用于熔料挤出吹拉模具的促细流体歧管的制作方法

文档序号:1757529阅读:320来源:国知局
专利名称:用于熔料挤出吹拉模具的促细流体歧管的制作方法
技术领域
本发明涉及用于把熔料挤出并吹拉(melt blown)成纤维的装置和方法。
背景技术
非纺织的织物(nonwoven web)典型地是用一种熔料挤出和吹拉过程制成的,在这种过程中,一边从模具的许许多多的小孔挤出许许多多的细丝,一边用热空气或其它能促使变细的流体使细丝细化成纤维。使被细化的纤维在一个布置在远处的聚集板或其它适当的表面上形成非纺织织物。
迄今一直在不断地努力改善非纺织织物的均匀性。典型地,是根据诸如基本重量、平均纤维直径、织物厚度或孔性等因素来评价非纺织织物的均匀性。为改善非纺织织物的均匀性,可以改变或控制诸如材料挤出量、空气流量、多孔模具到聚集板的距离等过程变量。此外,也可以改变熔料挤出吹拉装置的设计结构。美国专利Nos.4,889,476;5,236,641;5,248,247;5,260,033;5,582,907;5,728,407;5,891,482以及5,993,943中描述了这类改进措施。
促细流体典型地是供给到固定于模具本体的侧面的歧管(例如空气歧管),再任选地使促细流体流经歧管或模具本体内的曲折的路径,然后使其流经促细流体流动通道而从细丝小孔附近流出,以使促细流体能够冲撞并吹拉被挤出的细丝而使之变成纤维。各种代表性的歧管、曲折的路径和流动通道见例如美国专利Nos.4,889,476;5,080,569;5,098,636;5,248,247;5,260,033;5,580,581;5,607,701;5,632,938;5,667,749;5,711,970;5,725,812;6,001,303以及6,182,732。
尽管各方面的许多研究者已经做了许多年的努力,但是工商业上适用的非纺织织物的制造仍然要求仔细调整过程变量和装置参数,以及经常需要进行试错运行,以便得到令人满意的结果。性质均匀的宽幅熔料挤吹成形非纺织织物可能是尤其难以制造的。
附图简介

图1是本发明的熔料挤出吹拉模具的示意性端视剖视图。
图2是用在图1的熔料挤出吹拉模具中的可调整空气歧管的示意性侧视图。
图3是用在图1的熔料挤出吹拉模具中的另一个可调整空气歧管的示意性侧视图。
图4是本发明的另一个熔料挤出吹拉模具的示意性端视剖视图。
图5是用在图4的熔料挤出吹拉模具中的可调整空气歧管的示意性立体图。
图6是用在图4的熔料挤出吹拉模具中的另一个可调整空气歧管的示意性立体图。
图7是用在图4的熔料挤出吹拉模具中的再一个可调整空气歧管的示意性立体图。
图8是用在图4的熔料挤出吹拉模具中的再一个可调整空气歧管的示意性立体图。
发明概述虽然非纺织织物的宏观性质,诸如基本重量、平均纤维直径、织物厚度或孔性等是有用的,但是这些性质不能始终给出用以评价非纺织织物的质量和均匀性的足够依据。非纺织织物的这些宏观性质典型地是通过从非纺织织物的各部分切下小的样块或者用传感器监测运动着的非纺织织物的各个部分来测定。这些方法对可能歪曲测定结果的取样和测量误差是很敏感的,用于评价基本重量低或称孔性高的非纺织织物时,情况尤其如此。此外,虽然非纺织织物可以表现出有均匀的基本重量、纤维直径、厚度或孔性的测量值,可是非纺织织物却可能由于个别非纺织织物纤维的细化状态的差别表现出不均匀的性能特性。如果能使每一根挤出的细丝经受完全相同的或基本上相同的促细气流,则可以制造出更均匀的非纺织织物。理想地说,应使促细气流以沿着模具的宽度完全相同的容积流量和温度冲撞细丝。在细化和聚集之后,形成的被细化了的纤维的各根纤维之间有更均一的物理性质,因而可生产出质量更高或更均匀的熔料挤出吹拉成形非纺织织物。
