用于成像探头的扫描机构的制作方法

文档序号:1020221阅读:439来源:国知局
专利名称:用于成像探头的扫描机构的制作方法
技术领域
本发明基本上涉及成像探头领域,该成像探头用于利用高分辨率成像对哺乳动物组织和结构进行成像,所述成像包括高频超声和光学相干断层成像。更具体地,本发明涉及一种结合有扫描机构的成像组件,所述扫描机构用于提供成像探头的前方及侧向观察能力。
背景技术
人体的高分辨率成像用于多种目的,包括以下任何一种:i)评定组织结构和解剖结构;ii)设计和/或引导人体局部区域上的介入;以及iii)评定改变局部区域的结构、组成或者其它特性的介入的结果。这种特定情况下的高分辨率成像指的是高频超声和光学成像方法。对于本发明,高频超声一般指的是频率大于3MHz的成像,并且更典型地指的是9至IOOMHz范围之内。高频超声对于血管内和心脏内处置是非常有用的。对于这些应用,超声传感器被结合到可被插入到人体内的导管或其它装置中。作为示例,高频超声的两个尤其重要的实施方式是用于对血管进行成像的血管内超声(IVUS)和用于对心腔进行成像的心脏内超声心动描记法(ICE)。ICE和IVUS都是最低程度地损害,并且包括将一个或多个超声传感器放置在血 管或心腔内从而获取这些结构的高质量图像。基于在医疗领域中使用的光纤技术的光学成像方法包括光学相干断层成像、血管镜法、近红外光谱法、Raman光谱法以及荧光光谱法。这些方法一般需要使用一根或多根光纤,用于沿着成像位置与成像检测器之间的轴传送光能。光学相干断层成像是超声的光学模拟,并且提供了 1-30微米量级的成像分辨率,但是在大多情况下不像超声那样深入地穿入到组织里。光纤还可被用于向治疗操作(例如组织的激光烧蚀以及光力学治疗)传送能量。与本发明有关的其它成像形式包括血管镜、内窥镜以及其它类似的成像机构,其基于光谱中可见光或者红外范围内的光的往回反射通过探头并且来获取图像,从而对病人体内位置进行成像。此外,其它的高分辨率成像形式可以使用声学能量来产生光学能量(声致发光成像)或者使用光学能量来产生声学能量(光声成像)。高分辨率成像装置已经以多种形式实施,用于评定哺乳动物解剖结构的多个不同区域,包括胃肠系统、心血管系统(包括冠状、外围以及神经脉管系统)、皮肤、眼睛(包括视网膜)、泌尿生殖系统、乳房组织、肝组织以及其它。作为示例,使用高频超声或者光学相干断层成像的心血管系统成像已经发展用于评定动脉斑块的结构和组成。高分辨率成像已被用于测量脉管或斑块形状、流经患病动脉的血流以及动脉斑块上的介入效果(例如通过粥样斑块切除术、血管成形术和/或支架术)。还尝试使用高分辨率成像来识别还没有引起临床症状但是破裂或侵蚀及引起剧烈心肌梗塞的风险却在增大的血管损坏。这些所谓的“易损斑块”是重点关注区域,因为处理这种斑块以提前应对不利临床事件的前景在构想上是有吸引力的。然而,在这一点上至今还没有特定的成像形式被证明是有效的。慢性完全闭塞病变是血管损害的一种特定子集,其中脉管的全部内腔在大约一个月时间内被堵塞(根据损害部的血管造影)。大多数血管内成像形式是“侧向观察”并且需要一条用于使血管内成像装置穿过损害部的通道。为了对慢性完全闭塞病变进行成像,高分辨率成像方法如果能适于“前方观察”而不是“侧向观察”配置的话则会更加有用。另外一个日益引起关注的领域是成像引导在组织性心脏病疗法以及电生理学疗法中的使用。通常需要将导管安置在心腔内的特定位置上,从而实施治疗操作,例如装置(例如用于病人卵圆孔的闭合装置,瓣膜修补或更换装置,左心耳闭塞装置)的植入或者治疗性导管(例如局部切除或者冷疗法导管)的放置。还需要在治疗中引导中间步骤,例如穿过心脏的心房间隔 。高分辨率成像的使用能够便于这些步骤进行。目前使用相控线阵的心脏内回声(ICE)就是这样一种当前用于这种目的的技术。现有技术概要Yock(US 4794931)描述了一种用于血管内超声的、基于导管的系统,用于提供血管内结构的高分辨率成像。该系统包括外套,在该外套内在长的力矩线缆远端附近具有超声传感器。当马达旋转力矩线缆和超声传感器组件时,可以生成解剖结构(例如血管)的2D横截面图像。与超声传感器的旋转运动相结合的导管或者力矩线缆以及超声传感器的线性平移允许沿着导管长度获取一系列的2D图像。血管内超声(IVUS)的使用已经是普遍的,对于该技术有许多改进和适应。柔性力矩线缆(Crowley的美国专利4951677)改进了旋转力矩沿着IVUS导管长度的传送保真度,使被称为不均匀旋转失真的人为影响降到最低。Liang等人(美国专利5,606, 975和5,651,366)描述了一种实施前方观察式血
管内超声的装置,其中超声被引向具有固定倾斜程度的反射镜,从而导致超声束扫过探头前方的表面。扫过的表面接近弯曲平面的形状,并且生成的形状源自于超声传感器与反射镜之间的相对旋转运动。Liang等还描述了使用微型马达、齿轮离合机构、转向线缆或者双压电晶片元件例如形状记忆合金、压电纵列或者导电聚合物来改变反射镜的偏转角度的装置。Suorsa等人(美国专利6315732)描述了一种用于血管内传输的导管,该导管具有超声传感器,该超声传感器可以通过线缆系统绕着非导管纵向轴线的轴线枢转。Maroney等人(美国专利5373849)和Gardineer (美国专利5373845)也描述了一种导管,用于通过枢转/线缆机构使超声传感器枢转。Hossack等人(W0/2006/121851)描述了一种前方观察超声传感器,该传感器使用电容式微加工超声传感器(CMUT)以及反射表面。Couvillon等人(美国专利7,077,808)描述了一种具有反射部件的血管内超声导管,该反射部件通过电活化聚合物被致动,从而获得相对于导管纵向轴线的可变成像角度。
超声传感器本身也进行了相当大地改进,包括使用单晶超声传感器以及复合超声传感器。IVUS的中心频率处于3至IOOMHz的范围内,更典型地处于20至50MHz的范围内。较高的频率提供了较高的分辨率,但是导致了较低的信号穿透力以及由此较小的观察区域。根据多个参数,例如传感器的中心频率以及形状、传感器的灵敏度、介质的衰减(成像通过该介质产生)以及影响系统信噪比的特定实施规范,穿透深度的范围从小于I毫米到几厘米。存在高频超声的变型,其中对反向散射信号的信号获取和/或分析进行了修改,从而便于获得或者推导出有关成像组织的更进一步的信息。这些包括:弹性成像,其中当组织在不同血压下被压缩是对组织内的应变进行评定(de Korte等人于2002年4月9日在Circulation上发表,105 (14):1627 30);多普勒成像,其对运动(例如解剖结构中的血液流动)作出评定;虚拟组织学,其尝试通过反向散射信号的射频特性结合图案识别算法来推导出组织的组成(似化,美国专利6,200,268) ;二次谐波成像(Goertz等人于2006年8月在Invest Radiol上发表;41 (8):631-8)以及其它。这些成像形式中的每个均可以通过本发明描述的装置而获得改进。众所周知,当利用来自不同角度的超声进行成像的时候,许多组织构成都有一定程度的角度依赖性。Courtney 等人(Ultrasoundin Medicine and Biology, 2002 年 I 月,28:81-91)指出通常的冠状动脉的内层(中膜及内膜)与外层(外膜)相比具有不同的角度依赖反向散射特性。Picano等人(Circulation,1985 ;72 (3):572-6)指出正常的、月旨肪性的、纤维脂肪性的、纤维性的以及钙化的组织的角度依赖超声特性。以不同角度对组织(例如动脉斑块)进行成像的机构是一种通过血管内成像装置改进体内组织特征的有用工具。Tearney等人(美国专利6134003)描述了多个实施例,与通过高频超声轻易获得的相比,所述实施例使得光学相干断层成像能够提供更高分辨率成像。Boppart等人(美国专利6,485,413) 描述了光学相干断层成像的多个实施例,包括前方观察实施工具。通过诸如马达,压电、可移动线、膨胀装置以及其它机构的机构,可以设置光纤或者梯度折射率(GRIN)透镜。Mao 等人(Appl Opt.2007 年 8 月 10 日;46(23) =5887-94)描述了一种通过单模纤维制造超小OCT探头的方法,所述单模纤维连接到用作透镜的小段长度GRIN纤维。在纤维和透镜之间引入光学隔片能够改变纤维-透镜系统的工作距离。此外,在远端增加一小段长度的未覆盖纤维并且以一定角度斜切该未覆盖纤维可以在纤维-透镜系统的端部增加偏转元件。光学相干断层成像通常比超声具有高的分辨率并且具有能够更好地识别出血管及其它组织中的某些结构或成分的潜力。光学相干断层成像还比超声具有更好的对某些组织成分(例如钙化成分)穿透性。例如,纤维帽厚度或者炎症的出现或者动脉表面附近坏死区域可以用光学相干断层成像更好地解决。然而光学相干断层成像由于其在大多数生物介质中的较小穿透深度(500至3000微米的量级)而受到限制。大多数这种介质都不是光学透明的。光学相干断层成像(OCT)的变型包括极性敏感OCT(PS-OCT),其中组织成分的双折射特性可以被利用以获得关于结构和组分的额外信息;分光镜0CT,其类似地提供了关于成像结构组分的改进信息;多普勒OCT,其提供关于流量和运动的信息;经由OCT的弹性成像;以及光频区域成像(OFDI),其允许显著地更加快速地获取成像数据,并且由此能够在更短时间内在更大关注空间上产生成像。同样,这些成像形式中的每一个都能够通过本发明而得到改进。与OCT相比,超声具有更好的穿过生物介质(例如血液及软组织)的能力并且其穿透深度通常比光学相干断层成像的穿透深度多出数毫米。利用组合式成像装置通过两种成像方法中的一种或两种来进行成像的能力提供了在选择所需的分辨率和穿透深度方面的优点。除了 OCT之外,还有多种其它的基于光纤的成像形式。Amundson等人描述了一种系统,该系统通过红外光来穿过血液成像(美国专利N0.6,178,346)。用于该成像系统的电磁光谱范围被选择成能够使对血液的穿透性最佳,从而允许与可见光谱中血管镜法所提供的相类似地穿过血液进行光学成像,但是不需要将血液冲出成像区域。血管镜法、内窥镜法、支气管镜法以及多种其它成像装置已经被描述,其基于照亮人体内靠近刚性或柔性轴远端的区域的原理,允许哺乳动物体内的内部管道和结构(例如血管、胃肠腔以及肺部系统)的可视化。图像随后通过在轴的端部附近设置光检测器阵列(例如CXD阵列)或者通过使一束光纤将从轴远端接收到的光线传送到远端而得以产生,其中光检测器阵列或其它系统允许操作者产生或者观察照亮区域的图像显示。除了其它缺点之外,光纤束占的体积大的并且降低了轴的灵活性。其它基于光纤的用于解剖学结构的最低损害性评定的形式包括如Motz等人所描述的Raman光谱法(J Biomed Opt.2006年3月至4月;11 (2)) ,Caplan等人描述的近红外光谱法(J Am Coll Cardiol.2006 年 4 月 18 日;47(8 suppl):C92_6),以及荧光成像法,例如瘤中蛋白水解酶的标记荧光成像法(Radiology.2004年6月;231 (3):659-66)。有利地,提供高分辨率成像探头用于声学或光学成像,作为“前方观察”探头而不是“侧向观察”探头。同样有用地,提供能够向后观察的类似探头,或者在基本侧向观察配置中从多个角度进行观察。 同样有用地,提供能够产生3D成像数据集合的类似探头。同样有利地,提供3D将超声成像与一个或多个光学成像装置相结合的高分辨率成像探头。同样有利地,提供能够用于光声成像或声致发光成像的最小损害成像探头。本发明提出多个用于新式扫描机构的实施例,所述扫描机构能够广泛应用于医学成像。根据发明人所知,还没有对使用本发明中所描述的扫描机构的系统和装置的描述。

发明内容
