使用非牛顿流体清洗衬底的方法和装置的制作方法

文档序号:1414924阅读:366来源:国知局
专利名称:使用非牛顿流体清洗衬底的方法和装置的制作方法
背景技术
整个半导体器件制造工艺中,要清洗半导体晶片以从半导体晶片的表面去除颗粒,诸如自沉积系统的污染物。如果不能去除颗粒,颗粒将污染半导体晶片导致半导体晶片上的电子器件损坏。结果在整个制造工艺中重复多次的清洗操作限定了非常关键的步骤。
一种清洗半导体晶片的方法是用去离子水冲洗半导体晶片的表面。然而,因为该工艺使用大量的水来去除仅少量的污染物,用水清洗半导体晶片是非常无效率的。具体地,无效率是因为水的牛顿特性。图1是水的切应力和应变的图。切应力和应变的图是切应力比对切应变的曲线。如图1所示,切应变比对切应力的曲线在图中为直线。这样,水(及所有的牛顿流体)的特征在于具有与切应变比成线性比例的切应力。曲线经过图的原点101。因此,施加任何有限的切应力到水上能促使水流动。换句话说,水具有小的或没有屈服点,其需要小力以促使水流动。
图2是在半导体晶片202的表面上的水流的流速分布图。如图2中所示,因为水基本上没有屈服点,与半导体晶片202的表面接触的水的速度基本上为零且从半导体晶片向外速度增加。因此,在与半导体晶片202的表面接触处的水基本上静止。因为恰好在半导体晶片202的表面上的水不移动,没有水流机制带走在半导体晶片表面的颗粒。因此,需要大量的水流以在半导体晶片202的表面上产生任何显著的速度以能够从表面去除颗粒。
根据前述观点,需要提供更有效地使用流体以清洗半导体晶片的方法和装置。

发明内容
一般地说,本发明提供了用于清洗衬底的方法和装置满足这些需要。应该清楚本发明可以以多种方式实施,包括作为方法、系统或设备。下面描述本发明的几个创造性的实施方式。
根据本发明的第一方面,提供了用于清洗衬底的方法。在该方法中,提供了非牛顿流体流,其中至少部分流呈现栓塞流。为了从衬底表面去除颗粒,放置衬底表面与呈现栓塞流的流部分接触以使呈现栓塞流的流部分在衬底表面上移动。
根据本发明的第二方面,提供了用于清洗衬底的方法。在该方法中,腔室用非牛顿流体充满以及将衬底放置到腔室中。此后,另外非牛顿流体强迫进入腔室以产生非牛顿流体流,其中至少部分流呈现栓塞流。衬底放置在腔室内以使呈现栓塞流的流部分在衬底表面上移动以从衬底表面去除颗粒。
根据本发明的第三方面,提供了用于清洗衬底的方法。在该方法中,提供应用元件的表面以及设置应用元件在衬底表面之上。在应用元件的表面和衬底表面之间施加非牛顿流体流。至少部分流呈现栓塞流以使呈现栓塞流的流部分在衬底表面上移动以从衬底表面去除颗粒。
根据本发明的第四方面,提供了用于清洗衬底的装置。该装置为配置在衬底表面之上且配置成接收非牛顿流体的应用元件。该应用元件能够施加非牛顿流体到表面以在应用元件和表面之间产生非牛顿流体流。该流具有呈现栓塞流的部分以使栓塞流在衬底表面上移动以从表面去除颗粒。
根据本发明的第五方面,提供了用于清洗衬底的装置。该装置包括具有导管形式空腔的腔室。导管能够输送非牛顿流体流以使部分流呈现栓塞流。另外,腔室配置成容纳衬底以使栓塞流在衬底表面上移动以从表面去除颗粒。
参考附图,通过例子的方式说明本发明的原理,从下面的详细的说明将清楚本发明的优点和其它方面。


参考附图,通过下面的详细的说明将清楚本发明,相同的参考数字代表相同的结构元件。
图1是水的切应力和应变的图。
图2是在半导体晶片的表面上的水流的流速分布图。
图3是根据本发明一个实施方式的非牛顿流体的切应力和应变的图。
图4是根据本发明一个实施方式的腔室内的非牛顿流体的栓塞流的流速分布图。
图5是根据本发明一个实施方式的腔室内的非牛顿流体的栓塞流的另一个流速分布图。
图6是根据本发明一个实施方式的用于清洗衬底的方法的高水平概述的流程图。
图7是根据本发明一个实施方式的清洗衬底的装置的简化透视图。