所希望的纤维物理性质均一性可以较佳地通过测定聚集的纤维的一个或多个内在的物理或化学性质来评价,例如测定它们的基本重量平均值或算数平均分子量,以及更佳的是测定它们的分子量分布。可以用多分散性方便地表征分子量分布。通过测量纤维而不是非纺织织物样块的性质,可以降低取样误差,并且可以较精确地测量非纺织织物的质量或均匀性。
本发明的一个方面提供一种熔料挤出吹拉装置,它包括a)一个熔料挤出吹拉模具,该熔料挤出吹拉模具有(i)许多细丝出口和(ii)许多促细气流流动通道,这些流动通道与模具上在各细丝出口附近的许多促细气流出口流体连通;b)与许多促细气流流动通道流体连通的歧管,该歧管有至少一个促细气流进口;以及c)位于歧管进口和对应的促细气流出口之间的促细气流分布通路,其中,在组装模具和歧管时可以改变通路的分布特性,以使各流动通道里的促细气流的温度更均匀。
在另一方面,本发明提供一种用于制造纤维性非纺织织物的方法,它包括a)使纤维形成材料流经一个熔料挤出吹拉模具,该熔料挤出吹拉模具有(i)许多细丝出口和(ii)许多促细气流流动通道,这些流动通道与模具上在各细丝出口附近的许多促细气流出口流体连通;b)使促细气流流经至少一个与许多流动通道流体连通的歧管的进口;以及c)在组装模具和歧管时改变歧管进口和对应的促细气流出口之间的促细气流分布通路的分布特性,以使各气流通道里的促细气流的温度更均匀。
本发明的装置和方法可以生产出质量更高或更均匀的熔料挤出吹拉成形非纺织织物,包括其各根构成纤维之间有更均一的物理性质的非纺织织物。可以在各种不同的促细气流流量和熔料挤出吹拉模具工作状态下调整本发明的装置和方法,借以为熔料挤出吹拉模具提供均匀的促细气流。本发明的各较佳实施例允许在进行熔料挤出吹拉的过程中进行调整。
详述就这一说明书中的用法而论,术语“非纺织织物”是指具有牵连特征的纤维性网状物,而且其较佳地具有足够的内聚力和自身支承强度。
术语“熔料挤出吹拉”是指一种用于制造非纺织织物的方法,这种方法是一边把熔化的纤维形成材料通过许多小孔挤出而形成细丝,一边使形成的细丝接触空气或其它能够促使细丝细化的流体,以将细丝细化成纤维,随后把细化了的纤维聚集成一个纤维层。
短语“熔料挤出吹拉温度”是指在进行典型的熔料挤出吹拉时熔料挤出吹拉模具的温度。根据应用场合,这个温度可能高达315℃,325℃,甚至340℃或更高。
短语“熔料挤出吹拉模具”是指用于进行熔料挤出吹拉过程的模具。
术语“通路”是指熔料挤出吹拉模具内或促细气流歧管内的封闭空间,促细气流流经这些空间。
术语“分布通路”是指熔料挤出吹拉模具或促细气流歧管内的通路,其连通于许多促细气流出口并可影响促细气流从这些出口流出的质量流量。
术语“分布特性”是指从许多促细气流出口流出的促细气流的相对质量流量。
短语“在组装模具和歧管时改变”是指在把歧管固定于熔料挤出吹拉模具时改变分布通路的分布特性。这个短语不包含为了进行调整可能暂时地从模具或歧管上拆下其它的零件,诸如隔热屏、隔热板、进出口盖板,等等。
术语“熔料吹成纤维”是指用熔料挤出吹拉过程制成的纤维。熔料吹成纤维的形状比(长度对直径之比)基本上是无穷大(一般至少是约10,000或更高),当然,也有报告称熔料吹成纤维是不连续的。这些纤维很长且充分地牵连在一起,以至于通常不可能从大量的这种纤维中抽出一根完整的熔料吹成纤维,也不可能从头到尾找出一根纤维。
短语“把细丝细化成纤维”是指把一根细丝转变成长度更长直径更小的细丝。
术语“多分散性”是指一种聚合物的加权平均分子量除以这种聚合物的算数平均分子量,加权平均分子量和算数平均分子量都是用胶体渗透色谱法和聚苯乙烯的标准来评价。
短语“有基本上均匀的多分散性的纤维”是指其多分散性与纤维的平均多分散性的差异不超过±5%的熔料吹成纤维。