本发明提供一种成像探头,用于利用高分辨率成像对哺乳动物组织和结构进行成像,所述成像包括高频超声成像和/或光学相干断层成像。更具体地,本发明涉及一种结合了扫描机构的成像组件,所述扫描组件用于提供成像探头的前方及侧向观察能力。由此,在一个实施例中,本发明提供了一种成像探头,该成像探头用于插入到人体内腔和空腔中,用于对所述人体内腔和空腔的内部或者人体的外部表面进行成像,或者对被成像表面附近的结构进行成像,该成像探头包括:a)具有纵向轴线的细长中空轴,该细长中空轴具有远端部分、近端部分以及细长的中间部分,成像组件在所述细长中空轴中设置为远离所述近端部分,该成像组件用于发射能量束以及接收从所述人体内腔及空腔的内部表面或者外部表面反射回来的反射能量信号,所述成像组件连接到成像导管的第一端,所述成像导管延伸穿过所述细长中空轴并在其第二端通过所述近端部分连接到图像处理系统,所述成像导管被配置成传送能量到所述成像组件;b)旋转驱动机构,用于向所述成像导管和所述成像组件施加以角速度围绕所述纵向轴线的旋转运动,该旋转驱动机构包括用于改变所述角速度的调节装置;c)所述成像组件包括扫描机构,该扫描机构包括可移动构件,该可移动构件被配置成沿所述细长中空轴之外的路径以相对于所述纵向轴线可变的角度来传送所述能量束,从而提供所述成像组件的前方或侧向观察能力,其中所述可移动构件以所述可变角度是所述角速度的函数的方式来安装,所述扫描机构被配置成接收所述反射能量信号并且通过所述成像导管将所述反射能量信号传送到所述图像处理系统;d)连接到旋转驱动机构和所述图像处理系统的控制器;e)所述图像处理系统被配置成处理所述接收到的能量信号并产生所述人体内腔及空腔的内部表面或相邻结构的图像或者人体外部表面或相邻结构的图像;以及f)连接到所述图像处理系统的显示装置,用于显示图像。在另一个实施例中,本发明提供了一种成像探头,该成像探头用于插入到人体内腔和空腔中,用于对所述人体内腔和空腔的内部进行成像或者对人体的外部表面进行成像,所述成像探头包括:a)具有纵向轴线的细长中空轴,该细长中空轴具有远端部分、近端部分以及细长的中间部分,成像组件在所述细长中`空轴中设置为远离所述近端部分,该成像组件用于发射能量束以及接收从所述人体内腔及空腔的内部表面或者人体的外部表面反射回来的反射能量信号,所述成像组件连接到成像导管的第一端,所述成像导管延伸穿过所述细长中空轴并在其第二端通过所述近端部分连接到图像处理系统,所述成像导管被配置成传送能量到所述成像组件;b)旋转驱动机构,用于向所述成像导管和所述成像组件施加以预先选定的角速度围绕所述纵向轴线的旋转运动,该旋转驱动机构包括用于改变所述预先选定的角速度的调节装置;c)所述成像组件包括扫描机构,该扫描机构包括可移动构件,该可移动构件被配置成沿所述细长中空轴之外的路径以相对于所述纵向轴线可变的角度来传送所述能量束,从而提供所述成像组件的前方或侧向观察能力,所述可移动构件包括安装在所述可移动构件的周缘上的磁体,所述扫描机构包括与所述枢转安装的反射构件足够接近地隔开的电磁体,用于使所述磁体与所述电磁体相互作用,所述电磁体连接到动力源,其中所述可移动构件以可变角度是施加到所述电磁体的功率的函数的方式来安装,所述扫描机构被配置成接收所述反射能量信号并且通过所述成像导管将所述反射能量信号传送到所述图像处理系统;d)连接到所述旋转驱动机构、所述电磁动力源以及所述图像处理系统的控制器,该控制器被配置成处理所述接收到的能量信号并且产生所述人体内腔及空腔的内壁结构的图像或者人体的外部表面的图像;以及e)连接到所述图像处理系统的显示装置,用于显示图像。对本发明的功能性和有利方面的进一步理解可以通过参考下面的详细描述和附图得以实现。


参考附图,通过仅仅示例的方式描述本发明的优选实施例。图1是用于超声成像和/或光学成像的成像系统的示意图;图2是具有连接器、导管以及成像组件的柔性成像探头的透视图;图2a是图2中成像探头的中部沿虚线截取的横截面视图;图2b是图2中成像探头的远端区域的放大透视图;图2c示出了成像探头的旋转部件和非旋转部件如何能够通过适配器连接到成像系统其余部分的示意图;图2d是探头的旋转部件和非旋转部件连接到适配器的示例的透视图;图3a至3e是现有技术中描述的一般成像导管配置的代表;图3a示出 了用于外套的线上配置的一个实施例,该外套在具有引导线内腔时与成像探头相结合;图3b示出了沿图3a中的竖线3b_3b穿过成像探头的截面图,用于图示引导线内
腔配置;图3c示出了用于外套的快速访问配置,该外套在具有引导线内腔时与成像探头相结合;图3d示出了沿图3c中的竖线3d_3d穿过成像探头中不包含引导线内腔的部分的截面图;图3e示出了沿图3c中的竖线3e_3e穿过成像探头中包含引导线内腔的部分的截面图;图4a是包含可倾斜部件的成像探头的远端部分的装配外套的局部切除透视图;图4b示出了用于包含图4a的可倾斜部件的成像组件的相关轴线;图4c-41示出了可倾斜部件的纵向及轴向截面的多个示例,所述可倾斜部件如果在没有外力的情况下绕着成像探头的纵向轴线旋转的话可具有优选的定向,其中倾斜轴线基本上垂直于纵向轴线;图5a_5g示出了能够进行声学及光学成像的成像探头的远端,其中可倾斜反射表面能够作为成像组件旋转速度的函数而改变成像角度;图5h和5i示出了能够用来实施图5e至5g中描述的实施例的成像组件的收折及分解透视图;图6a_6e示出了能够进行声学成像的成像探头的远端,其中声学传感器被直接地安装在可倾斜部件上;图6f至6j示出了能够进行光学成像的成像探头的远端,其中光学发射器和/或接收器的至少一部分被直接地安装在可倾斜部件上;
图7a至7c示出了能够进行声学成像的成像探头的远端的示例,其中可变形部件载有成像和/或治疗能量的发射器和/或接收器。成像角度作为成像组件旋转速度的函数进行改变;8a和Sb示出了成像探头的示例,其中可变形部件被弹性支撑结构所加强,并且成像组件和外套具有可选的冲洗端口 ;图Sc和8d示出了成像探头的示例,其中可变形部件被可膨胀气球所环绕,该气球提供了受保护区域,当气球膨胀时探头能够在该受保护区域中移动;图9a和9b示出了用于放大所得到的成像角度的GRIN透镜或折射介质的使用;图1Oa和IOb示出了成像探头的示例,其中可变形部件载有能量偏转部件而不是发射器和/或接收器;图1la-1ld是可倾斜部件的示例,其中通过在可倾斜部件上加入一个或多个结构特征来用作成像组件流体介质内的翼部,倾斜动作得到了调节并且优选地得以增强;图12是可变形部件的示例,其中通过在可倾斜部件上加入一个或多个结构特征来用作成像组件流体介质内的翼部,变形得到了调节并且优选地得以增大;图13a和13b是能够通过本发明实现的一些前方观察扫描图案的示例;图13c和13d是能够通过本发明成像的侧向观察空间的示例;图14a是成像探头的示例,该探头包括用作偏转件的可倾斜部件,以及光学旋转编码器,该编码器用于确定成像组件相对于外套的角度位置;图14b提供了包括 旋转编码器的探头的横截面视图;图15是成像探头的示例,其中可倾斜部件的倾斜在一部分上通过以机械方式连接到另外的可倾斜部件而实现;图16a至16c是成像探头的示例,其中超声传感器或光学成像发射器被配置成主要用于侧向观察成像,其中扫描机构允许成像角度的改变;图17a_g示出了适于将光学成像与用于本发明的超声传感器相结合的实施例;图18a是偏转部件的透视图,该偏转部件包括平坦的光学反射层以及成形的声学反射层;图18b至18d示出了偏转部件的横截面;图19a和19b示出了使用具有可转向引导线从而使前方观察导管的远端区域发生偏转的柔性成像探头或者成像导管的示例;图19c和19d示出了成像探头的示例,其中可转向引导导管被用来使成像探头的远端区域偏转;图19e至19h示出了与可转向引导线共同使用的成像探头的示例,该可转向引导线的远端区域上方结合有可膨胀气球,从而能够形成足够大的通路用于成像探头行进穿过堵塞区;以及图20a和20b示出了加重的弹性件如何能够被连接到可倾斜部件从而帮助引起可倾斜部件的偏转。
具体实施例方式一般而言,这里所描述的系统指的是使用光学或者超声(或全部两者)成像的成像探头。根据需要,在此公开本发明的实施例。然而,所公开的实施例仅仅是示例性的,并且应当理解的是本发明可以以多种多样的以及替代的形式进行实施。附图并非按比例绘制,并且一些特征被进行了放大或缩小,以显示特定元件的细节,而相关元件则可能被省去了,以防止遮挡新颖的部分。因此,这里所公开的特定结构和功能细节并不被理解为限制性的,而是仅仅作为权利要求的基础以及作为教示本领域技术人员以各种方式实施本发明的代表性基础。出于教示以及并非限制性的目的,所示实施例涉及成像探头。如在此使用的,当与尺寸、温度或者其它物理属性或特征的范围共同使用时,术语“大约”、“近似”指的是涵盖了存在于尺寸范围的上限及下限中的微小变化,从而不排除那些平均起来大部分尺寸都满足但是在统计学上的尺寸可能处于该区域之外的实施例。例如,在本发明的实施例中,给出了成像探头的部件尺寸,但是应当理解的是,这些都不意味着进行限制。如在此使用的,词组“图像的联合配准”指的是识别由一种成像装置获取的成像数据的子集与利用另一种成像装置获取的成像数据的子集的过程,其中所识别的来自所述两种装置的成像数据是通过检测来自同一物体(或者在本发明情况下为组织)的成像能量的形式(例如光子或超声)而获取的。第一子集中的每个联合配准点然后能够映射到第二子集中的对应点,使得来自所述两种不同成像装置的两个点被认为是从被成像物体(或组织)的相似病灶区域获取的。在使用两个或更多个成像装置所获取的图像之间,图像或者图像一部分的成功且精确的联合配准是有用的,因为它能够提供多个机会来通过多于一个成像装置来评定被成像物体的关注特征。图1表示了根据本发明构造的示例性成像系统的概视图,该系统总体表示为10。该系统包括成像探头12,该探头12经由适配器14连接到图像处理及显示系统16。图像处理及显示系统16包括必要的硬件来支持下述成像形式中的一种或多种:1)超声,2)光学相干断层成像,3)血 管镜法,4)红外成像,5)近红外成像,6) Raman光谱成像,以及7)荧光成像。光学相干断层成像、超声、血管镜法以及红外成像回路的实施已在现有技术中进行了描述。这里描述的系统通常进一步包括控制器和处理单元18,以便于系统的多个功能性单元的协同行为,并且可进一步包括显示器和/或用户界面,并且可进一步包括电极传感器以获取来自被成像病人的身体的心电图信号。所述心电图信号可被用来在心脏运动对图像质量可能产生影响的情况下设定成像数据获取的时间。心电图还可用作触发器,用于何时开始获取序列,例如何时开始改变电机的旋转速度以使期望的扫描图案开始生效。例如,成像序列的ECG触发启动可使得能够在心脏循环的特定阶段(例如心脏收缩或心脏舒张)期间获取图像。如果包含在本发明的特定实施例中的话,形成图像处理及显示系统的光学回路及电子元件21可包括下述部件中的任何一个或全部:干涉计部件、一个或多个光学参考臂、光学多路复用器、光学多路分配器、光源、光检测器、分光计、压电滤光器、计时电路、模数转换器以及对于实现在背景技术和现有技术部分中描述的任意光学成像技术所公知的其它部件。超声回路20可包括以下部件中的任何一个或全部:脉冲发生器、电子滤波器、模数转换器、平行处理阵列、包络检波、包括时间增益补偿放大器的放大器以及对于实现在背景技术和现有技术部分中描述的任意声学成像技术所公知的其它部件。如果包含在本发明的特定实施例中的话,控制器和处理单元18用于多种目的,并且部件将根据特定成像系统的需要而显著地进行适应。控制器和处理单元18可包括电机驱动控制器、数据存储部件(例如内存、硬盘、可移动存储装置、用于便携式存储介质例如⑶和DVD的读取器和记录器)、位置检测电路、计时电路、心脏选通功能、测定体积图像处理器、扫描转换器及其它装置中的一种或其组合。可选地,还可设置显示器和用户界面22,用于实时显示或者成像数据获取时刻后某一时刻的数据显示。成像探头12包括其远端32附近的成像组件30、沿着其长度大部分的可选成像导管34以及其近端38的连接器36。对于本发明,成像组件30—般指的是从中收集信号(声学或光学或者两者)的成像探头12的部件,用于靠近成像组件30的区域的成像。成像组件30包括一个或多个成像能量发射器以及一个或多个成像能量接收器。对于本发明,“成像能量”指的是光能或声能或者两者。具体地,光指的是覆盖紫外线、可见光以及红外光谱波长的电磁波。例如,对于声学成像,成像组件30包括超声传感器,该超声传感器既是声能的发射器又是声能的接收器。对于光学成 像,光学组件30 —般包括光纤的远端,以及光学部件例如透镜(例如球透镜或GRIN透镜)的组合,所述部件共同地用作光学接收器并可用作光学发射器。镜和/或棱镜通常结合作为光学发射器和/或接收器的一部分。成像组件30、连接器36和/或成像导管34可以是充有液体的(例如盐水),并且可冲洗。成像探头12可以在沿着其长度的一个或多个点上包含端口,以便于冲洗。对于光学成像,可以考虑充有气体的成像探头12。优选地,所述气体基本上包括二氧化碳或者其它容易溶解的气体。可替代地,成像组件可被分区,从而存在至少一个充有气体的分区或内腔用于光学成像以及至少一个充有液体的分区或空腔用于声学成像。成像导管34包括至少一个光学波导管或者至少一根导线(优选为两根或多根),所述导线将发射器和/或接收器经由连接器连接到适配器。成像导管34还可用作机械力传递机构,用于旋转或者平移成像组件。例如,成像导管34可包括被两层彼此绝缘的电线缠绕的光纤。成像导管34可进一步通过其它结构特征得到加强,例如螺旋缠绕线或者其它用于构成成像力矩线缆的设计,所述线缆用于使扫描机构旋转,如相关技术中所述。适配器14便于将任何光纤和/或线中的信号传送到适当的图像处理单元。适配器优选包括电机驱动单元,用于向成像探头的旋转部件施加旋转运动。适配器14还可结合有回拉机构49 (图2d)或者往复推拉机构,以便于成像组件的纵向平移。成像组件30的这种纵向平移可以与环绕成像导管34的外轴的纵向平移共同发生,或者在相对静止的外轴内发生。可结合附加的传感器作为适配器14的一部分,例如位置感测回路,用于感测成像探头12内的旋转部件的旋转角度。成像探头12还可包括存储部件,例如EEPROM或其它可编程存储装置,其包括关于成像探头到成像系统其余部分的信息。例如,它可包括关于成像探头12的规格识别的说明,并还可包括关于探头12的校准信息。此外,适配器14可包括放大器,用于提高成像探头与系统其余部分之间的电信号或动力的传送。重要的是认识到需要最优化最低侵入性探头的几何形状,从而使其能够尽可能合理地小,从而达到其期望目的。当前的IVUS和ICE探头的直径大约为0.9至4mm并且探头的较小尺寸能够在冠状解剖体的血管树中随着血管尺寸逐渐变细而被递送得更远。因此,较小的尺寸通常允许了对大部分冠状解剖体的访问。由此希望使探头实施例能够在使探头的某些尺寸(例如探头直径)最小化的配置中进行成像,例如利用在此描述的扫描机构进行成像。图2是包含光纤40和同轴电线50的柔性导管的透视图。近端连接器包含光纤40,该光纤40能够被适配器接收从而将成像光纤40以光学方式连接到光学成像系统“后端”。还具有电连接器56,其允许一个或多个电导管连接到超声回路和/或控制器和处理单元。在成像导管绕其纵向轴线旋转的实施例中,可能需要将成像光纤的旋转部件与相对静止的光纤相连,该相对静止的光纤连接到光学成像系统的后端16。旋转光纤探头的连接能够通过光纤旋转接头而实现,所述光纤旋转接头结合作为成像探头36的近端连接器的一部分或者作为适配器14的一部分。类似地,在成像导管绕其纵向轴线旋转的实施例中,可能需要将随成像导管旋转的导线连接到超声回路和/或控制器和处理单元的相对静止的导体,优选通过集电环(slip ring)来连接。这些集电环能够被结合作为成像探头36的近端连接器的一部分或者作为适配器14的一部分。图2a示出了沿虚线截取的图2中的成像探头的中部的横截面视图,其显示了光纤