图8是图7中示出的应用元件的截面、侧视图。
图9是根据本发明一个实施方式的在图7和图8中示出的装置的表面和衬底的表面之间的非牛顿流体流的流速分布图。
图10是根据本发明一个实施方式的清洗衬底的另一个装置的简化透视图。
图11A-C示出了根据本发明一个实施方式的图10中示出的清洗衬底的装置的更详细的图。
图12A和12B是根据本发明一个实施方式的非牛顿流体的不同流经过图10和11的腔室的不同流速分布图。
具体实施例方式
发明描述了用于清洗衬底的方法和装置。显然对于本领域的技术人员,虽然没有这些具体的细节部分或全部,也可以实现本发明。在其它的例子中,为了使本发明清楚,没有详细地描述公知的工艺操作。
在此描述的实施方式提供了用于清洗衬底的方法和装置。本质上,用具有能够作为栓塞流的非牛顿流体来清洗衬底。下面更详细地解释,提供了非牛顿流体流且至少部分流呈现栓塞流。为了清洗衬底,放置衬底表面与呈现栓塞流的流部分接触。在一个实施方式中,施加非牛顿流体到衬底表面使呈现栓塞流的流部分以在衬底表面上流动。在另一个实施方式中衬底浸入呈现栓塞流的非牛顿流体流。
图3是根据本发明一个实施方式的非牛顿流体的切应力和应变的图。非牛顿流体是当施加剪切力接近零时不流动的流体。具体地如在图3中所示,非牛顿流体的特征在于具有屈服点302(τyield),其需要最小力或切应力以促使非牛顿流体流动。非牛顿流体的一个范例是位于固体和液体极值之间的中间的软稠合物质。通过外部应力软稠合物质容易形变以及软稠合物质的例子包括乳胶、胶质、泡沫等。应该清楚乳胶包括不互溶的液体例如,在水中的牙膏、低温淤渣、油等。胶质是分散在水中的聚合物,白明胶是胶质的例子。泡沫是气泡限定在液体基体中,剃须膏是泡沫的例子。
图4是根据本发明一个实施方式的腔室内的非牛顿流体的栓塞流的流速分布图。在本实施方式中,腔室具有管形式且图4显示了管的任何截面的流速分布图。流经管的非牛顿流体具有大于施加到穿过管的直径404的非牛顿流体的切应力的屈服点。这样,全部流呈现栓塞流。栓塞流由其中流速基本上是均匀的平均速度分布图限定。换句话说,用栓塞流,非牛顿流体材料的大部分以基本上相同的速度流经该管以使栓塞流具有均匀的速度穿过管的直径404。这样,与管壁402接触的非牛顿流体的速度接近管中间的非牛顿流体的速度。因此栓塞流可在或靠近壁402处导致高速的非牛顿流体。
图5是根据本发明一个实施方式的腔室内的非牛顿流体的栓塞流的另一个流速分布图。腔室是管形式的且图5显示了管的任何截面的流速分布图。在本实施方式中,施加到流经管的非牛顿流体的切应力超出在流的某些部分的非牛顿流体的屈服点。切应力超出屈服点的流部分呈现为非栓塞流(即,牛顿流),非栓塞流的特征在于从栓塞流的部分到壁402的区域流速下降的流速梯度。另一方面,屈服点大于切应力的流部分呈现为栓塞流。如图5中所示,流速分布图显示了非牛顿流体流具有不同流特性。不能获得穿过管的整个直径404的栓塞流。具体地,管壁402附近的流部分502呈现为非栓塞流,其特征在于具有抛物线形状的流速分布图。相比之下,栓塞流具有平面形状的流速分布图且在呈现在流速分布图之间部分504处。图5显示了呈现栓塞流的流部分504比呈现速度梯度的流部分502具有更高的速度。因此,在图5的实施方式中,呈现栓塞流的流部分504处具有最高的速度。
应该清楚并非所有非牛顿流体呈现栓塞流。不同的因素(例如,施加的切应力、非牛顿流体的特性等)决定是否非牛顿流体作为栓塞流。例如,很快流出(drain)和破裂的泡沫(非牛顿流体)不具有任何显著的机械强度。这种快流出泡沫实际上不具备屈服点且不可能作为栓塞流。相比之下,具有高屈服点的慢慢流出且能不确定地保持其整体的高质量泡沫可作为栓塞流。有不同的方法以增加非牛顿流体的屈服点。例如,为了增加泡沫的屈服点,使用较小的气泡。另外,增加泡沫中表面活性剂的量和/或使用不同的表面活性剂能限制泡沫流出,从而,增加泡沫的屈服点。可以添加另外的聚合物或其他的粘接材料以增加泡沫的屈服点且减少自泡沫的液体流出率。