图1是沿着图2中的线1-1剖取的本发明的熔料挤出吹拉装置10的示意性端视剖视图。图2是沿着图1中的线2-2剖取的熔料挤出吹拉装置10的一部分的侧视剖视图。参照图1和2,熔料挤出吹拉装置10包括由两个模具半体12a和12b构成的熔料挤出吹拉模具12。纤维形成材料(例如热塑性聚合物)经由进口13进入熔料挤出吹拉模具12,行进通过通路14,15和可拆下的端头16,而后经由沿着模具12的宽度间隔紧密地设置的许多出口(诸如出口18)流出模具12而成为细丝。
促细流体(典型地是热的空气)从管道20a和20b到达歧管22的两端的进口21a和21b。每一歧管沿着模具12的宽度延伸并有大致对应于模具12的中点的中线42。促细流体在流过进口21a和21b之后被可移动的顶壁24a和24b转向而进入沿着歧管下壁27间隔地设置的一连串小孔26。接着促细流体沿着曲折的路径行进绕过挡板28和30而进入沿着模具12的宽度间隔地设置的许多促细流体通道(诸如32a和32b)。在某些通道内促细流体流过诸如热电偶34的热电偶,而后通过沿着模具12的宽度在端头16附近间隔地设置的许多促细流体出口(诸如促细流体出口36a和36b)流出熔料挤出吹拉模具12。
在没有可移动的顶壁24a和24b以及其它可能的影响因素诸如可以埋置在模具12里的可调整热输入器件的情况下,歧管22里的促细流体的温度和压力将是沿着歧管22的长度变化的。由于促细流体将在每一小孔26处被从歧管22挤出(假定壁24a和24b不存在),歧管22里的促细流体的温度和压力在接近进口端21a和21b处较高,而在接近中线42处较低。这个温度和压力差将引起流过小孔26的促细流体的对应的质量流量差,接近进口端21a和21b的地方的质量流量大,而接近中线42的地方的质量流量小。假定小孔26和诸如出口36a和36b的促细流体出口之间因此而产生恒定的压力降,那么促细流体通道(诸如通道32a和32b)里的促细流体的温度将是沿着模具12的宽度变化的,这样就会生产出不均匀的熔料吹成非纺织织物。
可移动的顶壁24a和24b以及调整螺栓38可以较佳地用于补偿这样的温度和压力变化,能够较佳地把较均匀的促细流体输送到通道32a和32b,以及能够较佳地允许进行促细流体出口处的促细流体质量流量和温度差的调整、减小乃至变为零。可移动的顶壁24a和24b是以它们的外端借助铰链44固定于歧管22。在图2所示的调整位置,可移动的顶壁24a和24b的内端在中线42处几乎互相接触。进口21a、顶壁24a、底壁27、以及歧管22的侧壁23a和23b大致形成一定形状的通路48,这一通路有助于平衡从供给管道20a流过促细流体小孔26的质量流量。通路48的截面面积在接近进口21a处为最大而在接近中线42处为最小。在中线42处的减小的截面面积可以使该处的促细流体压力和温度不降低,而如果不是这样,该处的压力和温度就会因促细流体流向中线42时从小孔26挤出而降低。同样,进口21b、顶壁24b、底壁27、以及歧管22的侧壁23a和23b大致形成一定形状的通路50,这一通路有助于平衡从供给管道20b流过促细流体小孔26的质量流量。
通过相对于歧管22拧进或拧出可移动的螺栓38,可以调整通路48和50的分布特性,以使模具12的各通道内的促细流体质量流量和温度比较均匀。螺栓38拧过歧管22的固定顶壁25上的螺纹孔并由锁紧螺母40锁紧在位。螺栓38的下端可在长的摩擦块46上的无螺纹孔里自由转动。摩擦块46的下表面顶在顶壁24a和24b的内端上。进入歧管22的促细流体的流体压力(例如空气压力)可使顶壁24a和24b的内端稳固地靠在摩擦块46的下表面上。随着螺栓38拧进或拧出歧管22,通路48和50的分布特性将变化。对于进入歧管22的给定促细流体体积流量,通常能够找到一个合适的螺栓38设定位置和对应的通路48和50的形状,借以使得沿着歧管22的长度在促细流体各出口处有均匀分布的促细流体质量流量和均匀的促细流体温度。可以通过用沿着模具12的宽度布置的多个热电偶传感器34监测诸如通道32a和32b的几个流体流动通道内的促细流体的温度来验证是否达到了所希望的通路分布特性。
