速率的信息。在优选实施例中,设备输送不仅关于通气速率的信息,也输送关于通气(潮气)量的信息。潮气量在提供适当的病人通气方面与速率同等重要,实际上,关键值为分钟通气量(潮气量和呼吸速率),即在一分钟内交换的实际空气量。不幸的是,潮气量和分钟通气量在没有接通气装置的病人上一般被忽略,这是由于缺乏测量或跟踪基于通气量的参数的手段。在一个实施例中,设备向救助者提供反馈以确保通入的气息被全部呼出以使基线胸内压力最小化并且因此使每次心脏按压的效果最大化。
[0085]在一个实施例中,能够估计胸体在按压之后的完全扩张或“反冲”。在一个实施例中,胸内容积的曲线的形状能够被分析以优化在一次反复中的按压输送的速度(不是速率,而是按压运动本身的快速性,以及“放开”或反冲阶段的快速性和完全性),设备显示这个信息。在优选实施例中,设备分析这个信息并且给予音频和/或可视刺激来优化按压。类似地,在另一实施例中,与通气装置气息相关联的曲线的形状能够被演示并且反馈以多种方式被输送。在被布置在通气装置上之前,最优的气息应快速地并且以适当的量被输送并且迅速地被释放。在一个实施例中,设备分析呼吸曲线并且指导护理者修改技术来优化通气和心脏干预两者。
[0086]在先的监控CPR的方法的一个主要缺点是,在病人的身体在CPR期间移动的情况下,压力传感器将产生不准确的结果。例如,如果病人在软床上,则传感器将会报告使病人的身体加速的力。这个力可能完全没有给胸部加压,而代替地仅使病人移动。这样的设备是笨重的并且在CPR设定下不是容易地被实现的。比较起来,在本文中所描述的方法不受病人身体运动的影响。在现有技术的某些设备使用血液流动的测量来尝试确定CPR充分性并且其他设备使用线性胸壁运动的同时,已令人惊奇地发现,在或者有附加信息或者没有附加信息的情况下,与胸腔中以及肺中的空气的阻抗相关地对胸阻抗变化的测量提供对CPR充分性的极好的度量。
[0087]在一个实施例中,完全的胸内和按压测量系统被完全地集成到引线/阻抗电极衬垫中。这提供心脏按压和通气的表现的低成本、轻重量以及理想定位的指示器的独特优势。设备的功率、电隔离以及笨重性的许多当前的挑战将通过这种集成被消除。紧急护理设定的独特应用和环境为这种低功率的简单智能电极衬垫系统提供了独特的挑战和机会。这种独特且未被预期的简单解决方案将为临床医师、EMS和消防人员提供理想的解决方案。这种最优的轻型设计将提供呼吸和心脏诊断指示器两者并且也将贯穿用于呼吸和心脏护理的恰当诊断及治疗的步骤引导紧急护理提供者,包括有经验的以及无经验的两者。
[0088]参考图1,示例性的和优选的系统包括至少一个通用计算设备100,其包括处理单元(CPU) 120以及使包括诸如只读存储器(ROM) 140和随机访问存储器(RAM) 150的系统存储器在内的各种系统组件与处理单元120耦合的系统总线110。其他系统存储器130也是可获得供使用的。本发明优选地在具有多于一个CPU 120的计算设备上或者在联网在一起的一群或一组计算设备上操作以提供更大的处理能力。系统总线110可以是若干类型的总线结构中的任一个,包括存储总线或存储控制器、外设总线以及使用多种总线结构中的任一个的本地总线。存储在ROM 140或类似存储器中的基本输入/输出(BIOS)优选地提供有助于在计算设备100内的元件之间传递信息的基本例程,诸如在启动期间传递信息。该计算设备100还优选地包括诸如硬盘驱动160、磁盘驱动、光盘驱动、磁带机等的存储设备。存储设备160通过驱动接口连接到系统总线110。所述驱动以及相关联的计算机可读介质提供计算机可读指令、数据结构、程序模块及用于计算设备100的其他数据的非易失性存储。基本组件对于本领域的技术人员是已知的并且适当的变化根据设备的类型被预期,诸如设备是否是小型的、手持计算设备、桌面型计算机、膝上型计算机、计算机服务器、无线设备、网络使能设备或无线电话等。 [0089]在一些实施例中,系统优选地被单个CPU控制,然而,在其他实施例中,系统的一个或多个组件由一个或多个微处理器(MP)或其他计算设备控制。另外,能够使用CPU和MP的组合。优选地,MP被嵌入在微控制器,然而,能够处理命令的其他设备也能够被使用。