图6是根据本发明一个实施方式的用于清洗衬底的方法的高水平概述的流程图。衬底是任何适合的基材,在一个范例实施方式中,衬底是半导体晶片,其是半导体材料的薄片,诸如晶体硅,其上通过扩散和沉积不各种材料形成微电路。在另一个范例实施方式中,衬底是硬盘,其由带有磁介质涂层的圆的、刚性板构成。以操作602开始,提供了非牛顿流体流且至少部分流呈现栓塞流。在操作604中,放置衬底表面与呈现栓塞流的流部分接触以使栓塞流在衬底表面上流动以从衬底去除颗粒。放置衬底表面与呈现栓塞流的流部分接触因为流的这些部分具有最高的速度。实际上,放置衬底的表面在流的具有最快流速度的部分。高速的非牛顿流体的流与衬底表面上的颗粒的较快的碰撞和增加的碰撞频率相关,从而在衬底表面处产生高的摩擦。高速度和产生的高摩擦对应于从衬底表面高速度的去除颗粒。
图7是根据本发明一个实施方式的清洗衬底的装置的简化透视图。如图7所示,装置是配置成设置在衬底702的表面之上的应用元件704。在图7的实施方式中,应用元件704不产生非牛顿流体而是经供给非牛顿流体的导管的任何适合数量的入口接收非牛顿流体。应用元件704施加非牛顿流体到衬底702的表面以在应用元件和衬底之间产生非牛顿流体流。在一个实施方式中,应用元件704可是配置成接近衬底702的表面放置的接近头部。接近头部可不必是配置为“头”而可以是任何适合的配置、形状和/或尺寸,例如歧管、圆盘、棒、矩形、椭圆盘、管、板等,只要可以能应用非牛顿流体的方式配置接近部。在一个实施方式中,接近头部可为如图7中说明的圆盘型。接近头部的尺寸可根据应用的需要改变为任一适合的尺寸。为了更多接近头部的信息可参考2002年9月30申请的名为“Method and Apparatus for Drying Semiconductor WaferSurface Using a Plurality of Inlets and Outlets Held in Close Proximity to the WaferSurfaces”的U.S.专利申请No.10/216,839。
图8是图7中示出的应用元件的截面、侧视图。如图8所示,应用元件704的表面设置在衬底702的表面之上。应用元件704经顶部入口导管接收非牛顿流体,应用元件704在衬底702的表面和应用元件的表面之间施加非牛顿流体流。非牛顿流体从应用元件704的中心径向地流出到应用元件的外部边缘,因此,流的方向基本上平行于衬底702的表面。下面将更详细地描述,在应用元件704的表面和衬底702的表面之间的流部分呈现栓塞流以使栓塞流在衬底表面上移动以从衬底去除颗粒。流的速率可为任一适合速率以调整栓塞流。例如,在一个实施方式中,流速率具有从约0.1mm/s到约100mm/s的范围。在此使用的术语“约”表示对于给定的应用具体的尺寸和参数可在可接受的容差内变化。在一个实施方式中,可接受的容差为±10%。
如图8中所示,应用元件704施加非牛顿流体到衬底702。为了清洗整个衬底702的表面,应用元件704可配置成以能够处理衬底所有区域的方式在衬底之上移动。例如,应用元件704可以线性方式从衬底702的中心区域向衬底的边缘移动。其它的实施方式可使用应用元件704以线性方式从衬底702的一个边缘向衬底的另一个直径相对的边缘移动。其它的非线性移动也可使用,例如,以径向移动、以环形移动,以螺旋移动、以曲折移动等,应用元件704也可以保持静止而衬底702旋转和/或平移以使应用元件处理衬底的所有区域。