40、引导线端口 44和引导线42、成像导管34、成像导管腔46、中空的外套48、柔性细长轴(由生理上可相容的材料制成并且直径适于允许中空细长轴插入到人体内腔及空腔中)、以及同轴电线50。图2b中所示的成像探头10的端部的放大详图显示出引导线42的远端延伸越过外套48的端部和外套48端部的冲洗端口 54。在图2中,成像探头10的近端包括连接器组件36和另一个引导线端口 55,引导线42插入到引导线端口 55中,连接器组件36包括冲洗端口 58和沿着连接器主体的电接触器56。图2c显示了成像探头的旋转和非旋转部件如何能够通过适配器连接到成像系统其余部分的示意图。图2d示意性地显示了成像探头的旋转部件如何能够连接到适配器的旋转部件。各个旋转部 件可以通过本领域公知的连接器和其它配置以电学、光学、和/或机械的方式进行连接。类似地,成像探头的非旋转部件可以连接到适配器14的非旋转部件。适配器14可包括集电环、光学旋转接头以及其它能够将旋转部件通过电学或光学方式连接到非旋转部件并能够实现与系统其余部分进行必要的电信号及光信号通讯的工具。也可使用双光纤光学旋转接头,但是该接头要复杂得多。固定到成像探头12中的旋转部件上的任何导体之间的电连接可以经由金属集电环和弹簧、金属集电环和电刷或者其它在静止导体和旋转导体之间形成导电接触的一般公知方法而连接到非旋转导电元件。尽管图2d中分开地显示了电连接、光学连接和机械连接,但是根据特定实施例的需要,能够利用通过将多个连接器组合成组合连接器而得到较少的连接器来减少必须单独连接在探头和适配器之间的多个连接器。尽管上述实施例通过声学和光学成像两者进行了示例,但是能够实施没有声学装置或者没有光学装置的导管。图3a示出了用于外套48的线上配置的一个实施例,并且图3b示出了外套48沿图3a中的竖线3b-3b穿过包含成像组件30的部分的横截面。在图3a中,从沿着图3a中的竖线3b-3b的图3b的横截面看,引导线导管44位于外套48的较厚部分中。
图3c示出了另一个外套60的实施例,该外套60是用于外套的“快换”配置,如果需要引导线的话,所述外套可以与成像探头相结合。图3c中的套60包括图2中所示的进入端口 55。图3d示出了“快换”配置60沿图3c中的线3d-3d穿过靠近用于引导线的进入端口 55的部分的横截面。图3e示出了沿图3c中的线3e_3e的横截面。本发明公开了用于提供前方及侧向观察超声(IVUS)及光学相干断层(OCT)成像的扫描机构的实施例。对于超声和光学相干断层成像,当与成像组件的旋转运动相结合时,调节发射出的和/或接收到的成像能量的传播角度的能力允许了对3D空间进行扫描。对于血管镜法和红外成像,当与成像组件的旋转运动相结合时,调节发射出的和/或接收到的成像能量的传播角度的能力允许使用单个光纤而不是需要一束光纤或者一排感光元件来产生图像。这种改进得到了较大的灵活性和/或允许成像装置的进一步小型化。本发明的另一个优点是光学和声学成像可以在光学与声学成像能量行进穿过同一总体空间的配置下进行,从而便于光学和声学图像的联合配准,并使成像组件内容纳多于一种成像形式所需的容积大小减到最小。尽管如此,所述扫描机构可以与单一成像形式(例如超声或者单一光学成像技术)相结合来应用。类似地,两种或更多种光学成像技术(与超声相结合或者没有与超声相结合)可以同时使用单个探头上的扫描机构。图4a示出了成像探头12的远端区域的局部切除透视图,其显示出外套601的一部分605被去除。成像探头12内部设有可倾斜部件602,可倾斜部件602形成成像组件的一部分并且安装在销603上,该销603延伸穿过可倾斜部件602的倾斜轴线604。在能够对用于成像目的的空间进行扫描的本发明多个实施例中,有利地使用了向心加速度原理。现有技术中已经提出了直接使传感器倾斜或者反射器倾斜的机构,例如马达或者线缆和带轮系统。在此公开的本发明多个实施例具有通过改变成像组件的旋转速度来使部件倾斜或变形的能力。参考图4b,部件的倾斜或变形用于改变倾斜角度a。成像角度定义为成像探头12的纵向轴线606与成像能量发射和/或接收方向之间的角度。在本发明中,成像角度是可倾斜部件602的倾斜 角度α的函数,或者是可变形部件的变形度的函数,该变形度通常也用倾斜角度α表示。图4b显示了相对于可倾斜部件602的旋转轴线的倾斜角度α的示意性图示,其中可倾斜部件602被显示为绕倾斜轴线604枢转的盘体。改变成像系统的可倾斜或可变形部件602的角速度以及随后改变成像角度的能力将会在下面对发明的描述中以及通过实验结果来进行说明。首先,对通过可倾斜部件602来改变成像角度的情况进行描述。成像组件包括能够绕轴线604 (倾斜轴线)旋转的可倾斜部件602,该轴线604基本上垂直于成像探头的纵向轴线606。例如,可倾斜部件602可以安装到铰链上或者以其它方式与铰链相关联,安装到一个或多个销(例如前面提到的销603)上或者以其它方式与销相关联、安装到弹簧或可变形基板上或者以其它方式与之相关联,从而能够绕倾斜轴线604旋转。可倾斜部件602特别地具有以下特性:当成像组件绕除倾斜轴线之外的轴线旋转时,可倾斜部件602具有不连续的多个优选定向(通常为一个或两个)。优选地,成像组件的旋转轴线基本上与成像探头的纵向轴线606相重合(即,基本上平行或者接近)。优选地,倾斜轴线与纵向轴线正交。在除了成像组件旋转中所涉及的向心力之外没有重力或者任何其它力(例如下面提到的回复力)的情况下,可倾斜部件602将会绕着倾斜轴线将其自身定向到优选的方位。图4c到41显示了可倾斜部件的纵向及轴向截面的多个非限制示例,所述可倾斜部件如果在没有外力的情况下绕着成像探头12的纵向轴线606旋转,则会具有优选的定向,其中倾斜轴线604基本上垂直于纵向轴线606。具体地,图4c是成像探头的实施例的示例的纵截面视图,其中可倾斜部件是安装在销611上的盘体610。图4d是沿着线4d-4d截取的对应横截面视图。图4e是成像探头的实施例的纵截面视图,其中可倾斜部件是安装在支架613上的球体612的一部分。图4f是沿着图4e的线4f_4f截取的对应的横截面视图。图4g是成像探头的实施例的纵截面视图,其中可倾斜部件614具有更加任意的形状,并且利用隔离件615 (仅在图4h中可见)安装在销611上,该隔离件615有助于稳定可倾斜部件614在销611上的位置。图4h是沿着图4g的线4h-4h截取的对应横截面视图。图4i是成像探头的实施例的纵截面视图,其中可倾斜部件620通过销622来安装,从而使得可倾斜部件620绕着枢转轴线626枢转。图4j是沿着图4i的线4j_4j截取的对应横截面视图,该图4j显示了销622延伸到榫头(divot) 624中,该榫头624位于可倾斜部件620的侧部并且接收销622。该实施例中的枢转机构的较小表面面积有利于将绕着枢转轴线626的摩擦降到最小。优选地,销622仅在销尖端附近与可倾斜部件620接触,从而使表面接触面积减至最小。图4k是成像探头的实施例的纵截面视图,其中可倾斜部件630利用枢转轴线632来安装,该枢转轴线632不与成像探头的旋转轴线606相交。图41是沿着图4k的41-41截取的对应横截面视图。从功能上看,在包含可倾斜部件的实施例中,枢转轴线与倾斜轴线完全相同。可倾斜部件70的 功能性目的是能够改变与成像探头31的的纵向轴线的角度(图5a),成像能量(例如光束或声能)以该角度向周围环境发射和/或从周围环境接收。这能够通过将发射器和/或接收器(例如超声传感器或光学部件)安装在可倾斜部件70上而实现。通过改变成像组件的旋转速度,倾斜角度将发生改变并且由此发射和/或接收光能或声能的角度将发生改变。可替代地,可倾斜部件可被用于使发射出的和/或被部件88接收的成像能量发生偏转,该部件88未直接连接到可倾斜部件70,如图5所示。例如,如上所述,超声传感器88或者光学发射器92能够将成像能量导向可倾斜部件70。成像能量随后被安装在可倾斜部件70上的能量偏转部件所偏转。对于超声成像,能量偏转部件(可倾斜部件70)可包括声学反射表面,例如实心金属表面(例如不锈钢)或者水晶表面,例如石英晶体或玻璃或硬质聚合体。对于光学成像,能量偏转部件(可倾斜部件70)可包括光学反射表面,例如由抛光金属、金属化聚合体(例如金属化双轴定向聚对苯二甲酸乙二醇酯(Mylar))、派射或电化学沉积金属所制成的镜面,金属箔片或者其它反射部件(例如薄膜反射器)。通常用来制造镜面的金属包括铝、银、钢、金或铬。图5a示出了成像探头31的远端29的实施例,成像探头31含有包括可倾斜部件70的成像组件30,其中可倾斜部件是安装在销72上的盘体,该销72使得盘体70能够绕销枢转,与上面讨论的图4b类似。销72限定了可倾斜盘体70的倾斜轴线。当成像组件30静止的时候,盘体70将保持在任意开始位置。在所示示例中,该开始位置由挡块80限定,该挡块80对应于最大成像角度,其中由扭转弹簧76提供的回复力朝前述挡块80推动盘体
70。图5b示出了沿着图5a的线5b-5b的横截面。如果可倾斜部件70在外力(例如重力、磁力、静电学、与其他移动部件或流体的摩擦力、压缩力、悬臂力、法向力或者可倾斜部件70上绕着倾斜轴线的不完全相对的力矩的任意其它来源)作用下倾斜离开其优选定向,那么倾斜角度将增大。一个或多个挡块80和82可限制可倾斜部件70的倾斜角度范围。例如,挡块80可以是从成像组件30的套84延伸的柱或者缘,作为当倾斜部件70与挡块80接触时防止倾斜部件70进一步改变其倾斜角度的挡块。由此,挡块可被用来限制倾斜角度超过由挡块的位置确定的最大值。一旦倾斜角度达到最大值,由挡块80施加到可倾斜部件70上的法向力抵抗回复机构。在多个实施例中,该最大倾斜角度是当成像组件30处于静止以及处于低旋转速度时获得的倾斜角度。附加的或替代性的挡块82可以被包括进来,用于产生最小倾斜角度,当可倾斜部件70处于操作范围上端的旋转速度时,将获得该最小倾斜角度。事实上,很多情况下允许倾斜角度达到零并没有明显的好处,这在接下来对具体实施例的描述中将变得清楚。优选地,成像组件30包括一个或多个趋向于使可倾斜部件70的倾斜角度增加的机构。对于本发明,这种机构指的是回复机构。扭转弹簧76 (如图5a和5c所示)或者压缩弹簧可被用作回复机构,其中扭转弹簧76的一端以机械方式与可倾斜部件70接触或者与其相连。另一端以机械方式连接到成像探头31的另一部分,例如成像组件的主体。随着成像组件30旋转,盘体70将希望使其自身对齐,使得由盘体70的表面限定的平面的法线基本上平行于所述纵向轴线。如图5c所示,所示的另一个挡块82(与最小成像角度相对应)将阻止盘体70在成像组`件的高速旋转速度下到达其优选定向。通过适当配置的成像组件,与最小成像角度相对应的挡块82可以对应零角度,从而提供沿平行于成像探头的纵向轴线的方向的成像。图5d示出了沿着图5c的线5d-5d的横截面。可替代地,可以应用磁性的、静电的、水力的或者其它能够围绕倾斜轴线施加力矩在可倾斜部件上的机构。能够用来提供回复力的机构的其它示例包括来自弹性体(例如橡胶、聚亚安酯、硅树脂、含氟弹性体、热塑性弹性体以及许多其它材料)的张力或者通过使用悬臂弹簧或薄片(foil)。在成像装置的非常少的实施例中,其中成像组件的部件之间的分子间力(例如静电力)以及范德瓦尔斯力在即使没有施加外部电压的情况下也可能变得十分显著,可倾斜部件与靠近可倾斜部件的结构(例如下面描述的挡块80和82)之间固有的分子间力足以提供净回复力(net restoring force)。例如,包括由PVC或LDPE制成的表面的挡块可以在可倾斜部件和挡块之间提供足够的吸引力。这与使用塑料膜来覆盖家用容器从而用于食品储藏(即,Glad Wrap保鲜膜)的方式相似。图5e示出了用于成像探头600的扫描机构的实施例,其中图5a的扭转弹簧76由简易的悬臂线640替代,该悬臂线640与可倾斜部件70的表面接触,并且连接到柱787以产生回复力。悬臂640可由镍钛诺、钼、金或包括聚合体的多种其它适当材料制成。图5f示出了用于成像探头670的扫描机构的实施例,其中可倾斜部件70包括磁体680,成像组件的非倾斜部件包括磁体681,该磁体681用来产生回复力。磁体可被定向成使得它们根据它们在成像组件内的相对位置而相互吸引或排斥。磁体681中的一个可以是电磁体,使得它的强度可以根据需要进行调整或改变,以改变成像角度。该电磁体可以通过从磁体向探头近端伸展的导体(未示出)被提供能量。如果可倾斜部件70具有一定程度的铁磁性,那么可倾斜部件70上可以不具有磁性部件,并且单单一个磁体就足以产生回复力,如图5g所示。