一种陶瓷材料螺纹结构的射频针的制作方法

文档序号:10542314阅读:455来源:国知局
一种陶瓷材料螺纹结构的射频针的制作方法
【专利摘要】本发明涉及医疗用品技术设备,旨在提供一种陶瓷材料螺纹结构的射频针。该种陶瓷材料螺纹结构的射频针包括针头、针体、针柄、针芯,针体为软管,针芯设置在针体内,在针体与针芯的夹层中设有进水通道和出水通道,针体的两端分别与针头、针柄连接,针头包括针尖端和针杆端,针尖端安装有射频发射端,且针尖端的表面沉积有Ti/Ti?DLC多孔膜,针杆端的表面沉积有Ti/DLC复合层。利用本发明的射频针进行治疗,使穿刺工作可以一步完成,出血点少,保证活检与治疗位置的统一性,可避开气管,能避免多次穿刺可能引起的肿瘤细胞沿穿刺路径传播、种植转移的危险,能增强治疗时超声图像的成像效果,便于操作。
【专利说明】
一种陶瓷材料螺纹结构的射频针
技术领域
[0001]本发明是关于医疗用品技术设备领域,特别涉及一种陶瓷材料螺纹结构的射频针。
【背景技术】
[0002]在微创介入治疗医学领域里,不同功能的穿刺针产生不同的治疗效果。譬如:现在应用的穿刺针中有供进行软组织穿刺或骨髓穿刺的穿刺针;一个普通射频穿刺治疗针可以导入射频能量使组织受热凝结;一个活检穿刺针可以用于软组织的活体采样等等。
[0003]射频消融术是目前微创治疗中发展较成熟的一种治疗方式,在肺部结节治疗领域,当病人不满足手术条件时(比如心率血压不在正常范围内,单纯放化疗效果不理想等),可考虑射频消融治疗方案。射频消融术的特点:微创、最大限度地保留靶器官功能;并发症少、恢复快、患者易接受;疗效确切,可重复治疗;适应症广;操作简单,定位、温控可靠等。
[0004]然而,目前传统射频针材质、弹性、韧性较差,射频针表面光滑度差,摩擦阻力较大,严重影响医疗安全性。而且行射频消融术时必须在CT、MR或超声等引导,传统射频针在引导图像上显影很模糊,为医生对患病处进行精准的射频消融造成了很大的困难。因此,针对以上缺点对于传统射频针进行改进是非常必要的。

【发明内容】

[0005]本发明的主要目的在于克服现有技术中的不足,提供一种能经支气管镜通道精确定位到结节位置,进行射频消融治疗的射频针。为解决上述技术问题,本发明的解决方案是:
[0006]提供一种陶瓷材料螺纹结构的射频针,包括针头、针体、针柄、针芯,所述针体为软管,能通过支气管镜通道到达肺结节部位;针芯设置在针体内,在针体与针芯的夹层中设有进水通道和出水通道;针体的两端分别与针头、针柄连接,针柄的另一端用于利用电板线连接主机;
[0007]所述针头包括针尖端和针杆端(通常针尖端的长度为针头长度的18%),针尖端安装有射频发射端;所述针尖端的表面沉积有Ti/T1-DLC多孔膜,即依次沉积有Ti多孔膜和T1-DLC层;所述针杆端的表面沉积有Ti/DLC复合层,即依次沉积有Ti多孔膜和DLC层。
[0008]在本发明中,所述针体的长度大于40cm,针体的直径为17G?18G。
[0009]在本发明中,所述针头中针尖端的顶端为刀头,刀头是平刃、斜刃或者圆刃状的形状。
[0010]在本发明中,所述除刀头外的其余针尖端上设有外螺纹。
[0011]提供用于所述射频针的针头的制备方法,具体包括下述步骤:
[0012](I)制备导电层(即沉积金属掺杂DLC导电层):
[0013]将射频消融针的针尖端置于磁控与离子束复合溅射沉积系统(即双弯曲磁过滤阴极电弧复合磁控溅射镀膜装置)的中空腔室中,抽真空;然后通过离子源向放置射频消融针针尖的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.10?0.15A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40?50SCCm,氩气溅射电流为2A,偏压-100V,沉积至射频消融针的针尖端表面形成厚度为2?3μπι、表面孔径400?600nm的Ti多孔膜;
[0014]接着通过离子源向放置射频消融针针尖端的中空腔室内通入流量为30?40sCCm的乙炔气体,离子源电流为0.20?0.25A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70?80SCCm,氩气溅射电流为3A,向射频消融针基体施加脉冲偏压-200V,在射频消融针针尖端的Ti多孔膜表面形成T1-DLC层,沉积至射频消融针的针尖端表面形成厚度为4?5μπι、表面孔径600?800nm的Ti/T1-DLC多孔膜;