图9是根据本发明一个实施方式的在图7和图8中示出的装置的表面和衬底的表面之间的非牛顿流体流的流速分布图。在应用元件704的表面和衬底702的表面之间流动的非牛顿流体具有比施加到穿过间隙706的非牛顿流体的切应力大的屈服点。因此,流基本上呈现栓塞流。换句话说,呈现栓塞流的部分基本上在应用元件704的表面和衬底702的表面之间延伸。因此,如图9所示,该流的流速分布图基本上是均匀的。在一个实施方式中,在此使用的术语“基本上”表示约80%到100%的栓塞流在表面之间延伸。
栓塞流会导致在衬底702的表面处非牛顿流体的高速度。高速度的非牛顿流体流与衬底702的表面接触使与衬底表面上的颗粒更快的碰撞以及增加碰撞频率,由此帮助颗粒从衬底表面除去。应该清楚应用元件704的表面和衬底702的表面之间的间隙706具有适合的高度以容纳非牛顿流体流。在一个实施方式中,在应用元件704的表面和衬底702的表面之间的间隙706具有从约50微米到10毫米范围的高度。
图10是根据本发明一个实施方式的清洗衬底的另一个装置的简化透视图。装置1010包括具有导管形式空腔的腔室1004。下面将详细描述,配置导管以输送非牛顿流体流以使流的部分呈现栓塞流。另外配置腔室1004以容纳衬底以使栓塞流在衬底表面上(上和下表面)移动以能够从衬底表面去除颗粒。图10示出了具有矩形形状的空腔。然而应该清楚空腔可通过任何适合的形状尺寸限定以容纳衬底。例如,在另一个实施方式中,空腔具有圆柱形形状。
图11A-C示出了根据本发明一个实施方式的图10中示出的清洗衬底的装置的更详细的图。图11A说明了顶视图,图11B说明了侧视图,图11C说明了装置1010的放大侧视图。装置1010包括腔室、输入口1132、保持销1112和板1130。腔室具有矩形导管形式空腔。腔室具有输入端1116和位于与输入端相对的输出端1117。输入端1116由能够接收衬底702的第一开口限定。输出端1117由能够输出衬底702的第二开口限定。另外包括在输入端1116接近第一开口的板1130,其能够用作封锁第一开口。
装置1010也包括在腔室壁中的输入口1132。设置输入口1132以使非牛顿流体进入腔室。如图11A的顶视图中所示,在一个实施方式中,输入口1132沿着腔室的宽度延伸。然而,应该清楚输入口1132可具有任何适合的形状和尺寸。非牛顿流体供给器(未示出)连接到输入口1132以使非牛顿流体经过输入口进入腔室。在图11A-C的实施方式中,装置1010包括两个位于接近输入端1116的输入口1132。侧视图显示了一个输入口1132位于腔室的顶部,另一个位于腔室的底部。为了产生从顶部和底部相对的非牛顿流体流,彼此相对地设置输入口1132。通过在衬底的相对表面上施加力,相对流有助于保持衬底702悬浮在腔室中间。然而,根据需要的流的方向,装置1010可包括一个输入口或多于两个的输入口。另外,因为需要的流的方向是从输入端到输出端1117,所以输入口1132位于接近输入端1116。不过,应该清楚输入口1132可放置在腔室内任何适合的位置以产生不同的流特性。
仍参考图11A-C,在将衬底702放入装置1010的腔室之前,非牛顿流体供应器迫使非牛顿流体经过输入口1132进入腔室以用非牛顿流体充满腔室。在腔室充满非牛顿流体之后,经过在输入端1116的第一开口将衬底702放入腔室。放置衬底702以使衬底在非牛顿流体中悬浮。换句话说,将衬底702放置在腔室中以使衬底不接触腔室的壁。非牛顿流体具有支撑衬底702的能力以使衬底悬浮在腔室中间。非牛顿流体几乎能无限地支撑衬底702,即使没有流,因为衬底的重量足够小以使停留在非牛顿流体上的衬底不超出非牛顿流体的屈服点。
在将衬底702引入腔室之后,接近在输入端1116的第一开口的板1130关闭以封锁第一开口。非牛顿流体供料器则把额外的非牛顿流体压入容器中以产生非牛顿流体流。因为,非牛顿流体不能经过在输入端1116的第一开口流出,经过输入口1132的迫入的非牛顿流体从输入端朝输出端1117流动以在输出端的第二开口流出。流的方向基本上平行于衬底702的表面。如下面更详细地说明,部分流呈现栓塞流,衬底放置在腔室内以使栓塞流在衬底702表面上移动以能够从表面去除颗粒。