[0090]尽管在本文中所描述的示例性环境使用硬盘,本领域的技术人员应理解的是能够存储可由计算机访问的数据的其他类型的计算机可读介质也可以被用在示例性的操作环境中,诸如为磁带、闪存卡、数字多用盘、盒式存储器、随机访问存储器(RAM)、只读存储器(ROM)、电缆或包含比特流的无线信号等。
[0091]为实现用户与计算设备100的互动,输入设备190表不任何数量的输入机构,诸如用于语音的麦克风、用于手势或图形输入的触敏屏幕、电信号传感器、键盘、鼠标、运动输入、语音等等。设备输出170能够是本领域的技术人员已知的许多输出机构中的一个或多个,例如打印机、显示器、光线、投影仪、扬声器和绘图机。在一些实施例中,输出能够是经由网络接口的,例如上载到网站、发送电子邮件、附到或放置在其他电子文件中以及发送SMS或MMS消息。在一些实施例中,多模系统使用户能够提供多种类型的输入来与与计算设备100通信。通信接口 180—般地支配和管理用户输入和系统输出。在本发明中没有对在任何特定硬件布置上操作进行限制,并且因此这里的基本特征可以随着改进的硬件或固件布置被开发而容易地用它们来替换。
[0092]为了解释清楚起见,示例性的系统实施例被表示为包括个体功能块(包括被标为“处理器”的功能块)。这些块所表示的功能可以通过或者共用或者专用的硬件的使用来提供,包括但不限于能够执行软件的硬件。例如,图1所示的一个或多个处理器的功能可由单个共用处理器或多个处理器提供。(术语“处理器”的使用不应被解释为排它地指能够执行软件的硬件。)示意性的实施例可包括微处理器和/或数字信号处理器(DSP)硬件、用于存储执行在下面所论述的操作的软件的只读存储器(ROM)以及用于存储结果的随机访问存储器(RAM)。也可以提供超大规模集成电路(VLSI)硬件实施例以及与通用DSP电路结合的定制VLSI电路。
[0093]本发明范围内的实施例也可包括用于携载计算机可执行指令或数据结构或者有计算机可执行指令或数据结构存储于其上的计算机可读介质。这样的计算机可读介质能够是可由通用或专用计算机访问的任何可用介质。通过示例的方式而非限定,这样的计算机可读介质能够包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储装置、磁盘存储装置或其他磁存储设备或能够被用于以计算机可执行指令或数据结构的形式携载或存储所期望的程序代码的任何其他介质。当信息通过网络或其他通信连接(或者是硬连线连接、无线连接,或者是其组合)被传递或提供给计算机的时候,计算机恰当地将该连接视为计算机可读介质。因此,任何这样的连接恰当地被称为计算机可读介质。以上各项的组合也应被包括在计算机可读介质的范围内。
[0094]计算机可执行指令例如包括使通用计算机、专用计算机或专用处理设备执行某种功能或某一组功能的指令和数据。计算机可执行指令也包括在单机环境或网络环境下由计算机执行的程序模块。通常,程序模块包括执行特定任务或实现特定的抽象数据类型的例程、程序、对象、组件和数据结构等。与数据结构相关联的计算机可执行指令以及程序模块表示用于执行本文所公开的方法的步骤的程序代码手段的示例。这样的可执行指令或关联的数据结构的特定序列表示用于实现在这样的步骤中所描述的功能的对应动作的示例。
[0095]本领域的技术人员将理解,可在具有许多类型的计算机系统配置的网络计算环境中实践本发明的其他实施例,包括个人计算机、手持设备、多处理器系统、基于微处理器的或可编程的消费电子设备、网络PC、迷你计算机、大型计算机等。网络可包括因特网、一个或多个局域网("LAN")、一个或多个城域网("MAN")、一个或多个广域网("WAN")、一个或多个内联网等。还可在分布式计算环境中实践实施例,在所述分布式计算环境中由通过通信网络链接(或者通过硬连线链接、无线链接,或者通过它们的组合)的本地和远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于本地以及远程存储器存储设备中。