[0015](2)制备非导电层:
[0016]取出步骤(I)制备的针尖端形成Ti/T1-DLC多孔膜的射频消融针,将形成Ti/T1-DLC 多孔膜的针尖端采用铝箔纸包覆遮挡后 ,将针杆端置于离子束复合磁控溅射沉积系统的中空腔室中,抽真空;然后通过离子源向放置射频消融针针杆端的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.1?0.15A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40?50SCCm,氩气溅射电流为2A,偏压-100V,沉积至射频消融针的针杆端表面形成厚度为2?3μπι、表面孔径400?600nm的Ti多孔膜;
[0017]接着通过离子源向放置射频消融针针杆端的中空腔室内通入流量为30?40sCCm的乙炔气体,离子源电流为0.20?0.25A,同时施加-200V的脉冲偏压,从而在射频消融针针杆端的Ti多孔膜表面形成DLC层,沉积至针杆端形成厚度为4?5μπι、表面孔径600?SOOnmTi/DLC复合层,即获得表面改性的射频消融针。
[0018]在本发明中,所述步骤(I)中,Ti多孔膜的沉积条件为:通入流量为20sCCm的乙炔气体,离子源电流为0.10A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40sCCm,氩气溅射电流为2A,偏压-100V,沉积时间为20min。
[0019]在本发明中,所述步骤(I)中,T1-DLC多孔膜的沉积条件为:通入流量为40SCCm的乙炔气体,离子源电流为0.2A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70sccm,氩气溅射电流为3A,同时施加-200V的脉冲偏压,沉积时间为60min。
[0020]在本发明中,所述步骤(2)中,Ti多孔膜的形成条件为:通入流量为20sCCm的乙炔气体,离子源电流为0.1A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40sCCm,氩气溅射电流为2A,偏压-100V,沉积时间为20min。
[0021]在本发明中,所述步骤(2)中,DLC层形成的条件为:通入流量为40sccm的乙炔气体,离子源电流为0.20A,同时施加-200V的脉冲偏压,沉积时间为60min。
[0022]与现有技术相比,本发明的有益效果是:
[0023]本发明将针体设计成软管,借助支气管镜通道定位到肺部小结节位置,完成射频的热凝、损毁等功用。软管的设计使得射频针不需要经皮肺穿刺到达结节部位,避开了气管、支气管,避免了气胸等问题;利于控制出血点,利于止血等操作。同时本发明针头采用陶瓷结构、螺纹设计,既能隔绝人体组织,血流等对射频针热场的影响,使射频场热量更好地集中,从而更好的消融局部组织,又能增强超声的反射,从而加强辅助治疗的超声成像的清晰程度,方便医生操作,从而提升治疗效果。
[0024]利用本发明的射频针进行治疗,使原来需要分几次进行的穿刺工作,可以一步完成,减少手术创伤,减轻病人痛苦;出血点少,利于止血;保证活检与治疗位置的统一性;可避开气管,避免发生气胸;避免多次穿刺可能引起的肿瘤细胞沿穿刺路径传播、种植转移的危险;增强治疗时超声图像的成像效果,便于操作。
【附图说明】
[0025]图1为本发明的结构示意图。
[0026]图2为本发明的结构示意图。
[0027]图3为本发明的结构示意图。
[0028]图4为本发明中的针体示意图。
[0029]图5为本发明中的针头示意图。
[0030]图6为本发明中的针头示意图。
[0031 ]图中的附图标记为:I针柄;2针体;3针芯;4针头;5电板线;6进水通道;7出水通道;8射频发射?而;9针尖?而;10针杆?而;11刀头。
【具体实施方式】
[0032]下面结合附图与【具体实施方式】对本发明作进一步详细描述:
[0033]如图1至图3所示的一种陶瓷材料螺纹结构的射频针包括针头4、针体2、针柄1、针芯3;针体2的两端分别与针头4、针柄I连接,针柄I的另一端用于利用电板线5连接主机;针柄I设计利于持握,同时防止出现漏电漏水现象。