应当注意的是,在成像组件或成像导管没有任何旋转运动的情况下,电磁体可以被用来偏转可倾斜部件70并且通过改变通过电磁体的电流来产生用于成像的扫描图案。图5h提供了成像组件30实施例的透视图,而图5i提供了同一实施例的分解视图。可倾斜部件70用作超声传感器88产生的成像能量的偏转件。销752凹入到可倾斜部件70的侧面中的孔内并且通过压配或者粘结而固定于此。在该实施例中,销指向外并且被各个销保持件751中的榫头(未示出)所接收。在装配期间,销保持件751被固定在成像组件30的套753内。销751和销保持件752形成枢转轴线,可倾斜部件可以在该枢转轴线上低摩擦地枢转。连接到套753的挡块82限制了可倾斜部件70的最大倾斜角度。悬臂弹簧从套的后部开始延伸并且与可倾斜部件的底表面接触,使得当成像组件绕纵向轴线具有极小旋转或没有旋转时,可倾斜部件停留在其最大成像角度。参考图5a至5g,成像组件30可包括光学发射器/接收器以及相关的定向和聚焦光学和/或超声传感器。超声传感器88安装在小的同轴线缆89的端部。可选的光学隔离件(未示出)以及透镜92安装在靠近图5a中成像组件30中的镜94的光纤线缆96的端部,其中光学和超声发射器被设置成将成像向可倾斜部件70传送以及接收来自可倾斜部件70的成像能量。可选的光学隔离件可以仅仅是透明介质,例如玻璃或聚合体(例如未包层纤维),其可以被放置在光纤远端与透镜之间,从而提高工作距离或者光学成像系统的容差,如Mao所述。优选地,发射器和/或接收器安装在成像组件中与成像组件共同旋转的部件上。然而,还可以将发射器和/或接收器安装在成像探头中的当成像组件内的能量偏转机构旋转时不与成像组件共同 旋转的部件上。这可以通过将发射器和/或接收器安装在外套上或者通过将成像组件分成两个或更多个子组件(其中一个子组件旋转并且包括可倾斜部件70)来实现。如图5a至5i所示,使用能量偏转部件来改变成像角度而不是直接发射器和/或接收器安装在可倾斜部件(如图6a至6e所示)是有利的。当传感器直接安装在可倾斜部件的时候,倾斜动作可被发射器和/或接收器的机械特性以及电学和/或光学导管的机械特性所阻止,所述电学和/或光学导管将发射器和/或接收器连接到成像系统的其余部分。发射器和/或接收器可能太占体积而不能方便地放置在可倾斜或可弯曲部件上。此外,反射表面的使用有效地使成像角度的变化加倍。例如,反射表面的倾斜角度的变化导致了成像角度的变化,该成像角度的变化通常是倾斜角度变化的两倍。成像角度的这种加倍能够增加可由多个实施例中扫描机构获得的视野的大小。在声学成像的情况下,可能的是,强烈的声学脉冲施加到声学反射表面上将会分配一些机械能量到可倾斜部件中。这会发生在声学反射表面不用作理论上完美的反射器的情况下,并且会导致可倾斜部件或可倾斜部件的某些子部件产生振动。这种振动可能会促成任何所得图像中的人为因素,特别是当这种振动的能量被向回导向声学接收器时。由此,必须在可倾斜部件中加入阻尼机构。适于作衬靠声学超声传感器的材料可用于该目的,例如混合有钨粉的环氧树脂。阻尼机构可以是可倾斜部件内的附加层,或者可以结合到其上安装有可倾斜部件的铰链或销的设计中,例如通过在销上、或者在可倾斜机构中接收销的任何孔中添加阻尼材料层。图6a到6e示出了成像探头的远端,该成像探头包括能够进行声学成像的成像探头,其中扫描机构包括直接安装在可倾斜部件上的声学传感器。更具体地,图6a示出了包括可倾斜部件302的成像组件300的实施例,该可倾斜部件302以枢转方式安装在销312上,并且声学传感器304安装在该可倾斜部件302上。挡块306限定了能够获得的最大成像角度。一对导电元件308从成像导管34延伸到声学传感器304。导电元件308优选具有非常柔性的构成(例如细的同轴线)或者薄膜构成,该薄膜构成允许薄膜内具有一条或多条导电通路。由于导电元件308的机械特性,导电元件308可以提供回复机构,由此导电元件308趋向于促使可倾斜部件302达到具有最大倾斜角度的设置。例如,如图6a所示,导电元件308的刚度提供了足够的力促使可倾斜部件302靠着挡块306,并且由此获得了对于特定实施例的最大成像角度。该角度可以在成像组件300不旋转或者绕着成像探头的纵向轴线以低角速度旋转时获得。图6b中所示的成像组件300显示了当角速度增加时,可倾斜部件302如何将其自身对齐到优选的配置并由此改变成像角度。可以注意到,尽管图6a和6b中所示的成像角度和倾斜角度基本上相等,但是声学传感器304可以安装到可倾斜部件302上,以使成像角度和倾斜角度发生偏移。例如,可倾斜部件302的几何构造可包括安装传感器304的斜表面,或者可以在传感器304和可倾斜部件302之间加入薄垫片以使成像角度和倾斜角度发生偏移。还可以注意到,图6a和6b中所示的实施例中还可以包括其它回复机构。声学传感器304还可以凹进到可倾斜部件302内,如图6c所示。对于某些实施例 ,导体与可倾斜部件上的声学传感器的连接可能会导致导体过于刚性以致于不能允许可倾斜部件以充分的保真度倾斜以用于期望的应用。在这种情况下,可使用导电连接器,如Maroney等人在美国专利5373849中所描述的。可替代地,枢转机构的一个或多个部分(例如用于可倾斜机构的枢转机构的一个或多个销)可以起到与可倾斜部件上电绝缘导体的电接触的第二用途。图6d和6e示出了销310的使用,该销310电连接到同轴线缆,以提供与可倾斜部件302内的导电通路的电接触,从而提供与可倾斜部件302上的传感器304的连接。除了在销310与可倾斜部件302接触的尖端外,导电通路在销310的芯内是绝缘的。类似地,除了在与销310尖端的接触点外,可倾斜部件用于接收销310的凹口可以是电绝缘的。在这种情况下,可倾斜部件302附近的流体可选地包括导电率低于盐水的流体,例如蒸馏水或矿物油。可替代地,可使用O形环来提高电接触点处的电绝缘。可替代地,导电元件308可被光纤替换,并且声学传感器304可被一个或多个光学接收器和/或发射器替换。图6f至6j示出了能够进行光学成像的成像探头的远端,其中光学发射器和/或接收器的至少一部分直接安装在可倾斜部件上。在图6f和6g中,能量偏转部件由透射性的折射元件392 (例如玻璃、纯聚合物以及很多其它材料)制成,并且以类似于棱镜或透镜的方式使成像能量偏转。来自安装在成像组件30内的光纤391的光(light)朝安装在可倾斜部件70上的折射元件392发光。光纤的远端可由光学隔离件或GRIN透镜来终止,如本发明中其它附图所示。在图6f和6g的实施例中,光学发射器和/或接收器仅有一部分直接安装在可倾斜部件上。透射性折射元件392不直接连接到光纤391的远端,从而使得可倾斜部件70更容易倾斜,而不会受到来自光纤391的任何机械影响的妨碍。在图6h至6j中,光学发射器和/或接收器的整个远端(包括光纤391的远端)以机械方式与可倾斜部件70相连。光纤391还可以用作机械部件,用于提供使可倾斜部件70以最大倾斜角度倾斜的回复力,如图6h所示。在更高旋转速度下,可倾斜部件70将趋向于如图6i所示地对齐。图6提供了成像组件30的前视图。可替代地,图6a至6j中的导电元件308和光纤391可以被导电元件308和一个或多个光纤391的组合替代,同时声学传感器302被导电元件308和一个或多个光纤391的组合替代。应当注意到,在某些实施例中增加导电元件308和/或光纤的数目会对可倾斜部件能够获得的成像角度的范围产生影响,这是导电元件308和/或光纤的刚度增强的结果。对于某些实施例,旋转光学接头可以包含在枢转机构中,例如通过销以及销接收元件而引入光纤。尽管这种用于单模光纤传输的旋转接头将会需要相当高的精度(用于直径4-12微米量级的光纤的对齐),但是一种适于连接具有与多模光纤中的尺寸(直径50到250微米数量级)相类似的尺寸的光学光通路的旋转接头可以较容易地实施。平面光波回路(例如可从德国的Grintech获得)、自由空间信道、棱镜以及透镜可被用来将光线引导穿过与可倾斜部件结合在一起的部件,从而以适于光学成像的方式引导光线,例如对于0CT、血管镜法、红外成像、近红外光谱以及荧光成像。还具有其它替代性实施例,在这些实施例中可以利用改变成像组件的旋转速度来改变成像角度。与引起可倾斜部件绕枢转轴线倾斜不同,可使用可弯曲部件来携载发射器和/或接收器或者 载能量偏转机构。可弯曲部件包括结构组件,该结构组件在沿着其长度的一个或多个点上在其与成像组件旋转轴线的径向距离方面受到约束,但是在其大部分长度上不受到约束。对于本说明书,可弯曲部件的“径向受约束”部指的是可弯曲部件中与成像组件旋转轴线具有相对固定距离的部分。类似地,可弯曲部件的“径向不受约束”部指的是可弯曲部件中与成像组件旋转轴线的径向距离能够在向心力、重力、静电力、磁力及其它力的作用下发生改变的部分。该结构组件可包括可弯曲塑料的细长部,由光纤制成的线、薄片或者甚至杆。它可以包括改变强度、弹性、对于变形的机械滞后性以及其它等方面的机械特性的子部件的集合。使用可弯曲部件来改变成像角度的操作原理是:随着成像组件旋转,可弯曲部件将会由于向心加速度而发生弯曲。对于给定的旋转,取决于许多因素,可弯曲部件的不同部分可以在不同方向上弯曲或者弯曲不同程度,所述因素包括可弯曲部件及子部件的机械特性,以及可弯曲部件的几何形状。出于解释的目的,可弯曲部件可以模制成无限小的小体积(指的是体单元)的集合。可弯曲部件的径向受约束部中的体单元将保持它们距离旋转轴线的近似距离,而径向不受约束部中的体单元将会由于惯性而趋向于沿与它们大体圆形路径相切的方向行进。
可弯曲部件内的内力(张力、压缩力等)通常将阻止体单元沿着完全相切的路径行进。可弯曲部件所呈现的形状主要取决于可弯曲部件的材料特性和形状,但是它会随着旋转速度改变而改变其形状。下面描述不同形状以及形状上的预期变化的示例。沿着可弯曲部件的长度可增加可选部件,所述可选部件在旋转时将由于其质量而调节可弯曲部件的弯曲特性。加重的部件可以仅仅用来调节可弯曲部件的弯曲特性,或者它们也可具有功能性目的,例如用作使成像能量偏转的偏转部件。下面提供成像组件的示例,其中成像轴线由于可弯曲部件而发生改变。设定一个可弯曲杆,该可弯曲杆在其近端固定到成像组件,但是其它部分没有连接或者锚接到成像组件。在静止时,可弯曲杆的纵向轴线大致平行于旋转轴线,并且可以稍稍偏离旋转轴线。随着成像组件转动,可弯曲杆的未受约束部中的每个体单元逐渐地增加与旋转轴线间的距离。在杆的径向未受约束部中,杆在曲率上将呈现出弯曲。如果可弯曲杆是光纤(光通过该光纤发射和/或接收),那么这对于成像目的来说是有用的。随着杆弯曲,成像角度将改变。光纤的远端可具有透镜,该透镜可以是能够在给定旋转速度下增加可弯曲杆的曲率度的加重部件。可选地,可以增加额外的重量(例如不锈钢圆筒或者环)从而进一步增加曲率度。类似地,如 果可弯曲杆是容纳导线的柔性导管的话,那么杆对于成像目的来说是有用的,所述导线用于将电信号发送到超声传感器或者传送来自超声传感器的电信号。超声传感器可以是能够在给定旋转速度下增加可弯曲杆的曲率度的加重部件。可弯曲部件可以通过其它材料来改变其机械特性从而被加强。例如,可使用细的镍钛诺杆来加强光纤或电导管,从而减少在给定旋转速度下引起的曲率度,并且提高可弯曲部件在静止时返回到直线配置的可预测性。在该示例中,成像能量的发射器和/或接收器直接安装在可弯曲部件上。可弯曲部件可包括多种不同的几何形状,包括圆形、方形或矩形杆以及薄膜或薄片。可弯曲部件可替代地或附加地包括螺线或螺旋形几何形状,例如压缩弹簧中看到的。使用的材料理想地具有一定程度的弹性,从而允许它们以可预期并且可重复的方式返回到它们的初始位置。示例可包括聚合体,例如聚酰亚胺和聚亚安酯,以及硅橡胶、橡胶和多种其它材料。具有良好弹性的金属包括镍钛诺、黄铜、金、银、钼、钢以及多种其它金属。作为材料的固有属性所需的弹性程度将会根据材料在可弯曲部件中的形状而显著地发生改变。例如,给定材料在方形杆的形式下可能不具有足够的柔性或弹性,但是如果结合到弹簧形的部件中,就可能具有足够的柔性和弹性。图7a至7c示出了成像导管322远端附近的成像组件320的实施例。可变形部件324包括从成像导管322内延伸的光纤326并且具有基本上受约束的近端部326和光纤326远端附近的基本上不受约束部328。在图7a至7c中,受约束部326位于成像导管322的体积内,而不受约束部328位于成像导管322的远端。当成像探头不旋转时,如图7a中所示,光纤324趋向于使内应力降到最低,这在该示例中示为使得光纤324呈现出基本上直线配置。然而,随着成像导管322以及其中的光纤324绕着纵向轴线330旋转,如图7b中所示,光纤324所经受的向心加速度将导致可变形部件的未受约束部326从静止位置开始变形并改变成像角度。旋转速度的进一步增加能够导致成像角度α的进一步改变,如图7c所示。一个或多个可选加重部件322的使用可增加在给定旋转速度下获得的变形量。声学传感器可以替代或者伴随光学成像发射器/接收器。图8a示出了靠近成像导管342远端的成像组件340的实施例,其中可变形部件344与弹性支撑件346相关联。可变形部件(例如在成像传感器为基于光学的系统时的光纤348)的机械特性使得它们不易于充分地使光纤348恢复到静止配置,例如直线配置。由此,弹性支撑件346的使用(例如镍钛诺线的长度)可以与可变形部件的远端区域相关联,从而提高包含可变形部件346的实施例的性能。