[0096]本发明优选地包括用于测量胸内容积的阻抗系统,其具有将所测得的阻抗值转换为容积的集成电 子设备、阻抗测量设备以及计算机。阻抗测量设备包括电路、至少一个计算设备、优选地包括微处理器以及优选地包括四根引线,其中两根引线被用于将电流注入对象身体并且至少两根引线被用于读取所述病人身体的电压响应。在一个实施例中,电极被结合到除颤器衬垫中,如在本文中所描述的那样。在一个实施例中,电极可以是也输送标准EKG或ICG读数的系统的部分。在一个实施例中,电极可与提供EKG输入的那些相同。在一个实施例中,电极在第六根肋骨的高度处被水平地附接到腋窝线中部。然而,电极能够更高或更低地布置在胸体上。在一个实施例中,多个电极被使用,其中一些电极被结合到除颤器衬垫中,而另一些被结合到EKG信号引线中。此外,电极可按其他位置和配置被布置(例如沿胸体垂直、跨胸体成角度或从病人正面的位置到病人背面的位置),这取决于病人、情形及其他生理学上的担心(例如在病人具有起搏器或其他人工设备的情况下)。
[0097]阻抗测量设备优选地连接到计算设备,该计算设备与除颤器设备或其他CPR辅助设备耦合。数字接口被用于防止数据在传递中被破坏。在一个实施例中,该接口向所述系统提供保护以使其免受除颤电击的影响。
[0098]在优选实施例中,与高阻抗电阻器结合的瞬态电压抑制二极管被用于通过使所述设备短路来同时保护设备免受包括来自除颤器的高压脉冲在内的各种ESD脉冲的影响并且被用于限制使电流通过该设备以避免干扰除颤器的电流分布。设备数据优选地不被ESD事件或除颤器放电所破坏,并且设备功能性优选地决不会被妨碍。在另一实施例中,阻抗测量设备由其他类型的电路保护,所述其他类型的电路包括下列各项中的至少一些:高阻抗电阻器、保险丝、断路器、晶体管、MOSFET或开关。
[0099]在优选实施例中,所述设备含有自动校准设备的电路和软件。在一个实施例中,校准由通过生物电光谱阻抗分析获得的数据辅助,所述生物电光谱阻抗分析是以各种频率测量组织阻抗的过程。在这个实施例中,来自生物电阻抗分析的数据可以被用于计算对象的特定特征,包括但不限于水合水平、基线阻抗以及身体组成。低水平的水合使身体的电阻抗更大。身体中高水平的脂肪也将造成身体的平均电阻抗的增加,但可能在电流通过最小阻抗的路径时造成总阻抗的减少。肌肉与脂肪相比具有远远更多的脉管并且含有更多的导电电解液,因此肌肉发达的病人身体将具有比肌肉不那么发达的相似尺寸的人低得多的电阻抗。基于这些输入缩放校准因子使计算变得更准确。
[0100]在一个实施例中,对本发明的设备的校准基于身体组织的新陈代谢要求。预测优选地涉及将病人的所测得的、所估计的身体重量或理想的身体重量与每单位身体重量所需要的空气量或每分钟空气量相乘。理想的身体重量由病人身高、种族和/或年龄所确定并且还可以Devine、Robinson、Hamwi以及Miller公式中的一个或多个来确定。[0101]在另一实施例中,所述设备优选地包括用于刺激病人并且允许自动系统测试和演示的集成模块。自动系统测试改进了设备的性能并且确保它在使用前正确地运行。
[0102]在优选实施例中,所述设备利用模拟除法器来补偿所注入的电流中的微小偏差并且增加所获得的数据的准确性。该优选实施例中的模拟除法器将被放置在解调器之后以及整流器之前。在其他实施例中,模拟除法器可以被放置在电路中的其他位置,包括但不限于在精密整流器之后或解调器之前。
[0103]在优选实施例中,所述设备利用由微处理器驱动的自适应电子设备来维持电路中的不同放大器上的适当增益,以防止信号超出范围并且维持高的信噪比。微处理器跟踪在硬件放大器中的每一个上的设定增益并且在其计算期间适当地进行补偿使得其总是输出适当的值。
[0104]图2是本发明的系统200的实施例的示意图。电信号源自信号源205。优选地,可调函数发生器210 (例如XR2206芯片)被用于产生电信号。函数发生器210优选地经由微处理器(MP) 275或人工地可调。在一些实施例中,函数发生器210能够被调谐以便改进信号。调谐能够发生一次或多次。生物阻抗光谱学能够被用于以不同频率检测水合的水平,水合的水平能够被用于校准函数发生器210。类似地,身体脂肪率能够被计算。
[0105]信号源205还包括电流发生器215 (例如Howland电路)。尽管衬垫接触有变化,电流发生器215优选地保持源电流恒定(除非接触完全断开)。在优选实施例中,电流发生器215能够被调谐以改进性能,其能够人工地或通过MP 275自动地完成。在优选实施例中,衬垫接触质量被监控并且在衬垫接触断开或质量过差而使电子设备无法进行补偿时产生警告。信号源205还可以包括电流监控器220来计算阻抗。