[0034]针体2为软管,针芯3设置在针体2内,针体2的长度大于40cm,针体2的直径为17G?18G,此设计可通过现有支气管镜通道到达肺部结节位置,相对于经皮肺穿刺进行射频消融肺部结节,同时避免了经皮肺穿刺进行射频消融肺部结节的并发症;软管的设计同样可通过大腿部动脉的支架通道,用于治疗门静脉癌栓。
[0035]针头4包括针尖端9和针杆端10,通常针尖端9的长度为针长度的18%。针尖端9安装有射频发射端8,且针尖端9采用陶瓷材质,具有隔绝热量,集中射频场能量的作用,从而更好的消融局部组织;针尖端9的顶端为刀头11(内层为绝缘层部分,外层为陶瓷结构),刀头11的形状包括平刃、斜刃、圆刃状避免了增加其他的连接机构,增强射频的使用效果。针杆端10设有外螺纹,具有增强超声反射,改善辅助治疗超声成像的作用,方便操作,从而提升治疗效果;针杆端10的内层为绝缘材质的内层,外层为陶瓷材质的外层。所述针尖端9的表面沉积有Ti/T1-DLC多孔膜,即依次沉积有Ti多孔膜和T1-DLC层;所述针杆端10的表面沉积有Ti/DLC复合层,即依次沉积有Ti多孔膜和DLC层。
[0036]射频针针头4的制备方法,具体包括下述步骤:
[0037](I)制备导电层(即沉积金属掺杂DLC导电层):
[0038]将射频消融针的针尖端9置于磁控与离子束复合溅射沉积系统(即双弯曲磁过滤阴极电弧复合磁控溅射镀膜装置)的中空腔室中,抽真空;然后通过离子源向放置射频消融针针尖的中空腔室内通入流量为20SCCm的乙炔气体,离子源电流为0.10?0.15A(优选
0.10A),再以钛为派射革El材,向派射革El内通入氩气,氩气流量为40?50sccm(优选40sccm),氩气溅射电流为2A,偏压-100V,一般沉积时间为20min,沉积至射频消融针的针尖端9表面形成厚度为2?3μπι、表面孔径400?600nm的Ti多孔膜;
[0039]接着通过离子源向放置射频消融针针尖的中空腔室内通入流量为30?40sCCm(优选40sCCm)的乙炔气体,离子源电流为0.20?0.25A(优选0.2A),再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70?80SCCm(优选70SCCm),氩气溅射电流为3A,向射频消融针基体施加脉冲偏压-200V,在射频消融针针尖端9的Ti多孔膜表面形成T1-DLC层,一般沉积时间为60min,沉积至射频消融针的针尖端9表面形成厚度为4?5μηι、表面孔径600?800nm的Ti/T1-DLC多孔膜。
[0040] (2)制备非导电层:
[0041 ]取出步骤(I)制备的针尖端9形成Ti/T1-DLC多孔膜的射频消融针,将形成Ti/T1-DLC 多孔膜的针尖端 9 采用铝箔纸包覆遮挡后,将针杆端 10 置于离子束复合磁控溅射沉积系统的中空腔室中,抽真空;然后通过离子源向放置射频消融针针杆的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.1?0.15A(优选0.1A),再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40?50sccm(优选40sccm),氩气溅射电流为2A,偏压-100V,一般沉积时间为20min,沉积至射频消融针的针杆端10表面形成厚度为2?3μηι、表面孔径400?600nm的Ti多孔膜;
[0042]接着通过离子源向放置射频消融针针杆的中空腔室内通入流量为30?40sCCm(优选40sccm)的乙炔气体,离子源电流为0.20?0.25A(优选0.20A),同时施加-200V的脉冲偏压,从而在射频消融针针杆端10的Ti多孔膜表面形成DLC层,一般沉积时间为60min,沉积至针杆端10形成厚度为4?5μπι、表面孔径600?800nm Ti/DLC复合层,即获得表面改性的射频消融针。
[0043]下面的实施例可以使本专业的专业技术人员更全面地理解本发明,但不以任何方式限制本发明。实施例中使用的双弯曲磁过滤阴极电弧复合磁控溅射镀膜装置,购自中科院宁波材料所。
[0044]实施例1
[0045]①导电层:采用离子注入改性法