关于用这样的装置进行熔料挤出吹拉的详细描述,见例如前面提到的专利和《工业工程化学(Industrial Engineering Chemistry)》,第48卷,第1324页etseq.(1956)中刊载的Wente,Van A.的文章“特级热塑性塑料纤维(SuperfineThermoplastic Fibers)”或1954年5月25出版的海军研究实验室(NavalResearch Laboratories)的报告Report No.4364,题目为“特级有机纤维的制造(Manufacture of Superfine Organic Fibers)”,作者是Wente,V.A;Boone,C.D.以及Fluharty,E.L.。
图3是用在图1所示的熔料挤出吹拉模具中的另一种可调整空气歧管52的示意性侧视图。歧管52有接收经管道56供应来的促细流体的单一的进口53。歧管52的封闭端55被供入经管路56来的压缩空气。在空间59内的空气压力超过一定形状的通路60里的促细流体压力时,装有密封圈58的可滑动的楔形活塞57就向进口53运动,而当一定形状的通路60里的促细流体压力超过空间59内的空气压力时,该活塞就向封闭端55运动。在两个压力相等时,活塞57就处在歧管51里的一个平衡位置。通路60的分布特性一般由进口53、歧管的固定顶壁61、斜的活塞表面62、歧管52的下壁63和侧壁来决定。通过调整空气压力调节器64,可以改变活塞57的位置进而改变通路60的分布特性,从而使流过沿着歧管的长度间隔设置的许多小孔66的促细流体的质量流量均匀分布以及使模具12的促细气流出口处的促细流体温度达到均匀。
图4是本发明的熔料挤出吹拉装置70的示意性端视剖视图。装置70包括由两个模具半体72a和72b构成的熔料挤出吹拉模具72。纤维形成材料从进口73进入熔料挤出吹拉模具72,流过通路74,75和可拆下的端头96,并通过沿着模具72的宽度间隔紧密地设置的许多细丝出口(诸如出口78)流出模具72。
参照图4和5,促细流体从诸如管道80a和80b的管道进入管状弹簧钢歧管82。两个安装环102使歧管82对中于在模具半体72a和72b上加工出来的圆柱形腔室84a和84b内。歧管82延伸于模具72的整个宽度。促细流体通过锥形槽86形式的通路流出每一歧管82,通过相对于模具12向内或向外调整螺栓94可以改变通路的分布特性。锁紧螺母96可将调整好的螺栓94锁定在位。挡块98顶在每一歧管82的内侧外壁上。在向内拧螺栓94时,由于歧管的侧壁的向内挠变,通路86的接近歧管82的中线的地方变窄(因而通路86的形状和分布特性也变化)。在向外拧螺栓94时,通路86变宽,其形状大致恢复到其原来的样子。
图5所示的通路86典型地不必张开成一个大的开口或称很严重的锥度。作为一个例子,在一个1.2米宽的熔料挤出吹拉模具上用两个直径38mm的歧管82时,较佳的是,通路86的靠近歧管进口端的宽度范围是0.6-2mm,而在歧管中线处的宽度范围约为1.8-3.5mm;更佳的是,靠近歧管进口端的宽度范围是1.3-1.8mm,而在歧管中线处的宽度范围约为2.1-2.8mm。通常把通路的尺寸改变1mm或更小一些就可以得到一个适当的调整范围。可以用各种调整机构来改变通路的分布特性。作为图4所示的顶压螺栓94的代表性替代方案,可以在歧管82的中线处用一个楔形件挤进或退出通路86,也可以用一个夹子夹住歧管82的至少一部分,或者可以用一个两端分别有右旋螺纹和左旋螺纹的牵拉螺栓,把它的两端螺纹连接于歧管82的两个侧壁,把两个侧壁拉近或推开。