[0106]在优选实施例中,信号源205还包括病人模拟器225。病人模拟器225能够用类似于真实病人的参数来模拟阻抗变化。病人模拟器225能够被用于测试系统220以及电路的校准。
[0107]来自信号源205的信号通过病人230并且被传感器235接收。优选地,传感器230包括输入阻抗放大器240。阻抗放大器240抑制不良的或可变的衬垫接触对测量的影响。阻抗放大器240的增益优选地由MP 275控制,以向其他模块提供增强的信号。传感器230优选地还包括信号滤波器245以去除来自电力网等的干扰。信号滤波器245可以是标准的高通滤波器、解调器或另一信号滤波器。同步解调器经常被用于检测生物阻抗变化以及剥去信号中的运动假象。
[0108]在优选实施例中,信号被分成两个路径。第一路径优选地将发生器信号用作载波来对所测得的信号解调。第二路径优选地在解调之前使用90度相位旋转电路。这两个解调信号都能够使用电压至RMS转换器而被转换为RMS值。在独立地被测量的情况下,信号被相加并且进而均方根被计算。这允许对对象中的任何相位偏移进行补偿并且允许电阻和电抗的独立测量,这为运动假象补偿以及水合水平、脂肪率以及校准系数计算提供了有价值的信息。
[0109]另外,传感器230可以包括模拟除法器250,其将所测得的电压信号除以来自电流监控电路的信号以计算阻抗。传感器230优选地还包括精密整流器或均方根至直流(RMS-to-DC)芯片255,连同用于 去除载波频率的低通滤波器。传感器230的输出优选地为与病人的阻抗成比例的DC信号。传感器230还可以包括带通滤波器260以通过滤除不对应于呼吸的信号部分来仅选择呼吸速率。带通滤波器260可以人工地校准或由MP 275自动地校准。优选地,传感器230包括多路转换器265,其由MP 275控制以适应多个探头对。优选地,存在两个探头对,但也可预期更多或更少的探头对。传感器230还可以包括输出放大器270。输出放大器270优选地由MP 275控制并且提供信号给模拟至数字转换器(ADC) 280以得到高精度的数字化。过采样被用于降低源自不同的源(例如热的、电子的、生物的或EM干扰的源)的测量噪声。MP 275命令ADC以尽可能高的步调信号(cadence)进行测量并且进而在对应于采样频率的时间间隔内对所得到的数据求平均。采样频率为阻抗采样在其由阻抗测量设备向计算机提供时的频率。该频率优选地被设定为足够高以监控呼吸的所有分钟特征。
[0110]使用可控的增益并且进行过采样优选地允许系统以极高的有效精度测量阻抗(对于当前实现估计为28位,或者十亿分之四)。
[0111]信号源205和传感器230两者都由MP 275控制。MP 275优选地包括监控信号处理的至少一个ADC 280以及用于控制数字电位计、多路转换器、运算放大器、信号发生器及其他设备的至少一个数字输出285。优选地,MP 275使用有线(例如USB、串行)或无线(例如蓝牙或无线因特网)连接与接口设备(例如平板PC、膝上型计算机、上网本、手机或其他便携式计算设备)通信。优选地,接口设备将向CPR技术人员显示反馈。优选地,该接口将显示下列度量中的一个或多个:潮气量、呼吸速率、分钟通气量、按压深度以及按压速率。
[0112]图3示出在CPR会话期间正被使用的本发明的实施例。引线310被放置在病人胸部上以测量胸阻抗。设备320在病人旁边。该设备解释胸阻抗并且以音频、可视和/或文字的形式向CPR操作者提供反馈。
[0113]图4通过本发明的实施例示出电流和数据信号的流。设备内部的信号发生器405通过引线410跨病人胸部注入电流。引线中的阻抗传感器415测量胸阻抗并且呼吸信号被放大420。该设备进而将模拟胸内阻抗信号转换为数字信号425以供校准及处理430所使用。病人的胸内容积进而被计算435并且被分成其肺部分量445和心脏分量440。该设备进而确定复苏是否充分,以及何种反馈能够改进复苏的质量。通过用户界面执行适当的音频和/或可视反馈455。[0114]图5示出本发明的用户界面的可能实施例。该设备被连接到测量对象的胸阻抗的引线550。该设备监控CPR的质量并且向操作者给予反馈。该设备能够通过扬声器510给予音频反馈以叫操作者改变胸部按压的速度或深度。该设备还使用LED指示器向操作者示出应进行何种调节。如果对按压定时的调节是必要的,则按压速度指示器520警告操作者。如果对按压深度的调节是必要的,则按压深度指示器530警告操作者。这两个LED指示器都能够通过进一步远离“良好” LED发光来显示CPR表现偏离理想情况的程度。