[0046]将射频消融针的针尖端9(长度16.65cm,直径18G,针杆长度12.45cm,针尖长度3cm)置于双弯曲磁过滤阴极电弧复合磁控溅射镀膜装置的中空腔室内,抽真空,然后通过离子源向放置射频消融针针尖的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.1OA,然后以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40SCCm,氩气溅射电流为2A,偏压-100V,沉积时间为20min,在射频消融针的针尖端9表面形成厚度为2μπι,表面孔径400?600nm的Ti多孔膜;接着通过离子源向放置射频消融针针尖的中空腔室内通入流量为40sCCm的乙炔气体,离子源电流为0.2A。然后以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70sCCm,氩气溅射电流为3A,偏压-200V,沉积时间为60min;在射频消融针的针尖端9的Ti多孔膜表面形成T1-DLC层,从而在射频消融针的针尖端9表面形厚度为4?5μπι,表面孔径600?800nm的Ti/T1-DLC多孔膜。
[0047]②非导电层:采用离子注入改性法
[0048]将表面形成Ti/T1-DLC多孔膜的射频消融针的针尖端9用铝泊纸包覆后,将射频消融针(长度16.65cm,直径18G,针杆长度12.45cm,针尖长度3cm)的针杆端10置于双弯曲磁过滤阴极电弧复合磁控溅射镀膜装置的中空腔室中,抽真空,然后通过离子源向含射频消融针的针杆的中空腔室内通入流量为20sccm的乙炔气体,离子源电流0.1A,然后以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40SCCm,气溅射电流为2A,偏压-100V,沉积时间为20min,在射频消融针的针杆端10表面形成厚度为2?3μπι,表面孔径400?600nm的Ti多孔膜;接着通过离子源向含射频消融针的针杆的中空腔室内通入流量为40sCCm的乙炔气体,离子源电流为0.2A,同时施加-200V的脉冲偏压,沉积时间为60min。从而在射频消融针的针杆端10表面形成厚度为4?5μηι,表面孔径600?800nm Ti/DLC复合层。
[0049]实施例2抗菌性
[0050]①材料
[0051 ] 菌株:金黄色葡萄球菌(Staphyloccocusaureus)、白色念珠菌(C.albicans)、大肠杆菌(Escherichia coli)均购自北京中国药品生物制品检定所(Nat1nal Institute forthe Control of Pharmaceutical and B1logical Products,NICPBP)。
[0052]导电陶瓷表面改性材料Ti/T1-DLC多孔膜:按照实施例1步骤(I)中导电层的方法制备厚度4?5μπι、表面孔径600?800nm的Ti/T1-DLC多孔膜,并将Ti/T1-DLC多孔膜分别喷涂于不锈钢圆柱体表面(1.5*2*2cm大小)。
[0053]非导电陶瓷表面改性材料Ti/DLC复合层:按照实施例1步骤(2)中非导电层的方法制备厚度4?5μπι、表面孔径600?800nm的非导电纳米表面改性材料Ti/DLC,并分别喷涂于不锈钢圆柱体表面。
[0054]②操作
[0055]将非导电陶瓷表面改性材料Ti/DLC复合层以及导电陶瓷表面改性材料Ti/T1-DLC多孔膜,喷涂于不锈钢圆柱体表面(1.5*2*2CM大小),以未喷涂的相同圆柱体为对照。将灭菌后的琼脂培养基倒入培养皿中(已灭菌),制成平板,然后分别取取革兰氏阳性菌金黄色葡萄球菌、革兰氏阴性菌大肠杆菌以及白色念珠菌的菌液Iml置于平板上,用刮刀涂布均匀。把Ti/DLC及Ti/T1-DLC膜分别喷涂于不锈钢圆柱体表面(直径20mm)、采用在无光照条件下,测量抑菌圈的方法置于平板中央(每种材料分别做3个试样,放到不同的培养皿中)。再将培养皿置于30度的恒温培养箱中,24h后测定试样周围抑菌圈的大小,以抑菌圈直径的平均值作为评价材料抗菌性能的依据。分别测试了不同表面改性的纳米材料对革兰氏阳性菌金黄色葡萄球菌、革兰氏阴性菌大肠杆菌以及白色念珠菌的抗菌性能,观察材料周围的细菌生长情况,并且测量透明抑菌圈直径,以确定复合陶瓷材料的抗菌性能。
[0056]结果:Ti/DLC复合层的金黄色葡萄球菌抑菌圈直径:44.2 ± 3.4mm,白色念珠菌42.5 ± 3.8mm,大肠杆菌41.8 ± 3.7 mm,抗菌活性远高于对照组(未给予纳米材料表面改性的普通组)。同时,Ti/T1-DLC多孔膜的金黄色葡萄球菌抑菌圈直径:47.3±3.9mm,白色念珠菌46.2 ± 3.6mm,大肠杆菌45.9 ± 3.2mm,抗菌活性远高于对照组。