为了使流在衬底702的表面上移动,在腔室内保持衬底。装置1010的实施方式可在腔室内包括一个或多个保持销1112。保持销1112用于接收衬底702的边缘以阻止衬底水平移动。在图11A和B的实施方式中,当非牛顿流体流经腔室时,保持销1112位于接近输出端317以阻止衬底702经在输出端的第二开口移动。当使非牛顿流体流经导管时,保持销1112能保持衬底702。为了水平移动衬底702,可配置保持销1112来释放对衬底的保持以允许非牛顿流体流沿导管移动衬底以及从在输出端1117的第二开口移出。例如,在一个实施方式中,保持销1112可为较低的以允许衬底702的移动。
图12A和12B是根据本发明一个实施方式的非牛顿流体的不同流经过图10和11A-C的腔室的不同流速分布图。图12A的流经腔室的非牛顿流体具有大于施加到穿过腔室的高度1204的非牛顿流体的切应力的屈服点。因此,在一个实施方式中,流基本上呈现栓塞流。换句话说,栓塞流延伸到约全部的流。因此,如图12A中所示,流的速度分布图基本上是均匀的。
图12B是根据本发明另一个实施方式的经过腔室的非牛顿流体流的另一个流速分布图。这里,施加到流经腔室的非牛顿流体的切应力超出流的某些部分的非牛顿流体的屈服点。如上所述,切应力超出屈服点的流的部分呈现非栓塞流。屈服点大于切应力的流的部分呈现栓塞流。如图12B中所示,流速分布图显示非牛顿流体流具有不同的流特性。不能获得穿过整个腔室高度1204的栓塞流。具体地,腔室壁附近的流部分呈现非栓塞流,其具有抛物线形状的速度梯度。栓塞流具有平面形状的速度分别图且呈现在速度梯度之间的1206部分处。
为了充分发挥与栓塞流相关的增加颗粒去除的优点,将衬底702放置在腔室内以使呈现栓塞流的部分在衬底的表面上移动。在图12A中示出的实施方式中,因为获得的栓塞流基本上穿过腔室的整个高度1204,衬底702可放置在腔室内的任何地方。在图12B中示出的实施方式中,衬底702可放置在呈现栓塞流的部分1206内。应该清楚在腔室的壁和衬底702的表面之间的间隙1202可具有任何适合高度以容纳非牛顿流体流。在一个实施方式,间隙1202具有从约50微米到约10毫米范围的高度。
应该清楚在非牛顿流体中的化学剂和/或气体可进一步有助于从衬底702的表面去除颗粒。具体地,在非牛顿流体中可包括化学剂和/或气体以与颗粒和/或衬底702的表面化学反应或利于化学反应。任何适合的化学剂和/或气体可包括在非牛顿流体中以利于清洗衬底。例如包括臭氧泡的泡沫和去离子水可施加到衬底。与去离子水结合的臭氧与有机光刻胶材料化学反应,其一般使用在半导体光刻操作中,以从衬底702的表面去除光刻胶材料。
而且,应该清楚处理清洗,根据质量传递(mass transfer)上述实施方式可应用到气体适合的半导体器件制造工艺。例如,非牛顿流体的栓塞流能用于电镀,其是将金属涂敷到表面上的表面覆盖技术。非牛顿流体流的应用展现将栓塞流加到待电镀的表面导致在表面或表面附近的高速度。高速度等于在表面上的金属的高质量传递,从而减少使用来涂敷表面的流体的量。在另一个例子中,上述实施方式能应用到湿蚀刻,将展现栓塞流的非牛顿流体流(例如,化学蚀刻剂)部分施加到衬底表面以去除被蚀刻的材料。
总之,上述实施方式提供了用于清洗衬底的方法和装置。为了清洗衬底,放置衬底与呈现栓塞流的非牛顿流体流接触。为了相同的质量传递,当与使用牛顿流体,诸如水来清洗衬底相比,栓塞流在衬底表面或表面附近具有更高的速度。由栓塞流在衬底表面处产生的摩擦比由牛顿流体产生的微不足道的摩擦高出数个数量级。结果,当与使用牛顿流体相比,因为使用较少的非牛顿流体取得同样的清洗效果,使用呈现栓塞流的非牛顿流体来清洗衬底比使用牛顿流体更有效。