图Sb示出了包含弹性支撑件346的实施例340的轴向横截面。可变形部件344可被用来便于进行光学成像和/或声学成像。另外,图8a中示出了成像探头340的套352中的可选冲洗端口 356。端口 356便于与成像探头近端附近的一个或多个冲洗端口相联合(如图2所示),用期望的流体介质例如水或盐水来冲洗成像探头340。冲洗端口可选地包含在本发明的所有实施例中。图Sc和8d显示了一个实施例,其中成像探头30的远端包括可膨胀部件395。可膨胀部件395起到提供更大的安全区域396的用途,在该安全区域内,可变形部件能够在更高旋转速度下发生偏转而不会与解剖结构相接触。可膨胀部件395可以经由单独的膨胀腔(未示出)或者经由成像导管腔而膨胀。如图8d中所示,可包括另外的外套396,用于在成像探头的运送或移除期间在可膨胀部件395上滑动。图9a显示了成像探头370的实施例,该探头370使用GRIN透镜372 (梯度折射率透镜)来增加通过光学成像获得的成像角度。GRIN透镜372设置在探头远端附近,并且位于包含光纤376的成像导管374之后。GRIN透镜372布置成邻近光纤376的远端。可以选择具有以下特性的GRIN透镜:向透镜372的一端发射光的光纤376的远端的位移引起从透镜另一端发射光的角度发生改变。透镜372接收的来自被成像组织的光沿着与发射光相同的路径以相反(reciprocal)的方式往回朝光纤376聚焦。初始成像角度398如图9a所示,而GRIN透镜372的存在导致了更大的有效成像角度397,同样示出在该图中。这是有用的,因为很多可变形部件可能由于若干可变形部件的属性(例如柔性和几何形状)而在获得的成像角度范围上具有限制。例如,光纤376具有能够在光纤破裂或失效之前获得的最小曲率半径。同时,对 约束。使用GRIN透镜372能够有助于放大在这些环境下获得的有效成像角度的范围。可增加其它透射性的光学元件以放大有效成像角度。例如,半球382由折射率小于图9b中所示的成像组件380内的折射率的介质制成。这种元件382可包括充气腔,例如充有二氧化碳的腔,或者它可以是充有空气的腔。如果低折射率介质的折射率并不强烈地取决于波长,那么散射效果将被降到最低。类似地,如果用于成像的光跨越窄波长光谱,那么散射效果将被降到最低。可弯曲部件可与成像能量偏转部件一起使用以改变成像角度。至少一个发射器和/或接收器被定向为将成像能量引向能量偏转部件和/或从能量偏转部件接收成像能量。图10提供了包括能量偏转部件的成像组件的一个示例,该能量偏转部件安装到旋转成像组件内的可弯曲部件上。图10用120示出了探头的实施例,其中能量偏转部件122安装到可变形部件124上,从而能够根据旋转速度以不同角度成像。在上方视图中,可变形部件124将偏转部件122保持在引起较大成像角度的角度。如前面对可变形部件的描述,可变形部件124可以是薄片、弹簧、金属或聚合物元件,例如镍钛诺杆以及多种其它形式。为了加强给定旋转速度下产生的变形,可选的偏转件配重128可被增加到可变形部件或者增加到安装在可变形部件124自由端的其他元件,例如偏转部件122。尽管在该特定实施例中成像角度可能源于OCT成像回路,但是也显示了应变仪130和用于应变仪的连接132。应变仪130是能够估测成像角度的替代性机构。在高旋转速度下,可变形部件124将趋于如图1Ob所示地弯曲。图11用100示出了成像探头的另一个实施例,该探头100被用来通过可偏转或可倾斜部件上的一个或多个水翼元件(例如翼部)使旋转速度影响成像角度。与图5中的探头31极为相似的机构100具有固定到盘形可偏转部件远端边缘的三个翼部102。随着旋转速度在所示方向981上增加,翼部将会产生发生作用的压力梯度,在本示例中,压力梯度引起成像角度增加。同时在该附图中,注意到成像组件是如何不必具有完全环绕成像组件的部件的套。除掉套或者套的一部分使成像组件30的体积降到最小。另外,在设计中结合有一个或多个水翼元件的情况下,使水翼在其中行进的流体与非旋转表面(例如外套)直接流体相通是有利的。通过使这种流体与外套直接流体相通,流体通常会形成一种流动图案,其中该区域内的流体速度由于外套相对静态表面的阻力而降低。这将增加“翼部”行进穿过流体的相对速度并且由此增加翼部产生的升力。类似地,图12用110示出了与图10中的探头120相似的探头的实施例,其中偏转部件122包括翼部112,该翼部112带来了与可倾斜元件70上具有翼部的探头100相同的效果。在某些使用中,旋转速度将以步进的方式改变,而在其它情况下,旋转速度将扫过速度范围。所期望的扫描图案以及获得这些扫描图案所需的旋转速度的相关功能将会强烈地取决于应用。例如,如果期望的扫描图案是扫描接近圆锥表面的空间,那么特定的旋转速度可通过旋转电机而被启动。圆锥的坡度可以通过改变旋转速度而改变。如果希望扫描整个空间,那么可以通过逐步地改变旋转速度而对多个圆锥进行成像,或者扫描空间可通过扫过旋转速度的范围而包括螺旋路径。可以通过随着时间而改变旋转速度来得到多个其它扫描图案。

图13a示出了可以通过本发明多个实施例获得的多种扫描图案中一种的示例。成像组件12显示为沿着笛卡尔坐标轴。有关体积能够通过旋转成像导管和成像组件而成像。通过以步进方式改变成像角度以及以不同成像角度在一个或多个回转中获取成像数据,成像数据被沿着一系列同心圆锥991的表面收集。这种扫描图案对于图像重建更为简单,但是在成像数据的获取时间方面不是最理想的。图13b显示了扫描图案的示例,其中通过使成像角度在成像探头旋转时连续地改变,成像光束沿着更加螺旋形的路径992。这种扫描图案可以增加重建3D成像数据的算法的复杂度,但是在数据获取方面比图13a中的图案更加省时。当前的血管内成像方法一般通过假定成像导管近端的旋转速度是成像导管远端旋转速度的适当近似值来评定旋转角度。由于成像导管变得更小以接近更小的血管并且被结合到引导线中,它们也更容易变形,并且不均匀旋转失真的问题会更加恶化。同时,许多血管内成像系统在足够长的时间内使用恒定旋转速度,由此系统呈现稳定状态,其中成像导管远端的平均旋转速度接近于成像导管近端的平均旋转速度。在本发明的情况下,许多实施例涉及频繁地或连续地改变旋转速度,并且在成像导管的近端和远端的旋转速度之间获得的稳定状态的呈现可能并不可靠。为此,成像导管远端附近或者结合到成像组件中的旋转编码器可以是有益的。光学式、阻抗式或者其它旋转编码器可以在此使用。旋转部件附近的非旋转部件上的光学图案可以通过旋转部件上的光学接收器而进行观察。该光学图案可以与围绕非旋转部件的周边延伸的线条图案一样简单,并且每次经过线条,光学接收器便产生光学或电信号从而指示出该线条已被经过。线条之间的间隔代表已知的旋转度。可替代地,可使用两个接收器来实现正交编码,除了关于旋转位移的增量的信息之外,还提供方向信息。可替代地,编码器能够通过使用多个接收器以及光学图案(例如通常用在较大规模旋转编码器中的格雷编码)来对位置进行编码。可替代地,所吸收的、反射的、或者以其它方式从光学图案发射出的光的波长光谱可以表示绝对位置。薄膜、衍射光栅以及其它光学表面或部件可以被用于该目的。可替代地,光学图案可以在旋转部件上并且光学接收器可以在非旋转部件上。旋转编码器的其它实施可包括阻抗式旋转编码器,成像导管远端附近的一个或多个加速度计,导管内的受信界标(fiduciarylandmarks)或特征的识别。例如,成像套的厚度可以作为围绕纵向轴线的角度的函数而发生改变。图14用150示出了包括编码图案156的成像探头的实施例,该编码图案156包括在套152内,用于对成像组件160的旋转位置进行编码,该套152设置在成像组件160后面。在成像组件160附近或者之内放置有非旋转编码图案156,非旋转编码图案156沿着成像探头的一部分长度自由地行进。这样,尽管成像导管34和成像组件160可以旋转,但是光学编码图案156不会旋转。在该示例中,编码图案具有突出结构158,该突出结构158被沿着外套长度的类似成形的通道容纳。一个或多个突出结构在相邻的成像组件160和成像导管34旋转的时候阻止光学编码器旋转。成像探头的旋转部内 的信号线被引向编码器,便于读取旋转位置。在该示例中,非成像光纤164被引入用于将光线照射到光学编码器元件156上。照射光线以取决于旋转角度的方式与光学编码器相互作用。光线随后从光学编码器元件156行进返回穿过非成像光纤164。光纤164的近端可以连接到成像探头近端的光检测器或者其它光学传感器,并且将光信号转换成可以随后通过适配器传送到成像系统的一个或多个电信号。这种配置的优点在于成像组件可以在外套内平移而不会影响检测旋转位置的能力。编码图案156的实施例的进一步细节以及用于在成像探头上编码的其它实施例
在与本申请同时提交的共同未决申请11/......中公开,名称为“MEDICAL IMAGING PROBE
WITH R0TARYENC0DER(具有旋转编码器的医疗成像探头)”,在此通过引用将该申请全部并入。可变形或可倾斜部件获得期望成像角度的性能可以通过将可变形或可倾斜部件以机械方式连接到另一个可变形或可倾斜部件而得以提高。图15显示了包括能量偏转部件的远端可倾斜部件650的示例。远端能量偏转部件经由每端都具有连接点653的连接器652以机械方式连接到更加近端的第二可倾斜部件651,其中所述连接器连接到两个可倾斜部件中的每一个。相比于设计到第一可倾斜部件中(例如由更密集的材料制成),第二可倾斜部件对获得期望的成像角度可具有更好的特性。可替代地,通过设置应变仪或者其它用于测量成像角度的部件,第二可倾斜部件可提供优点。参考图16a,为了允许通过超声和光学装置在同一方向上成像,提供了超声传感器,其允许光能行进穿过传感器中的导管。基本上,压电材料被改变从而具有穿过其基板的开口,例如孔。电接触器400被引导到传感器的声学基板402的任一侧上的导电层401。光纤403提供光学导管用于进行光学成像。可选光学隔离件780和GRIN透镜405或者其它光学部件可以处于声学基板402的开口 407中,如图16a中所不。来自光纤的光学成像能量被导向能够绕枢转轴线626倾斜的可倾斜部件70。可倾斜部件包括反射表面。根据需要结合有压电材料任一侧上的导电层401,用于向压电施加电压。挡块781以及磁体782被示为成像组件的一部分。可倾斜部件70上还具有第二磁体784。磁体用作回复力的多个可能来源中的一个,该回复力趋向于使可倾斜部件与挡块781接触。在较高旋转速度下,可倾斜部件70将绕着其枢转轴线626倾斜离开挡块781,导致成像角度的改变。由此,图16a显示了与能够以多个成像角度进行侧向观察的扫描机构相适应的成像探头10的实施例。图16b描绘了类似的实施例,不同之处在于磁体782是电磁体785,其中导电回路786从成像探头的近端延伸到电磁体785,从而向电磁体提供电流。通过改变电磁体785产生的磁场的强度和方向,能够调节可倾斜部件70的回复力,这可能是使用中所期望的。该特定实施例中的倾斜机构并不取决于向心加速度。因此,通过使用电磁体和被电磁体影响的可倾斜部件,例如通过在可倾斜部件上具有第二磁体,还可以独立于旋转运动而产生扫描图案。磁力的使用能够应用到用于前方观察成像(如图5a至5i所示)的实施例以及使用可变形部件(如图1Oa和IOb所示)来改变成像角度的实施例。类似地,如果可倾斜部件或可变形部件不包括磁体,那么使可倾斜或可变形部件在第一方向上扭转的力可以由其它装置来提供,例如弹簧、悬臂以及上面所述用于回复力的其它装置。然后可使用电可控电磁力使可倾斜或可变形部件在相反方向上扭转。在图16c中示出了用于侧向观察的替代性实施例,其使用非磁性回复力与向心力相结合,用于能够进行侧向观察成像。``挡块80和82限制可倾斜部件70的运动范围。悬臂线640安装在柱787上并且与可倾斜部件70的表面接触。在较高旋转速度下,可倾斜部件将进行枢转(沿图16c中的逆时针方向)并且引起成像角度的改变。如本发明一些实施例中所示,可以期望超声与一个或多个与本发明得扫描机构共同使用的光学成像装置的组合。图16a至16c描绘了超声传感器如何能够与光学成像发射器和/或接收器相结合的示例。图17a至17g同样描绘了用于将超声传感器与光学成像发射器和/或接收器相结合的多个实施例。这些实施例包括有用于光学成像发射器和/或接收器的偏转机构,例如平面镜或棱镜。参考图17a,设有成像子组件399,该子组件399被设置成允许通过声学和光学装置在同一方向上成像,从而利用允许光能行进穿过传感器中导管的声学传感器。重要地,探头399使用声学传感器402,该传感器402经过改变从而具有穿过其基板的光学传送通道。声学传感器402可以是本领域公知的任何种类的超声传感器,例如压电成分(例如PZT或者PVDF),复合材料传感器或单晶传感器。