[0115] 图6示出胸阻抗如何被用于计算通气量。当病人吸入时,横隔膜收缩650并且胸部扩张610。随着更多空气进入肺部,跨胸体的阻抗增加。相反地,当病人呼出时,横隔膜放松660并且胸壁收缩620。胸部内部存有较少的空气并且跨胸体的阻抗减少。
[0116]与胸骨的位移相比,确定按压充分性更好地与胸内容积的变化相关。简单的胸骨位移不是按压充分性的良好的决定因素,因为它没有将整个病人的移动考虑在内。例如,如果病人在软床上并且整个病人移动了 2英寸,则加速度计能够读出大的位移。在这种情况下,系统将记录恰当的位移,并且系统提供的指令将导致其中不充分的CPR被执行的情形。胸骨位移也没有将病人尺寸、体重或身体体质方面的差异考虑在内。与对于50岁、6英尺、300磅的男性相比,2英寸位移对于瘦的、20岁、5英尺、100磅的女性具有非常不同的效果。
[0117]在紧急情形下,第一响应者不仅需要自动外部除颤器,而且还需要能够在心肺复苏(CPR)期间帮助确定是否需要“电击”的设备。在本文中所描述的发明能够为确保胸部按压的充分性提供优越的、临床上更有用的并且更容易使用的方法。这种新的解决方案报告胸内容积(肺容积)的变化,其更准确地反映CPR的充分性。本发明优选地提供对按压和通气近实时的客观测量和校正反馈以促进由熟练的或不熟练的救助者按照已确立的准则的CPR表现。在一个实施例中,来自本发明的信息将为指导护理者动作的算法提供输入,所述动作诸如为输送“电击”、增加或减少按压深度、增加或减少按压速率、增加或减少通气速率、增加或减少通气量。
[0118]在一个实施例中,测量与针对给定病人的参数所预测的胸内容积相关。在另一实施例中,通过电极的布置来针对病人尺寸对测量进行校正。在优选实施例中,从阻抗测量来计算胸内容积。在另一实施例中,从阻抗数据来计算胸骨位移。在另一实施例中,从一组加速度计(实际上被用于计算胸内容积和容积变化并且不同于被用于测量简单胸骨位移的那些)来计算胸内容积。在另一实施例中,从采用现有加速度计技术得到的胸内容积与从加速度计提供的单侧位移或其他位移的组合来计算胸内容积。
[0119]在一个实施例中,胸内容积以及胸内容积变化的基于阻抗或加速度计的测量也提供了按压速率。在一个实施例中,胸内容积以及胸内容积变化的基于阻抗或加速度计的测量向控制设备向救助者发命令或评价以改进CPR或确认其充分性的算法提供输入。所述命令例如包括,更重地加压、更轻地加压、修改按压深度、更快地加压、更慢地加压、良好的按压速度、修改通气量、修改通气以其被输送的速度(给予更短的气息、给予更长的气息)、更快地通气、更慢地通气以及良好的通气速度。在另一实施例中,本发明提供音频信号、可视信号或文字信号。在一个实施例中,本发明为启动每次按压给予提示。在一个实施例中,本发明为启动每次通气给予提示。
[0120]在一个实施例中,胸内容积以及胸内容积变化的基于阻抗或加速度计的测量进而向控制自动CPR按压设备的算法提供输入,所述自动CPR按压设备为开环或闭环系统。在一个实施例中,胸内容积以及胸内容积变化的基于阻抗或加速度计的测量进而向控制自动通气设备的算法提供输入,所述自动通气设备为开环或闭环系统。在一个实施例中,胸内容积以及胸内容积变化的基于阻抗或加速度计的测量进而向控制自动的组合CPR按压及通气设备的算法提供输入,所述自动的组合CPR按压及通气设备为开环或闭环系统。
[0121]在一个实施例中,本发明报告通气的充分性并且为手动气囊通气的病人或返回运输通气装置的闭环系统提供用于改进的指令。在一个实施例中,本发明报告通气充分性和按压充分性两者并且提供用于改进的指令或与其他设备集成以得到闭环控制。
[0122]市场上的一种产品Phillips Q-CPR计量器提供实时CPR测量和反馈工具来提供客观测量以及关于CPR的按压和通气分量两者的实时校正反馈,其在人工除颤以及AED模式两者下都是可用的。该Q-CPR设备提供关于按压深度和速率以及通气速率的信息以促进护理者按照AHA/ILC0R准则对成人执行CPR,但并没有提供关于胸内容积或肺容积的信息。本发明的一个实施例向由其他技术提供的呼吸速率测量增加了测量呼吸量的能力。代替或除了按压深度以外,本发明的一个实施例为复苏的充分性增加了胸内容积测量结果的提高的效用。本发明的一个实施例向信息集增加了从心脏阻抗数据获得的关于心脏流/输出的信息。