[0057 ]其中营养琼脂培养基组成为:取蛋白胨5g,氯化钠5g,琼脂15g,牛肉膏I g,酵母膏2g,溶于适量水,定容至I OOOmL后调pH为7.4。营养肉汤培养基:取蛋白胨1g,牛肉膏3g,氯化钠5g,溶于适量水,定容至100mL后调pH为7.2。改良马丁培养基:取蛋白胨5g,磷酸氢二钾I g,硫酸镁0.5g,酵母粉2g,葡萄糖20g,溶于适量水,定容至100mL后调pH为6.4。菌液制备:接种斜面保藏的革兰氏阳性菌金黄色葡萄球菌、革兰氏阴性菌大肠杆菌至营养肉汤培养基中,30°C?35°C培养18小时?24小时,培养液过滤,收集湿菌体;接种斜面保藏的白色念珠菌至改良马丁培养基中,23?28°C培养24?48小时,培养液过滤,收集湿菌体,上述湿菌体培养物分别用0.9wt%无菌氯化钠水溶液制成每Iml含菌数小于10cfu (菌落形成单位)的菌悬液。
[0058]实施例3抗菌性
[0059]采用实施例2方法将非导电陶瓷表面改性材料Ti/DLC以及导电陶瓷表面改性材料Ti/T1-DLC喷涂于不锈钢圆柱体表面(1.5*2*2CM大小)。压力蒸汽消毒法灭菌处理后,选择2间室内面积<30m2的房间,分别将不同陶瓷材料喷涂的不锈钢圆柱体,以及未表面改性的对照组不锈钢圆柱体,按间隔1cm的标准,同时放到各采样点,暴露24小时后采样,并置于一次性普通营养琼脂平板,37 °C培养48h。计数平板上菌落数,计算各组结果。每组重复5份样。
[0060]结果显示,表明非导电陶瓷表面改性材料Ti/DLC其菌落数平均只有7.80± 1.64,远低于对照组(普通不锈钢)的菌落数。在导电陶瓷表面改性材料Ti/T1-DLC,其菌落数平均只有7.60±1.14,也显著对照组的菌落数。
[0061 ] 实施例4生物相容性
[0062 ] MEF小鼠成纤维细胞,Be I肝癌细胞、A549肺癌细胞分别购自美国ATCC公司。
[0063]导电陶瓷表面改性材料Ti/T1-DLC多孔膜:按照实施例1步骤(I)中导电层的方法制备厚度4?5μπι、表面孔径600?800nm的Ti/T1-DLC多孔膜,并将Ti/T1-DLC多孔膜分别喷涂于6-孔细胞培养板(Corning 6孔细胞培养板,美国)表面。
[0064]非导电陶瓷表面改性材料Ti/DLC复合层:按照实施例1步骤(2)中非导电层的方法制备厚度为厚度4?5μπι、表面孔径600?800nm的非导电陶瓷表面改性材料Ti/DLC,并分别喷涂于6-孔细胞培养板(Corning 6孔细胞培养板,美国)表面。
[0065]方法:将喷涂非导电纳米表面改性材料Ti/DLC以及导电陶瓷表面改性材料Ti/T1-DLC 的细胞培养 6 孔板 ,经常规灭菌后, 在含有 10ml.L-1新生牛血清、10ku.L-1青霉素及10mg.L-1 链霉素的DMEM 培养基(Dulbecco ’ s Modified Eagle’s Medium, Invitrogen,Carlsbad,CA,USA)、10%胎牛血清(fetal bovine serum,FBS)中,37°C、50ml.L-1C02条件下培养人肿瘤细胞与鼠成纤维细胞,显微镜下观察细胞的生长、增殖情况及材料细胞毒性。同样条件下,以未喷涂的6孔板为对照。
[0066]结果:人肿瘤细胞与鼠成纤维细胞在纳米材料表面生长分化良好,增殖活性与对照组(即表面未喷涂纳米材料孔)进行比较未受明显影响。经MTT法检测细胞无毒性。经倒置显微镜下观察:Id后可见细胞在表面附着生长;2d后可见细胞在材料表面生长良好,不受显著显响。说明Ti/DLC的非导电纳米材料、Ti/T1-DLC的导电纳米材料组织相容性好,能满足临床肿瘤射频消融治疗的需求。
[0067]最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。
【主权项】