电接触器400被引导到传感器的声学基板402的任一侧上的导电层401。光纤403提供用于能够进行光学成像的光学导管。一个或多个匹配层可以增加到传感器的发射表面,例如环氧树脂层(例如银或铜导电环氧树脂层,其还可以功能性地用作驱动传感器的一个或两个电极),或者聚合物(例如聚对二甲苯或者PVDF)。光学传送通道407由多种技术中的任何一种制成,例如精密钻孔、激光烧蚀、光亥1J,包括模具中用于产生开口的结构和其它方式。根据需要结合有压电材料402的任一侧上的导电层401,用于向压电施加电压。开口 407直接连接到光学波导管403,或者通过一个或多个反射镜404或者棱镜以及一个或多个透镜405连接到光学波导管403。如图17b所不,来自光纤的光可以向着反射镜(或棱镜)404被引导,该反射镜404使来自光纤的光线发生偏转并且穿过光学传送通道407。可替代地,如图17c所示,可使用棱镜397来使光线发生偏转并且穿过光学传送通道。作为整个内部反射的结果或者在其偏转表面上的反射涂层的帮助下,棱镜397可以使光线发生偏转。棱镜397可以是固定到沿着光通路的适当位置的单独光学部件。例如,它可以通过粘结方法(例如UV固化胶)而在光纤端部上、透镜上或者隔离件上胶结到适当位置。可替代地,沿着光通路连接未包层光纤并且在期望长度处切掉未包层光纤的节段能够被用于制成棱镜。包层光纤的节段可被切除和/或抛光以获得期望的角度。Mao在前面引用的参考文献中描述了该方法。同样参考图17c,光学透明窗口 409可选地设置在光学传送通道407的端部,并且该通道内的任何未占用空间都充有气体、流体或者光学透明材料,例如玻璃或者本领域公知的多种透明聚合物中的任何一种。窗口 409的用途是防止在通道407中产生或保留不希望的气泡并且保护光学传送通道407中的部件。

如图17d所示,理想的是使通道407内是气体而不是流体或固体材料,从而提高某些光学部件例如曲面透镜424 (可以是球透镜)的折射能力。如图4e至4g所示,GRIN透镜405或者其它光学部件可以邻近光纤403的远端,位于光纤403与沿着光学通路的偏转平面镜或棱镜404之间。在这种情况下,声学基板402中的开口可以不具有任何光学部件并且仅仅容纳光学透明材料或者被窗口 409所覆盖。参考图17f,光学隔离件433位于光纤403的远端与GRIN透镜405之间。光学隔离件元件433可包括光学透明介质,例如未包层光纤、玻璃、塑料、充有气体的间隙或者充有流体的间隙。光学隔离件元件433的使用有助于减小光学部件的对准和尺寸所需的精度,从而获得期望的焦距。可替代地,参见图17g,棱镜或反射镜404的路径长度可以作为光纤远端与透镜之间的光学隔离件的全部或者一部分。利用光线必须行进穿过反射镜或棱镜404的距离来替代功能性光学隔离件的一部分的优点在于,聚焦元件(例如GRIN透镜405或其它透镜)更加靠近被成像的区域,由此提高了光学成像系统的有效工作距离。在一些情况下,透镜405可以偏离光学传送通道的任一边缘,从而获得期望的聚焦深度,如图17h所示。可与这里公开的扫描机构共同使用的各种组合式IVUS/0CT装置的其它细节公
开在与本申请同时提交的共同未决申请N0.11/......中,名称为“IMAGING PROBE WITH
COMBINEDULTRASOUND AND OPTICAL MEANS OF IMAGING (具有组合式超声和光学成像装置的成像探头)”,在此通过引用将该申请全部并入。
图18a至18d描绘了可倾斜偏转部件,其具有与声学反射表面截然不同的光学反射表面。图18a是偏转件的透视图,该偏转件的侧面具有用于容纳销的孔,偏转件可以在成像组件内绕所述销枢转。图18b示出了在偏转件中心附近穿过偏转件的横截面。可以看到用于容纳销465的所述孔。顶层是平坦的光学反射层461。在该光学反射层下方是基本声学透明层462,该透明层462位于光学反射层和声学反射基板463之间。这种装置可以通过使用声学反射材料(例如不锈钢)的盘体并且钻出必要的孔或者凹口从而使得偏转件能够最终安装到成像组件中而构造成。可以在盘体的一个面上制出抛物线或球状凹口。锯齿状表面可以随后被填充声学透明介质,例如TPX。光学反射膜,例如薄的金膜,可以随后被添加到声学透明介质的顶表面上。图18c和18d示出了这种偏转件在距离盘体中心的不同点处的横截面视图。图19a至19h显示了本发明的成像探头结合一个或多个可转向部件的使用。可转向引导线,例如来自CORDIS的STEER-1T弓丨导线是可获得的,其中线的远端部分可以由操作者可控制地偏转。类似地,可转向导管,例如那些使用由Badger (美国专利N0.4,898,577)描述的机构的导管是可以获得的,其中操作者可控地偏转导管的远端尖端。图19a显示了具有引导线腔的成像探头440的柔性实施例的远端部分,其中可转向引导线441基本上处于成像探头的外套的引导线腔内。图1%显示了可转向引导线的偏转如何引起成像探头远端区域的偏转。图19c显示了成像探头440的基本上位于可转向导管442内的的远端部分。引导线443还可以延伸穿过成像探头。引导线是可转向的或者可以是传统的非可转向引导线。图19d显示了可转向导管的偏转如何引起成像探头远端区域的偏转。可替代地,允许在可转向引导线或可转向导管中转向的相同机构可被直接结合到成像探头中。图19e至19 h更加具体地显示出可转向部件如何能够与成像探头结合使用从而便于穿过血管的堵塞腔。在图19e中,可转向引导线441基本上位于成像探头440内。当成像探头前进到血管445的堵塞段附近时,成像装置具有由能够由成像探头获得的成像角度446的范围极限所确定的视场。可转向引导线可以被控制从而使成像探头和引导线偏转到期望的定向,如图19f所示。引导线能够随后在图像引导下前进到堵塞段中。如果希望的话,线的前进的图像引导可以有助于确保线在前进时保持在血管壁边界447之内。引导线可具有诸如亲水涂层的属性,或者具有足够的硬度从而便于堵塞段的最初刺穿。成像探头440能够随后前进到线441上方的堵塞段445中。成像、使线转向、使线前进和/或使成像探头前进的反复过程能够用来帮助刺穿堵塞段。可选地,如图19g所示,引导线可包括可膨胀部件,例如膨胀气球448和膨胀腔(不可见),从而便于在堵塞中产生一个区域,体积较大的成像探头能够更容易地前进到该区域中。成像、使线转向、使线前进和/或使成像探头前进的反复过程能够用来帮助刺穿堵塞段。图19h显示了成像探头已经前进到堵塞段中,下一个反复点可从此处开始。图20a描绘了另一个实施例,用于使可倾斜部件能够作为成像组件旋转速度的函数而影响成像角度的变化。可倾斜偏转部件501安装在销502上。声学传感器503和光学发射器/接收器504被包括在内,同样包括有用于最大成像角度的第一挡块505以及用于最小成像角度的第二挡块506。加重弹性部件被连接到可倾斜部件并且连接到成像组件或者成像导管。加重弹性部件可包括镍钛诺杆507,该杆507连接有不锈钢配重508或者由其它适当材料制成。在低旋转速度下,弹性部件呈现出如图20a所示的相对直线轮廓。随着旋转速度增加,加重弹性部件的向心力将使配重向成像组件的壁移动。随后,弹性部件将会变形并且引起偏转部件改变其倾斜角度,如图20b所示。这种配置增加了本发明可靠地获得期望成像角度的能力。图像重建尽管上面描述了用于改变成像角度的多个实施例,但是假定、估计、测量(直接地或间接地)或者以其它方式得出与获得的成像数据相关联的成像角度及旋转角度将是有帮助的。成像数据的每个像素或者样本可以与以下相关联:1)绕旋转轴线的角度,称为旋转角度,2)距离旋转轴线的角度,称为成像角度,以及可选地,3)距离成像组件内或者附近的参考点的距离,例如距离成像接收器或者距离成像偏转部件的距离。这两个角度和可选的距离测定值可被用来帮助重建成像物体/组织的3D几何形状。在超声中,与传感器或偏转部件之间的距离是基于超声信号的传送时间结合声音速度而估算出来的。在光学相干断层成像中,与光学回路的接收端或者偏转表面之间的距离是利用干涉测量法或者称为光频区域成像(OFDI)的技术来测量的。对于光学相干断层成像,被成像的深度范围或者“窗口”通常选择成使系统的性能最优化。窗口尺寸可以从小到4微米到大到数毫米,并且基于系统的性能需要而选择,例如每个时间间隔获取的像素或矢量的数目以及穿过其发生成像的介质(例如血液、组织、空气和/或清液)的光学特性。对于血管镜法以及由Amundson所描述的红外成像法,尽管能够通过两套本发明中的光学发射器和/或接收器实现立体视觉将有助于一些深度感知,但是却没有距离信息。在最简单的实施例中,成像角度或旋转角度可以不受关注并且改变成像角度而不需要真实知晓成像角度的能力将会是对现有技术的充分改进。然而, 在多种情况下,成像角度受到关注,用于产生成像区域的足够的2D或3D表示和/或用于在成像区域内进行测量。多种方法可被用于得到成像角度。在最简单的情况下,成像角度可以是旋转速度的函数。由此,成像组件的旋转速度的估测或测量可以基于从试验或第一原理中导出的函数或查表而被映射到成像角度的估测。在许多情况下,旋转速度是随时间改变的函数,并且用于将旋转速度映射到成像角度的机构可以不仅仅使用瞬时旋转速度作为映射方案的输入,而是还可结合已经发生或计划在该时刻附近发生的旋转速度。当可倾斜部件或可弯曲部件不显著地受到施加给成像组件的外力的影响时,这种简单地将旋转速度映射到成像角度的处理是最适合的。例如,除非可倾斜部件的旋转轴线穿过可倾斜部件的近似质心,否则重力在可倾斜部件上的作用将会大大地影响实际成像角度,从而使基于成像角度假定而得到的成像或者任何测量值失真。倾斜角度随时间的变化可以适当地假定为接近预先选定的参数式函数或者随机函数,其可被用作成像重建过程的输入。预先选定的成像角度函数可取决于探头类型以及施加到电机控制器的旋转运动控制序列。用户能够通过改变参数式函数的一个或多个参数或者通过调节随机函数的随机点而调整成像函数并且由此调整重建的图像。成像角度更直接的评定也是可能的。可添加应变仪来评定可弯曲或可倾斜部件的旋转或变形。可替代地,光学倾斜编码界面可被结合到可倾斜或可弯曲部件中,并且通过单独的光纤通道或者利用局部LED和光检测器而被监测。例如,光纤可以将光引向可倾斜或可弯曲部件的表面,并且往回反射到光纤中光的强度可以作为倾斜角度的函数而发生改变。该强度可以利用编码器的光纤近端的光检测器来检测。可以使用阻抗式、电容式、磁性以及感应式编码器。可替代地,由成像能量获取的信息可以用来提供成像角度的评定。例如,在成像组件包括用于超声或光学相干断层成像的能量偏转表面的情况下,大部分成像能量将沿成像角度的方向被反射。然而,还有少量的成像能量朝成像能量接收器被反射。通过在反射表面的平滑度或纹理上进行小的改变从而使其成为不完全的光学反射器,能够增加往回反射的成像能量的量。使用传统的在超声或OCT成像中使用的用于测量距离的技术,能够确定距离接收器和偏转部件之间的距离。由此,如果由于倾斜或者弯曲使得成像能量在其上发生偏转的偏转表面区域改变了与成像接收器之间的距离,那么可使用该距离通过三角定律来确定成像角度。OCT成像比超声成像具有高得多的分辨率,因此在很多情况下优选使用OCT接收器来测量距离的改变,作为成像角度改变的替代标记。可替代地,成像组件的壳或者成像组件的其它结构可以用作产生可由声学或光学装置检测到的反射的界面。这种界面由此提供了可以使用的内在界标(intrinsic landmark)。由此,能够检测接收器和该界面之间或者偏转件和该界面之间的路径长度的距离。如果该路径长度作为成像角度的函数(由于壳的形态)而改变,那么随后可以推导出成像角度。结合到成像系统中的信号检测机构可被用来自动地检测由偏转表面或者由内在界标界面产生的反射,并且将关于成像角度的信息提供给成像系统的其它部件。这种信号检测系统能够通过硬件或软件检测系统或者两者的组合而实现。在传统2D显示屏上显示3D数据可以以多种方式实施,包括连续的2D图像以及医学成像领域公知的其它方法。例如,2D图像可以表示切过3D空间的任意平面、最大强度投影图像、多平面重新格式化图像以及多种其它形式。还可以以极坐标表示数据,例如使用坐标(旋转角度、成像角度、距离)。3D空间中基于极坐标的任意表面可以被选择出来用于显示。例如,可以显示在 旋转角度范围和距离范围内与单个成像角度对应的数据。本发明的实施例可以与用于介入的装置共同使用或者结合到该装置中,所述装置例如为用于心脏血管介入的装置,如血管成形术球囊、粥样斑块切除装置、支架输送系统或者局部给药系统。该实施例还可以与便于进行活组织检查、射频烧蚀、切除、烧灼、局部短程治疗、冷冻疗法、激光烧蚀或者声波烧蚀的装置共同使用或者结合到该装置中。特别地,使用当前装置来实现组织的激光或声学烧蚀可以通过使用图像扫描机构将较高功率的光学或声学能量引导到目标区域而便容易。例如,在使用OCT或者本发明描述的成像探头的超声实施例对血管区域进行成像的同时,可以通过用户界面对传送治疗的区域进行选择。随后,当扫描机构被定向用于沿期望方向运送能量时,可以不时地传送强大的能量脉冲。例如,激光能量脉冲可以沿着用于光学成像的同一光纤进行传送,被那些包括偏转部件的实施例中的偏转部件所偏转,并且朝着目标组织前进以达到期望的效果。激光能量的脉冲正时与成像探头实现的扫描图案相协调合,从而将能量导向目标区域。如前所述,OCT与IVUS的组合对于成像探头是有用的,这是由于这两种形式中的一种(优选为0CT,由于它的分辨率较高)可以用于评定成像角度。另外,OCT与IVUS的组合是非常有用的,因为这两种形式通常向彼此提供互补信息,例如在评定血斑结构和功能时。当来自两种形式的图像正确地彼此映射时,可以有助于提供合成图像,其提供了关于被评定组织的重要信息。实际上,由本发明中描述的各种声学和光学成像方式产生的任何成像数据都能够可能地进行组合,以提高受访组织的评定。此外,制造具有调整其成像角度的前方观察成像探头的能力提高了使用前方观察成像来替代荧光成像的可能性,以用于显现血管树或者解剖空间的其它集合。随着探头前进到人体中,便获得成像数据的3D空间获得。