[0123]市场上的另一种产品Philips HeartStart MRx通过检测胸阻抗的变化经由除颤衬垫来测量通气。通气速率被表示为每分钟通气次数(vpm)。Philips系统不具有测量胸内容积的能力,因为其涉及与按压相关联的通气量或胸内容积变化。本发明的新颖之处在于阻抗信号被采集和处理使得关于胸内容积的特定信息能够被用于更好地指导在CPR期间的按压和通气。
[0124]在一个实施例中,阻抗电极(优选为4个)被包括在运输监控器/除颤器的除颤器衬垫中。在另一实施例中,阻抗电极(优选为4个)与除颤器衬垫分开地被布置在骨骼相关的位置上以记录胸内容积变化。优选地,EKG信号被从这4个阻抗电极得到使得另外的引线不需要被布置。优选地,使阻抗设备免于受除颤电击的影响。
[0125]本发明优选地被用于需要CPR的任何病人或被用于对CPR必要性的评估。在一个实施例中,该设备将被加固以供在用于EMT和军事人员的紧急运输机内使用。本发明的一个实施例帮助护理者提供对按压以及通过屏障设备、面罩或气管内导管对气息的输送(通气)的定时以及性能和协调的适当管理。
[0126]一个实施例包括CPR反馈设备,其能够以关于CPR按压的具体指示和校正来帮助紧急技术人员或军事医护人员以改进结果。在一个实施例中,本发明利用与典型的AED相关联的引线。EMT将在按压之前附接集成到现有除颤器衬垫中的引线和/或EKG引线。通过生成通过胸体的、交变或恒定的电流来检测阻抗变化。阻抗变化与胸部以其被加压的速率以及每次按压的深度相关。所测得的按压速率被与最优值比较并且通过警报系统被强制执行,其中救助者被通知按压速率是否过高或是过低或是适当。警报能够是可听的、可视的或它们的组合。所测得的按压深度被与最优值比较并且通过警报系统被强制执行,其中按压的执行者被通知按压深度是否过高或是过低或是充分。
[0127]该设备的一个实施例结合另一胸内容积测量设备的阻抗并且将该数据与从另一设备或记录方法获得的信息一起输送,所述另一设备或记录方法包括但不限于书面日志、除颤器、心脏监控器、呼吸监控器、潮气末C02(ETC02)监控器、脉搏血氧计、通气装置,并且或者存储这些数据或者近实时地向护理者呈送数据的缩减集以帮助进行中的CPR。
[0128]作为对最有效地输送CPR的机械设备的开发过程的部分,一个实施例被用于质量改进。另一实施例将在护理者正在执行CPR的同时向他们实地提供进行中的质量改进。另一实施例将通过下列步骤在CPR事件之后为质量改进提供用于汇报的数据,即:存储来自阻抗或其他胸内容积测量设备的数据并且将该数据与从任何其他设备或记录方法获得的其他信息一起输送,所述任何其他设备或记录方法包括但不限于书面日志、除颤器、心脏监控器、呼吸监控器、ETC02监控器、脉搏血氧计、通气装置。在一个实施例中,独立的引线被用于激励和监控阻抗。在一个实施例中,EKG引线被用于激励和监控阻抗。在一个实施例中,除颤器衬垫被用于激励和监控阻抗。
[0129]在一个实施例中,本发明提供对包括呼吸速率、潮气量和分钟通气量(其可在屏幕上或经由语音/听觉组件或其他方法来报告)在内的病人呼吸参数的估计,就呼吸充分性向护理者提出建议,不论是自发呼吸还是由手动气囊通气或者运输或其他通气装置提供。一个实施例提供信息使得经验不足的救助者能够被指示以根据准则来输送CPR。
[0130]一个实施例提供带有可变量细节的信息使得BLS和ALS水平的护理者以及非医疗人员能够优化他们的CPR输送。在一个实施例中,本发明向救助者提供有关按压速率、深度和完全释放以及无按压活动(或“不干涉”时间)和通气速率的反馈。
[0131]在一个实施例中,本发明向自动按压设备提供开放的或闭合的反馈,所述反馈关于下列各项中的一个或多个:按 压速率、深度和完全释放以及无按压活动(或“不干涉”时间)、通气速率。
[0132]在一个实施例中,本发明向执行通气和自动按压两者的集成系统提供开放的或闭合的反馈,所述反馈关于下列各项中的一个或多个:按压速率、深度和完全释放以及无按压活动(或“不干涉”时间)和通气速率。