1.一种陶瓷材料螺纹结构的射频针,包括针头、针体、针柄、针芯,其特征在于,所述针体为软管,能通过支气管镜通道到达肺结节部位;针芯设置在针体内,在针体与针芯的夹层中设有进水通道和出水通道;针体的两端分别与针头、针柄连接,针柄的另一端用于利用电板线连接主机; 所述针头包括针尖端和针杆端,针尖端安装有射频发射端;所述针尖端的表面沉积有Ti/T1-DLC多孔膜,即依次沉积有Ti多孔膜和T1-DLC层;所述针杆端的表面沉积有Ti/DLC复合层,即依次沉积有Ti多孔膜和DLC层。2.根据权利要求1所述的一种陶瓷材料螺纹结构的射频针,其特征在于,所述针体的长度大于40cm,针体的直径为17G?18G。3.根据权利要求1所述的一种陶瓷材料螺纹结构的射频针,其特征在于,所述针头中针尖端的顶端为刀头,刀头是平刃、斜刃或者圆刃状的形状。4.根据权利要求1所述的一种陶瓷材料螺纹结构的射频针,其特征在于,所述除刀头外的其余针尖端上设有外螺纹。5.用于权利要求1所述射频针的针头的制备方法,其特征在于,具体包括下述步骤: (1)制备导电层: 将射频消融针的针尖端置于磁控与离子束复合溅射沉积系统的中空腔室中,抽真空;然后通过离子源向放置射频消融针针尖的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.1O?0.15A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40?50sccm,氩气溅射电流为2A,偏压-100V,沉积至射频消融针的针尖端表面形成厚度为2?3μπι、表面孔径400?600nm的Ti多孔膜; 接着通过离子源向放置射频消融针针尖端的中空腔室内通入流量为30?40sCCm的乙炔气体,离子源电流为0.20?0.25A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70?80SCCm,氩气溅射电流为3A,向射频消融针基体施加脉冲偏压-200V,在射频消融针针尖端的Ti多孔膜表面形成T1-DLC层,沉积至射频消融针的针尖端表面形成厚度为4?5μπι、表面孔径600?800nm的Ti/T1-DLC多孔膜; (2)制备非导电层: 取出步骤(I)制备的针尖端形成T i /T 1-DLC多孔膜的射频消融针,将形成T i /T 1-DLC多孔膜的针尖端采用铝箔纸包覆遮挡后,将针杆端置于离子束复合磁控溅射沉积系统的中空腔室中,抽真空;然后通过离子源向放置射频消融针针杆端的中空腔室内通入流量为20sCCm的乙炔气体,离子源电流为0.1?0.15A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40?50sCCm,氩气溅射电流为2A,偏压-100V,沉积至射频消融针的针杆端表面形成厚度为2?3μπι、表面孔径400?600nm的Ti多孔膜; 接着通过离子源向放置射频消融针针杆端的中空腔室内通入流量为30?40sCCm的乙炔气体,离子源电流为0.20?0.25A,同时施加-200V的脉冲偏压,从而在射频消融针针杆端的Ti多孔膜表面形成DLC层,沉积至针杆端形成厚度为4?5μηι、表面孔径600?800nm Ti/DLC复合层,即获得表面改性的射频消融针。6.根据权利要求5所述的针头的制备方法,其特征在于,所述步骤(I)中,Ti多孔膜的沉积条件为:通入流量为20SCCm的乙炔气体,离子源电流为0.10A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40sccm,氩气溅射电流为2A,偏压-100V,沉积时间为20min。7.根据权利要求5所述的针头的制备方法,其特征在于,所述步骤(I)中,T1-DLC多孔膜的沉积条件为:通入流量为40sCCm的乙炔气体,离子源电流为0.2A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为70SCCm,氩气溅射电流为3A,同时施加-200V的脉冲偏压,沉积时间为60min。8.根据权利要求5所述的针头的制备方法,其特征在于,所述步骤(2)中,Ti多孔膜的形成条件为:通入流量为20sCCm的乙炔气体,离子源电流为0.1A,再以钛为溅射靶材,向溅射靶内通入氩气,氩气流量为40sccm,氩气溅射电流为2A,偏压-1OOV,沉积时间为20min。9.根据权利要求5所述的针头的制备方法,其特征在于,所述步骤(2)中,DLC层形成的条件为:通入流量为40SCCm的乙炔气体,离子源电流为0.20A,同时施加-200V的脉冲偏压,沉积时间为60min。
【文档编号】A61B18/14GK105919667SQ201610458780
【公开日】2016年9月7日
【申请日】2016年6月20日
【发明人】孔德兴, 唐东辉, 雷勇
【申请人】孔德兴
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1