如果成像数据的连续3D空间充分地交迭,那么将一系列3D图像组合在一起以形成3D成像数据的扩展集的可能性便变得具有吸引力。例如,如果获得空间(i)并且随后获得空间(i+1),那么来自这两个空间的成像数据都能够进行一系列变换,例如平移、旋转以及拉伸,其中两个空间的交迭区域内的特征相互匹配。这可以通过使用自相关技术以及其它公知的用于将2D或3D成像数据缝合在一起的技术而便容易。血管镜法和红外成像同样能够基于本发明而获得特定的优点。通常地,血管镜法和红外成像依赖于光纤束的使用来产生图像。被成像的空间或表面被跨越期望波长范围的光照亮,并且往回反射的光提供了处于视场中的界面的图像。对于血管镜法,波长范围基本上跨越了可见光谱,同时对于红外成像,使用Amundson描述的更为精选的较长波长范围来提高对血液的穿透性。对于传统的血管镜法和红外成像,光纤束中光纤的数目对系统分辨率以及视场的尺寸产生 影响。然而,向光纤束中增加更多的光纤增加了光纤束的尺寸并且减小了光纤束的柔性。本发明能够通过需要较少的光纤来进行期望的成像而克服这些限制。在最简单的情况下,使用单根光纤。通过使用可倾斜或可弯曲部件来用单个光学接收器扫描区域的能力提供了减少用来扫描相同关注区域的光纤数目的能力。在这种情况下,期望波长范围内的照明光被传送到要成像的区域,例如通过连接到光源的单独光纤,位于成像组件附近的LED照明器,或者通过接收往回反射光线的同一光纤。不需要光纤束来进行这种成像的优点可能地包括更加柔性的成像探头、较小的成像探头、所需光检测器数目减少(其中用于红外成像的光检测器阵列是昂贵的)以及使用少量(例如一个到十个)高度专用化光检测器而不是专用度较低的光检测器的大型阵列(例如超过64 * 64个元件的阵列)。光检测器可以针对它们波长特征以及它们的灵敏度而进行改变。与光纤束系统相t匕,这种系统的缺点包括需要从扫描数据重建图像,可能的较低信噪比,以及由于扫描机构中用于获得期望扫描图案的可能的保真度缺陷而导致的图像失真。通过使照明光在成像发生的方向上聚焦成狭窄光束,血管镜法或红外成像中单个光纤实施例的信噪比能够得到提高。这可以通过使照明光沿着同一光纤传送并且穿过成像组件中接收成像光的相同透镜来完成。由于被透镜和光纤接收的光中基本上略去了那些在使用更加散射的照明器时将会从相邻空间散射的光,因此这在成像是穿过散射介质(例如血液)时具有特别的优点。胃肠内窥镜法、阴道镜法、支气管镜法、腹腔镜法、喉镜法、膀胱镜法、耳镜法以及眼底镜法都是本发明中描述的扫描机构可以适用的应用示例,用于以类似于血管镜法或红外成像的方式使用。柔性和/或小型化成像探头的非医学使用有多种,其中本发明中描述的扫描机构被用于产生图像,例如在可见或红外光谱中得到的图片。成像探头12及其部件可以根据解剖学位置和用于由成像探头12实现的成像的目的而具有多种尺寸和特性。例如,为了在心脏血管系统(包括心腔)中使用,成像探头12优选是细长且柔性的,长度范围为5至3000mm,优选为300mm至1600mm的长度范围。成像导管34和成像组件30可具有范围为200微米至IOmm的最大横截面尺寸,优选地范围为500微米至8mm。成像导管34和成像组件30都可以被外套48所环绕。这将会使得成像导管34和成像组件30在外套内旋转,同时以机械方式使这两个部件的旋转运动与周围组织隔离。在一些情况下,本发明的实施例可被使用在成像导管非常短或者并非十分需要的情况下。例如,成像组件可以直接地连接到微型马达、涡轮机或者具有快速往复运动的轴。使用向心加速度致使声学或光学成像装置中成像角度的改变可以被结合到这样实施例中。在又一实施例中,成像探头12在胃肠系统中的使用通常具有细长及柔性的成像探头12,长度范围为50mm至6000mm,优选为300mm至2000mm。最大横截面尺寸的范围一般为 3_ 至 20mm。在又一实施例中,成像探头12通过经皮装置而对软组织进行成像的使用会使成像探头具有刚性轴。外套可由刚性中空轴替代,例如不锈钢管,然而多种其它聚合物、金属以及甚至陶瓷在功能上都是适合的。这里使用的术语“包括”、“包含”被解释成包含性的以及开放性的,而不是排它的。具体地,当使用在本说明书包括权利要求中时,术语“包括”、“包含”及其变体意味着包含指定的特征、步骤或部件。这些术语不被解释成排除其它特征、步骤或部件。对本发明优选实施例的前述描述被用来解释本发明的原理,并不是将本发明限制到所示的特定实施例。旨在使本发明的范围由包括在权利要求及其等同设置范围内的所有实施例限 定。
权利要求
1.一种成像探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线,其中所述可旋转导管能够连接于旋转驱动机构,所述旋转驱动机构用于调节所述可旋转导管绕所述纵向轴线的角速度; 成像组件,所述成像组件在远离所述可旋转导管的近端的位置处附接于所述可旋转导管,所述可旋转导管配置成向所述成像组件传送能量,所述成像组件包括可移动构件,所述可移动构件用于以相对于所述可旋转导管的所述纵向轴线的可变成像角度沿着从所述可移动构件到所述中空轴之外的能量束路径传送能量束,其中所述可移动构件安装成使得所述能量束路径与所述可旋转导管的所述纵向轴线之间的所述可变成像角度通过调节所述可旋转导管的角速度来改变;以及 与所述可移动构件相关联的存储机构,所述存储机构用于以对应于所述可旋转导管的不存在初始成像角度的旋转的相对于所述可旋转导管的定向来定向所述可移动机构,并且用于朝向对应于所述初始成像角度的相对于所述可旋转导管的定向推压所述可移动构件。
2.根据权利要求1所述的成像探头,其中,所述可移动构件绕枢转轴线枢转地安装,用于枢转运动。
3.根据权利要求2所述的成像探头,其中,所述可移动构件是反射性的。
4.根据权利要求2所述的成像探头,其中,所述可移动构件枢转地安装在低摩擦枢转机构上。
5.根据权利要求1所述的成像探头,其中,所述成像组件包括至少第一结构挡块,使得当所述成像组件不旋转时,所述存储机构抵靠所述至少一个结构挡块推压所述可移动构件。
6.根据权利要求5所述的成像探头,其中,所述成像组件包括第二结构挡块,所述第二结构挡块设置成使得在所述可旋转导管的旋转期间,所述第二挡块限定所述可移动构件的极限定向。
7.根据权利要求1所述的成像探头,其中,所述可移动构件是包括结构组件的反射性可弯曲部件,所述结构组件在沿着其长度的一个或多个点处在其与所述可旋转导管的所述纵向轴线的径向距离方面受到约束,但是在其长度的大部分上不受到约束,所述成像组件配置且定位成将所述能量束传送到所述反射性可弯曲部件,其中在操作中,随着所述成像组件旋转,所述反射性可弯曲部件将由于向心加速度而弯曲,所述反射性可弯曲部件的弯曲量由所述成像组件的角速度确定。
8.根据权利要求7所述的成像探头,其中,所述可旋转导管包括在选定位置安装在其中的结构挡块,使得在所述可旋转导管的旋转期间,所述结构挡块约束所述反射性可弯曲部件能够弯曲多少。
9.根据权利要求7所述的成像探头,其中,所述结构组件包括可弯曲塑料的细长部分和由光纤制成的线、薄片或杆中的任何一种,所述结构组件具有一个或多个预先选定的机械特性,包括强度、弹性以及对于变形的机械滞后性。
10.根据权利要求1所述的成像探头,其中,所述可移动构件是包括结构组件的可弯曲部件,所述结构组件在沿着 其长度的一个或多个点处在其与所述成像组件的所述纵向轴线的径向距离方面受到约束,但是在其长度的大部分上不受到约束,所述成像组件配置成使得其至少一部分安装在所述可弯曲部件的所述大部分上,其中在操作中,随着所述成像组件旋转,所述可弯曲部件由于向心加速度而弯曲,并且所述可弯曲部件的弯曲量由所述成像组件的角速度确定。
11.根据权利要求10所述的成像探头,其中,所述可旋转导管包括在选定位置安装在其中的挡块,使得在所述可旋转导管的旋转期间,所述挡块用来约束所述可弯曲部件能够弯曲多少。
12.根据权利要求10所述的成像探头,其中,所述结构组件包括可弯曲塑料的细长部分和由光纤制成的线、薄片或杆中的任何一种,所述结构组件具有预先选定的机械特性,包括强度、弹性以及对于变形的机械滞后性。
13.根据权利要求1所述的成像探头,其中,所述可移动构件是包括从所述可旋转导管内延伸的光纤的可变形部件,并且所述可变形部件具有基本上受约束的近端后部以及在所述光纤的远端附近的基本上不受约束的前部,光学能量束穿过所述前部出现,其中当所述可旋转导管不旋转时,所述光纤使内应力降到最低,从而导致所述光纤呈现出基本直线的配置,但是在所述可旋转导管的旋转期间,所述光纤受到的向心加速度导致所述可变形部件的不受约束的部分从静止位置开始变形并且改变其相对于所述纵向轴线的成像角度。
14.根据权利要求1至12中任一项所述的成像探头,其中,所述能量束是光学能量束,其中所述可旋转导管包括具有远端的光纤并且所述成像组件包括光学发射器/接收器,所述光学发射器/接收器包括与所述光纤的所述远端相关联的光引导和接收装置,所述光引导和接收装置用于将光引导出所述光纤的所述远端以及接收反射的光能信号并将所述接收到的反射光能信号引导返回至图像处理系统。
15.根据权利要求14所 述的成像探头,其中,所述光学发射器/接收器包括聚焦及聚集光学器件,用于将从所述光纤的所述远端发射出的光聚焦到被成像的关注区域并且用于聚集从所述关注区域反射的光。
16.根据权利要求14所述的成像探头,其中,所述光学能量束适于光学相干断层成像。
17.根据权利要求1至12中任一项所述的成像探头,其中,所述能量束是超声能量束,并且其中所述成像组件包括超声传感器,并且其中所述可旋转导管包括同轴电缆,所述同轴电缆电连接到所述超声传感器,并能够在其另一端连接到形成图像处理系统的一部分的超声信号处理回路和动力源。
18.根据权利要求1至12中任一项所述的成像探头,其中,所述能量束包括光学能量束和超声能量束,其中所述可旋转导管包括具有远端和近端的光纤,其中所述近端能够连接到图像处理系统,并且所述成像组件包括光学发射器/接收器,所述光学发射器/接收器包括与所述光纤的所述远端相关联的光引导及接收装置,所述光引导及接收装置用于将光引导出所述光纤的所述远端以及接收反射的光能信号并将所述接收到的反射光能信号引导返回至所述图像处理系统,并且其中所述成像组件包括超声传感器,并且其中所述可旋转导管包括同轴电缆,所述同轴电缆在其一端电连接到所述超声传感器,并能够在其另一端连接到形成所述图像处理系统的一部分的超声信号处理回路和动力源。
19.根据权利要求18所述的成像探头,其中,所述光学发射器/接收器包括聚焦及聚集光学器件,用于将从所述光纤的所述远端发射出的光聚焦到被成像的关注区域并且用于聚集从所述关注区域反射的光。
20.根据权利要求18所述的成像探头,其中,所述光学器件和所述电缆连接于所述图像处理系统,其中所述光学发射器/接收器与所述超声传感器相对于彼此定位和定向,并且其中所述图像处理系统配置成能够对在扫描关注区域期间从反射的超声能量束信号获得的图像和从反射的光学能量束信号获得的图像进行精确的联合配准。
21.根据权利要求1至13中任一项所述的成像探头,包括连接到所述成像组件的旋转编码器机构,并且其中所述成像组件的旋转运动由所述旋转编码器机构检测。
22.根据权利要求21所述的成像探头,其中,所述旋转编码器机构连接于图像处理系统,其中所述图像处理系统配置成使用所述旋转运动来推导所述可变成像角度。
23.根据权利要求1至13中任一项所述的成像探头,包括用于检测所述可移动构件相对于所述成像组件的其余部分的运动的运动检测器。
24.根据权利 要求23所述的成像探头,其中,所述运动检测器从由基于光学相干的检测器、反射强度检测器以及基于应变仪的检测器构成的组中选择。
25.根据权利要求1至13中任一项所述的成像探头,其中,所述存储机构包括磁性组件。
26.根据权利要求25所述的成像探头,其中,所述磁性组件是与所述可移动构件隔开的电磁体,并且包括结合在所述可移动构件中的磁体,该磁体被所述电磁体吸引或排斥。
27.根据权利要求1至13中任一项所述的成像探头,其中,所述存储机构包括表现出与所述可移动构件相互作用的静电属性的表面。
28.据权利要求1至13中任一项所述的成像探头,其中,所述中空轴是外导管套。
29.根据权利要求28所述的成像探头,其中,所述外套具有存储特性。
30.根据权利要求28所述的成像探头,其中,所述外套包括转向机构。
31.根据权利要求1至6中任一项所述的成像探头,其中,所述可移动构件是第一可移动构件,并且其中所述图像组件包括第二可移动构件,并且其中所述第二可移动构件安装成使得其运动是所述角速度的函数,并且其中所述第二可移动构件的运动推压所述第一可移动构件运动。
32.根据权利要求31所述的成像探头,包括用于放大所述可变成像角度的放大装置。
33.根据权利要求1至12中任一项所述的成像探头,其中,所述能量束是光,并且其中所述可旋转导管包括光纤并且所述成像组件包括与所述光纤光学连接的光学发射器/接收器。
34.根据权利要求33所述的成像探头,其中,所述光学发射器/接收器包括梯度折射率透镜。
35.根据权利要求1至13中任一项所述的成像探头,其中,所述可旋转导管连接于图像处理系统,其中所述图像处理系统配置成处理反射的能量信号并且产生图像。
36.根据权利要求1至13中任一项所述的成像探头,其中,所述存储机构包括弹簧。
37.根据权利要求1至6中任一项所述的成像探头,其中,所述可移动构件包括超声传感器。