[0133]在一个实施例中,本发明向通气装置提供开放的或闭合的反馈,所述反馈关于下列各项中的一个或多个:按压速率、深度和完全释放以及无按压活动(或“不干涉”时间)和通气速率。
[0134]一个实施例通过测量与胸内肺容积相关的阻抗的变化来提供对胸部按压充分性的估计(其可在屏幕上或经由语音/听觉组件或其他方法来报告)。
[0135]一个实施例基于阻抗测量来提供对实际或相对的心脏流/输出的估计(其可在屏幕上或经由语音/听觉组件或其他方法来报告)。这能够被独立地测量和报告,或者能够与胸部容积数据集成来定义CPR按压的充分性。在一个实施例中,该设备报告绝对值或趋势测量结果(其可在屏幕上或经由语音/听觉组件或其他方法来报告)。在一个实施例中,该设备存储结果供以后查看。
[0136]机械CPR仍未被包括在美国心脏协会准则中。本发明的一个实施例向机械CPR设备提供反馈来优化其对按压的输送。
[0137]基于来自检测和报告按压和/或通气的充分性的设备的反馈,机械CPR能够以单个基线水平操作,或者能够初始地、间断地或实时地被调整。这种调整能够由护理者执行(开环控制)或由机械设备本身执行(闭环控制)。
[0138]当前的机械CPR的缺陷之一是没有对胸内容积变化的充分反馈来优化其实现。本发明的一个实施例包括集成设备,该集成设备能够为按压和通气两者提供将优化CPR表现的、进行中的音频反馈。
[0139]具有异常水合状态的病人通过改变基线阻抗向阻抗心动描记提出了另外的问题,这就是为何将阻抗心动描记与阻抗呼吸描记结合是重要的。
[0140] 根据对说明书的考虑以及对在本文公开的发明的实践,本发明的其他实施例和使用对于本领域的技术人员而言将是显而易见的。包括所有出版物、美国及外国专利和专利申请在内的、在本文中所引证的所有参考文献通过引用具体地并且完整地被结合。另外,通过引用将美国临时专利申请N0.61/449811和N0.61/480105具体地并且完整地结合到本文中。意图是本说明书及示例被认为是示例性的,本发明真正的范围和精神仅由附随的权利要求指示。此外,术语“包含”包括了术语“由…组成”以及“大体上由…组成”,并且术语包含、包括以及含有不是意在作为限制。
【权利要求】
1.一种用于确定心肺复苏(CPR)充分性的设备,其包括: 电流源发生器; 电压传感器,其感测由所述电流源发生器产生的电流; 微处理器,其中所述微处理器基于由所述电压传感器感测的电流来确定病人的阻抗的变化;以及 在所述微处理器上执行的软件,其中所述软件: 基于病人的阻抗的变化确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个;并且 输出指示通气和按压中的至少一个的充分性的信号。
2.根据权利 要求1所述的设备,其中所述电流源发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。
3.根据权利要求1所述的设备,其中所述电压传感器包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。
4.根据权利要求3所述的设备,其包括两个解调器,其中第一解调器以发生器信号作为载波来对信号滤波并且第二解调器以90度相位旋转电路来对所述信号滤波。
5.根据权利要求1所述的设备,其中所述电源发生器、所述电压传感器和微处理器被完全集成到引线阻抗电极衬垫中。
6.根据权利要求1所述的设备,其还包括通气装置、自动按压设备以及除颤器中的至少一个。
7.根据权利要求6所述的设备,其中所述信号为闭合的反馈,其指导所述通气装置、所述自动按压设备和所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。
8.根据权利要求6所述的设备,其中所述设备指导除颤的定时。
9.根据权利要求6所述的设备,其还包括将病人与所述电源发生器以及所述电信号传感器耦合的引线。
10.根据权利要求9所述的设备,其中所述引线与所述除颤器的叶片耦合。
11.根据权利要求10所述的设备,其中所述设备以电子学方法被保护以免受由所述除颤器产生的电击的影响。
12.一种用于确定心肺复苏(CPR)充分性的方法,其包括: 在电流发生器处产生电流; 使所述电流通过病人; 在所述电流通过病人之后在电压传感器处接收该电流; 以一个或多个频率测量病人的阻抗水平的变化; 基于病人的阻抗的变化来确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个;以及 输出指示通气和按压中的至少一个的充分性的信号。