尽管在此详细地描述了本发明的几个实施方式,应该清楚通过通过本领域技术人员,不离开本发明的精神和范围,以许多其它具体形式可实施本发明。因此,出现的范例和实施方式应该认为是说明性的不是限制性的,且本发明不限于在此提供的细节,而是在附加的权利要求的范围内可修改和实践。
权利要求
1.一种用于清洗衬底的方法,包括方法操作以非牛顿流体填充腔室;放置衬底到该腔室中;以及迫使另外非牛顿流体进入腔室以产生非牛顿流体流,至少部分流呈现栓塞流,衬底放置在腔室内以使呈现栓塞流的流部分在衬底表面上移动以能够从衬底表面去除颗粒。
2.权利要求1的方法,其中当使非牛顿流体流经腔室时衬底保持在腔室内。
3.权利要求1的方法,其中衬底悬浮在非牛顿流体中,非牛顿流体能够支撑衬底。
4.权利要求1的方法,其中呈现栓塞流的流部分的流速基本上是均匀的。
5.权利要求1的方法,其中栓塞流延伸到约整个流量。
6.权利要求1的方法,其中非牛顿流体限定为软稠合物质。
7.权利要求1的方法,其中非牛顿流体流的方向基本上平行于衬底表面。
8.一种用于清洗衬底的方法,包括方法操作提供设置在衬底表面之上的应用元件的表面;和在应用元件的表面和衬底表面之间施加非牛顿流体,至少部分流呈现栓塞流以使呈现栓塞流的流部分在衬底表面上移动以从衬底表面去除颗粒。
9.权利要求8的方法,其中呈现栓塞流的流部分基本上在应用元件的表面和衬底表面之间延伸。
10.权利要求8的方法,其中非牛顿流体限定为一种或多种泡沫、乳胶和胶质。
11.权利要求8的方法,其中非牛顿流体限定为泡沫,配置该泡沫以限制泡沫流出。
12.一种用于清洗衬底的方法,包括方法操作提供非牛顿流体流,至少部分流呈现栓塞流;和放置衬底表面与呈现栓塞流的流部分接触以使呈现栓塞流的流部分在衬底表面上移动以能够从衬底表面去除颗粒。
13.权利要求12的方法,其中非牛顿流体流的方向基本上平行于衬底表面。
14.权利要求12的方法,其中衬底浸入在非牛顿流体流的内。
15.一种用于清洗衬底的装置,包括配置在衬底表面之上且配置成接收非牛顿流体的应用元件,非牛顿流体能够被施加到表面以在应用元件和表面之间产生非牛顿流体流,该流具有呈现栓塞流的部分以使栓塞流在表面上移动以能够从表面去除颗粒。
16.权利要求15的装置,其中接近表面放置应用元件。
17.一种用于清洗衬底的装置,包括具有导管形式空腔的腔室,导管能够输送非牛顿流体流以使部分流呈现栓塞流,腔室配置成容纳衬底以使栓塞流在衬底表面上移动以从表面去除颗粒。
18.权利要求17的装置,其中腔室壁和衬底表面之间的间隙具有从约50微米到约10毫米范围的高度。
19.权利要求17的装置,进一步包括在腔室壁内的输入口,设置输入口以使非牛顿流体进入腔室。
20.权利要求17的装置,其中腔室具有输入端和输出端,输入端限定能够接收衬底的第一开口,输出端限定能够输出衬底的第二开口。
21.权利要求20的装置,进一步包括在腔室内的接近第二开口的保持销,当栓塞流在衬底表面上移动时,配置保持销以接收衬底的边缘以阻止衬底移动。
22.权利要求20的装置,进一步包括接近第一开口配置成封锁第一开口的板。
全文摘要
提供了一种用于清洗衬底的方法。在该方法中,提供了非牛顿流体流,其中至少部分流呈现栓塞流。为了从衬底表面去除颗粒,放置衬底表面与呈现栓塞流的流部分接触以使呈现栓塞流的流部分在衬底表面上移动。也描述了用于清洗衬底的另外的方法和装置。
文档编号B08B3/04GK1897220SQ200610106069
公开日2007年1月17日 申请日期2006年6月15日 优先权日2005年6月15日
发明者J·M·德拉里奥斯, M·拉夫金, J·法伯, M·科罗利克, F·C·雷德克尔 申请人:兰姆研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1