38.根据权利要求37所述的成像探头,其中,所述存储机构包括导电元件,所述导电元件提供所述超声传感器与所述可旋转导管之间的电连接。
39.根据权利要求1至6中任一项所述的成像探头,其中,所述可移动构件绕枢转轴线枢转地安装,用于枢转运动,并且所述可旋转导管的被所述能量束穿过的端部附接于所述可移动构件并且定位成将所述能量束发射出所述中空轴以及接收反射的能量信号,用于穿过所述可旋转导管的返回传输。
40.一种成像探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线; 成像组件,所述成像组件在远离所述可旋转导管的近端的位置处附接于所述可旋转导管,所述可旋转导管配置成向所述成像组件传送能量,所述成像组件包括可移动构件,所述可移动构件用于以相对于所述可旋转导管的所述纵向轴线的可变成像角度沿着从所述可移动构件到所述中空轴之外的能量束路径传送能量束,所述可移动构件包括磁体和电磁体中的一个,所述成像组件包括所述磁体和所述电磁体中的另一个,所述电磁体能够连接于电磁动力源,其中所述可移动构件以所述可变角度是施加到所述电磁体的功率的函数的方式来安装; 其中,所述可移动构件由低摩擦机构支撑,所述低摩擦机构包括具有尖端的至少一个销以及至少一个榫头,所述至少一个榫头用于将所述至少一个销的所述尖端容纳在其中,使得所述至少一个销能够相对于所述至少一个榫头旋转并且调节所述可移动构件的定向。
41.根据权利要求40所述的成像探头,包括旋转驱动机构,所述旋转驱动机构用于使所述可旋转导管和所述成像组件绕所述纵向轴线以角速度旋转运动。
42.根据权利要求41所述的成像探头,还包括电磁动力源、连接到所述旋转驱动机构的控制器、以及连接到所述可旋转导管的图像处理系统,所述图像处理系统配置成处理反射的能量信号并且产生图像。
43.一种用于在旋转运动期间引导能量束的扫描装置,包括: 具有旋转轴线的旋转部件,其中所述旋转部件能够连接于旋转驱动机构;连接于所述旋转部件的能量发射装置,其中所述能量发射装置配置成产生能量束;可移动构件,所述可移动构件配置成以相对于所述旋转部件的所述旋转轴线的可变角度沿着能量束路径引导能量束,其中所述可移动构件连接于所述旋转部件,使得所述能量束路径与所述旋转部件的所述旋转轴线之间的可变角度通过调节所述旋转部件的角速度来改变;以及 存储机构,所述存储机构配置成向所述可移动构件施加力矩,以推压所述可移动构件离开优选的定向。
44.根据权利要求43所述的扫描装置,其中,所述能量是光能和超声能中的一种或两种。
45.根据权利要求43所述的扫描装置,其中,所述能量是治疗能量。
46.根据权利要求45所述的扫描装置,其中,所述治疗能量包括连续波激光或激光脉冲。
47.根据权利要求43至46中任一项所述的扫描装置,其中,所述可移动构件是可倾斜部件,所述可倾斜部件绕基本垂直于所述旋转轴线的轴线枢转地安装,用于枢转运动。
48.根据权利要求43至46中任一项所述的扫描装置,其中,所述可移动构件是可偏转部件,所述可偏转部件安装成通过绕基本垂直于所述旋转轴线的轴线偏转而移动。
49.根据权利要求43所述的扫描装置,其中,所述能量束是超声能量束并且所述能量发射装置是超声传感器。
50.根据权利要求43所述的扫描装置,其中,所述能量束是光学能量束,其中所述能量发射装置包括光纤。
51.根据权利要求43或44所述的扫描装置,其中,所述能量发射装置是配置成发射入射成像能量并且接收反射的成像能量的成像装置。
52.根据权利要求43至46中任一项所述的扫描装置,其中,所述能量发射装置是配置成发射治疗能量的治疗能量发射装置。
53.根据权利要求43至46中任一项所述的扫描装置,其中,所述可移动构件是第一可移动构件,并且其中所述旋转部件包括第二可移动构件,并且其中所述第二可移动构件安装成使得其运动是所述旋转部件的角速度的函数,并且其中所述第二可移动构件的运动推压所述第一可移动构件运动。
54.根据权利要求45所述的扫描装置,其中,所述治疗能量包括声学能量。
55.—种成像探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线; 扫描机构,所述扫描机构在远离 所述可旋转导管的近端的位置处附接于所述可旋转导管,所述扫描机构包括配置成用于控制从所述扫描机构发射的成像束的方向的可倾斜构件,其中所述可倾斜构件能够倾斜,使得所述可倾斜构件的倾斜角度相对于所述纵向轴线是可变的; 连接于所述扫描机构的成像角度编码器,其中所述成像角度编码器配置成产生取决于所述可倾斜构件的倾斜角度的信号;以及 信号传送通道,所述信号传送通道连接于所述成像角度编码器并且延伸穿过所述中空轴,用于将取决于所述倾斜角度的所述信号传送到所述中空轴的近端。
56.根据权利要求55所述的成像探头,其中,所述成像角度编码器配置成将入射能量束引导到与所述可倾斜构件相关联的表面上以及接收来自所述表面的反射能量束,使得所述可倾斜构件的倾斜角度的变化产生所述反射能量束的相应变化。
57.根据权利要求56所述的成像探头,其中,所述成像角度编码器配置成使得所述反射能量束的变化包括所述反射能量束的强度的变化。
58.根据权利要求56所述的成像探头,其中,所述成像角度编码器配置使得所述入射能量束和所述反射能量束的路径长度取决于所述可倾斜构件的倾斜角度。
59.根据权利要求55至58中任一项所述的成像探头,其中,所述成像角度编码器是光学成像角度编码器,所述光学成像角度编码器配置成将入射光束引导到与所述可倾斜构件相关联的表面上以及接收来自所述表面的反射光束,使得所述可倾斜构件的倾斜角度的变化产生所述反射光束的相应变化。
60.根据权利要求59所述的成像探头,其中,所述信号传送通道是光纤,并且其中所述信号是反射光束。
61.根据权利要求60所述的成像探头,其中,所述光纤配置成用于所述入射光束到所述成像角度编码器上的传送。
62.根据权利要求59所述的成像探头,其中,所述成像角度编码器包括用于产生所述入射光束的光源和用于检测所述反射光束的光检测器中的一种或两种。
63.根据权利要求59所述的成像探头,其中,所述表面包括配置成响应于所述可倾斜构件的倾斜角度的变化产生所述反射光束的强度变化的表面轮廓。
64.根据权利要求59所述的成像探头,其中,所述信号传送通道是适于光学相干断层成像的光学器件,其中所述成像角度编码器包括远端光学部件,所述远端光学部件用于将入射光学相干断层束引导到与所述可倾斜构件相关联的表面上以及接收来自所述表面的反射光学相干断层束,并且其中所述光学成像角度编码器配置成使得所述入射光学相干断层束和所述反射光学相干断层束的路径长度取决于所述可倾斜构件的倾斜角度。
65.根据权利要求55至58中任一项所述的成像探头,其中,所述成像角度编码器是配置成检测与倾斜角度相关联的声学反射的超声成像角度编码器。
66.根据权利要求55所述的成像探头,其中,所述成像角度编码器包括应变仪编码机构。
67.根据权利要求55所述的成像探头,其中,所述成像角度编码器包括从由阻抗式编码机构、电容式编码机构、磁性编码机构以及感应式编码机构构成的组中选择的编码机构。
68.根据权利要求55至58中任一项所述的成像探头,其中,所述可倾斜构件安装成使得所述倾斜角度能够通过调节所述可旋转导管的角速度来改变。
69.根据权利要求68所述的成像探头,还包括存储机构,所述存储机构配置成向所述可倾斜构件施加力矩,以 推压所述可倾斜构件离开优选的定向。
70.根据权利要求55所述的成像探头,其中,所述成像角度编码器配置成接收通过来自所述扫描机构的表面的成像能量束的反射产生的反射能量,使得所述可倾斜构件的倾斜角度的变化产生所述反射能量的相应变化。
71.—种成像探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线; 扫描机构,所述扫描机构在远离所述可旋转导管的近端的位置处附接于所述可旋转导管,所述扫描机构包括配置成用于控制从所述扫描机构发射的成像束的方向的可偏转构件,其中所述可偏转构件能够偏转,使得所述可偏转构件的偏转角度相对于所述纵向轴线是可变的; 连接于所述扫描机构的成像角度编码器,其中所述成像角度编码器配置成产生取决于所述可偏转构件的偏转角度的信号;以及 信号传送通道,所述信号传送通道连接于所述成像角度编码器并且延伸穿过所述中空轴,用于将取决于所述偏转角度的所述信号传送到所述中空轴的近端。
72.—种医疗探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线; 扫描机构,所述扫描机构在远离所述可旋转导管的近端的位置处附接于所述可旋转导管,所述扫描机构包括配置成用于控制所述扫描机构的扫描方向的可倾斜构件,其中所述可倾斜构件能够倾斜,使得所述可倾斜构件的倾斜角度相对于所述纵向轴线是可变的;连接于所述扫描机构的角度编码器,其中所述角度编码器配置成产生取决于所述可倾斜构件的倾斜角度的信号;以及 信号传送通道,所述信号传送通道连接于所述角度编码器并且延伸穿过所述中空轴,用于将取决于所述倾斜角度的所述信号传送到所述中空轴的近端。
73.—种成像探头,包括: 中空轴; 延伸穿过所述中空轴的可旋转导管,所述可旋转导管限定纵向轴线,其中所述可旋转导管能够连接于旋转驱动机构,所述旋转驱动机构用于调节所述可旋转导管绕所述纵向轴线的角速度; 成像组件,所述成像组 件在远离所述可旋转导管的近端的位置处附接于所述可旋转导管,所述成像组件包括可移动构件,所述可移动构件用于以相对于所述可旋转导管的所述纵向轴线的可变成像角度沿着从所述可移动构件到所述中空轴之外的能量束路径传送能量束,其中所述可移动构件安装成使得所述能量束路径与所述可旋转导管的所述纵向轴线之间的所述可变成像角度通过调节所述可旋转导管的角速度来改变;以及 存储机构,所述存储机构配置成向所述可移动构件施加力矩,以推压所述可移动构件离开优选的定向。
74.—种显示从成像探头获得的图像数据的方法,所述方法包括以下步骤: 提供根据权利要求55至70中任一项所述的成像探头; 致动所述扫描机构以改变所述可倾斜构件的倾斜角度,从而在关注的区域上扫描所述成像束; 记录通过在扫描所述成像束的同时检测反射的成像能量而获得的图像数据,以及记录来自所述成像角度编码器的信号;以及 处理所述信号以获得与所述图像数据相关联的成像角度数据;以及 基于所述成像角度数据进行所述图像数据的显示。
75.一种用于在旋转运动期间发射或接收能量束的扫描装置,包括: 具有旋转轴线的旋转部件,其中所述旋转部件能够连接于旋转驱动机构; 连接于所述旋转部件的能量发射或接收装置,其中所述能量发射或接收装置配置成发射或接收能量束; 可移动构件,所述可移动构件配置成使得所述能量束以相对于所述旋转部件的所述旋转轴线的可变角度沿着能量束路径被发射或接收,其中所述可移动构件连接于所述旋转部件,使得所述能量束路径与所述旋转部件的所述旋转轴线之间的可变角度通过调节所述旋转部件的角速度来改变;以及 存储机构,所述存储机构配置成向所述可移动构件施加力矩,以推压所述可移动构件离开优选的定向。
76.—种成像探头,包括: 具有纵向轴线的细长的中空轴,所述细长的中空轴具有远端部分、近端部分以及细长的中段部分,成像组件与所述近端部分远离地设置在所述细长的中空轴中,用于发射能量束和接收反射的能量信号,所述成像组件连接于成像导管的第一端,所述成像导管延伸穿过所述细长的中空轴并且能够在其第二端通过所述近端部分连接于图像处理系统,所述成像导管配置成将能量传送到所述成像组件; 所述成像导管和所述成像组件能够连接于旋转驱动机构,所述旋转驱动机构用于使所述成像导管和所述成像组件绕所述纵向轴线以角速度旋转运动,所述旋转驱动机构包括用于改变所述角速度的调节装置; 所述成像组件包括扫描机构,所述扫描机构包括可移动构件,所述可移动构件配置成以相对于所述纵向轴线的可变角度沿着离开所述细长的中空轴的路径传送所述能量束,从而提供所述成像组件的前方或侧向观察能力,其中所述可移动构件以所述可变角度是所述角速度的函数的方式来安装,所述扫描机构配置成接收所述反射能量信号并且通过所述成像导管将所述反射能量信号传送到所述图像处理系统;并且 其中,所述成像组件被所述细长的中空轴包围,使得所述成像组件能够在所述细长的中空轴内旋转,用于在 扫描周围的组织的同时机械地隔离所述成像组件的旋转运动。
全文摘要
本发明提供一种用于成像探头的扫描机构,该成像探头用于利用高分辨率成像对哺乳动物组织和结构进行成像,所述成像包括高频超声和/或光学相干断层成像。成像探头包括用于将旋转运动施加给成像组件的可调节旋转驱动机构,该成像组件包括发射能量到周围区域的光学或声学传感器。成像组件包括具有可移动构件的扫描机构,该可移动构件被设置成沿着所述细长中空轴之外的路径、以相对于所述纵向轴线可变的角度来传送能量束,从而给予成像组件前方及侧向观察的能力。该可移动构件以所述可变角度是成像组件角速度的函数的方式进行安装。
文档编号A61B8/12GK103222846SQ20131001520
公开日2013年7月31日 申请日期2008年1月21日 优先权日2007年1月19日
发明者布赖恩·考特尼, 奈杰尔·罗伯特·芒西, 阿曼迪普·辛格·辛德, 杨晓东, 弗朗西斯·斯图尔特·福斯特 申请人:桑尼布鲁克健康科学中心
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1