13.根据权利要求12所述的方法,其中所述电源发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。
14.根据权利要求12所述的方法,其中所述电压传感器包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。
15.根据权利要求12所述的方法,其还包括指导除颤的定时。
16.根据权利要求12所述的方法,其包括两个解调器,其中第一解调器以发生器信号作为载波来对信号滤波并且第二解调器以90度相位旋转电路来对所述信号滤波。
17.根据权利要求12所述的方法,其还包括通气装置、自动按压设备和除颤器中的至少一个。
18.根据权利要求17所述的方法,其中所述信号为闭合的反馈,其指导所述通气装置、所述自动按压设备以及所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。
19.根据权利要求18所述的方法,其中所输出的信号指示通气的充分性从所述引线或阻抗电极衬垫可视或者从所述引线或阻抗电极衬垫听见。
20.根据权利要求18所述的方法,其还包括将引线与所述病人、所述电流发生器以及所述电压传感器耦合。
21.根据权利要求20所述的方法,其还包括将所述引线与所述除颤器的叶片耦合。
22.根据权利要求21所述的方法,其中所述设备以电子学方法被保护以免受由所述除颤器产生的电击的影响 。
23.一种包含用于确定心肺复苏(CPR)充分性的程序指令的计算机可读介质,其使计算机执行以下操作: 在电流发生器处产生电流; 将所述电流信号注入病人; 在所述电流通过病人之后在电压传感器处接收该电流; 测量病人的阻抗水平的变化; 基于病人的阻抗的变化来确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个;以及 输出指示通气和按压的充分性的信号。
24.根据权利要求23所述的介质,其中所述电流发生器由函数发生器、电流发生器以及电流监控器中的至少一个组成。
25.根据权利要求23所述的介质,其中所述电压传感器包括输入放大器、信号滤波器、模拟除法器、整流器、均方根至直流(RMS-to-DC)芯片、带通滤波器、多路转换器以及输出放大器中的至少一个。
26.根据权利要求25所述的介质,其包括两个解调器,其中所述介质还使所述计算机通过第一解调器以发生器信号作为载波来对信号滤波以及通过第二解调器以90度相位旋转电路来对所述信号滤波。
27.根据权利要求23所述的介质,其还包括通气装置、自动按压设备以及除颤器中的至少一个。
28.根据权利要求23所述的介质,其中所述介质还指导所述通气装置、所述自动按压设备以及所述除颤器中的至少一个调节按压速率、按压深度、完全释放、无按压活动以及通气速率中的至少一个。
29.—种心肺复苏(CPR)胸内容积指示器,其包括: 与病人耦合的阻抗监控设备; 与所述阻抗监控设备通信的阻抗处理设备,其中所述阻抗监控设备确定所述阻抗是否落在预定的阻抗范围之外;以及 指示器,其就阻抗超出预定的阻抗范围警告CPR给予者。
30.根据权利要求29所述的CPR胸内容积指示器,其中所述阻抗处理设备基于病人的阻抗的变化确定胸内容积、胸内容积的变化、按压速率、按压深度、呼吸量以及呼吸速率中的至少一个。
31.根据权利要求29所述的CPR胸内容积指示器,其中所述指示器为音频指示器和可视指示器中的至少一个。
32.根据权利要求29所述的CPR胸内容积指示器,其中所述指示器与自动外部除颤器耦合,所述除颤器包括向病人施加电击并且从病人处得到所述阻抗的病人电极。
33.根据权利要求29所述的CPR胸内容积指示器,其中所述设备被集成到引线阻抗电极衬垫中。
【文档编号】A61H31/00GK103957862SQ201280045922
【公开日】2014年7月30日 申请日期:2012年7月20日 优先权日:2011年7月20日
【发明者】J.E.弗里曼, M.拉利, A.卡茨, A.帕纳斯于克, R.博赫尼克, M.博克 申请人:呼吸运动公司