图6表示出可以用在图4所示的熔料挤出吹拉模具中的另一种歧管。歧管103有大致管状的有两端进口105和107的管体部分104。管体部分104由固定的中心环108和两个可转动的端环109支承。锥形的槽口110和112形成通路,其流动特性可通过一边转动两端的环109一边保持中间的环108固定不动从而扭转管体部分104的两端并改变槽口110和112的从一端到另一端的锥度来调整。扭转一个相对适中的量就可以使空气流动特性发生相当大的变化。
图7是可用在图4所示的熔料挤出吹拉模具中的另一种歧管的示意图。歧管120有大致管状的有两端进口127和129的管体部分121。管体部分121由两个端环125支承。一对可运动的挡板122和123部分地覆盖槽口128。挡板122和123可绕铰转点124枢转。歧管120的分布特性可通过使挡板122和123绕铰转点124运动从而改变槽口128的暴露部分的从一端到另一端的锥度来调整。
图8表示出可用在图4所示的熔料挤出吹拉模具中的另一种歧管。歧管130由一个一端为进口端134另一端是封闭端136的一段管子132构成。作为支脚的两个环114保持管子132与孔84a和84b的孔壁不接触。锥形槽口140形成通路142,其分布特性可通过把管子132滑进或滑出孔84a和84b来调整。
熟悉本领域的人将能认识到,本发明中可以采用有各种形状和尺寸的促细流体分布通路,而且可以用各种调整机构或方法来调整这样的通路的分布特性。在用空气作为促细流体时,通路可较佳地适应约20到约100升每分钟每厘米模具长度的空气容积流量。这样,一个有两个平行的促细流体歧管的熔料挤出吹拉模具可以较佳地适应约40到约200升每分钟每厘米模具长度的空气容积流量。较佳的是,可以通过调整使各流体通道内的促细流体的温度沿着模具的宽度保持在±5℃之内。更佳的是可保持在±3℃之内。较佳的是,可以用简单的机械工具并且几乎不必拆下熔料挤出吹拉模具的隔热屏、隔热板和其它零件就能进行调整。更佳的是,可以在熔料挤出吹拉过程中进行调整。如果原意,可以用适用的传感器和控制器以及适当的反馈机构监测模具的状态或非纺织织物的特性而进行自动调整。
熟悉本领域的人将能理解,本发明的熔料挤出吹拉模具可以包括附加的(例如辅助的)促细流体流,令其与一个或几个主促细流体流协调地工作,共同进行熔料挤出吹拉。例如,本发明的熔料挤出吹拉模具可包括一个或几个辅助空气通路,它们的分布特性也可以像上述那样进行调整。
尤其较佳的是,用在本发明的熔料挤出吹拉模具中的熔料挤出吹拉模具腔表示在2002.06.20提交的题目为“无纺织物以及所形成的无纺布(NONWOVEN WEB AND NONWON WEBS MADE THEREWITH)”的共同待批申请Serial No.10/177,446中。较佳的是,可以把该文所述的模具腔并列成行或垂向叠置成摞而用于制造比用一单个模具腔能够生产的更宽或更厚的非纺织织物。
较佳的,用行星齿轮计量泵把纤维形成材料供给到本发明的熔料挤出吹拉模具,这种泵例如表示在2002.06.20提交的题目为“采用行星齿轮计量泵的熔料吹丝装置(MELTBLOWING APPARATUS EMPLOYING PLANETARYGEAR METERING PUMP)”的共同待批申请Serial No.10/177,419中。
熟悉本领域的人将能理解,熔料挤出吹拉模具不必是平面的。本发明的熔料挤出吹拉装置可以采用有一条对称中心轴线的环形模具,用以形成圆筒形的一组细丝。也可以把有多个非平面的(曲面的)模具腔的模具围绕一个圆筒的圆周布置,用以形成直径更大的圆筒形的一组细丝,这组细丝的筒径可比仅用一单个相近深度的环形模具腔可形成的筒形细丝的筒径大。也可以把本发明的多个环形非纺织织物模具围绕一条对称中心线套装起来,做成这样的布置,可用以形成多层多组圆筒形细丝。
本发明的较佳的熔料挤出吹拉系统可以用一种平的温度分布型面来工作,这降低了对可调整的热输入器件(例如安装在模具本体内的电加热器)的依赖或对用于得到均匀的输出的其它补偿措施的依赖。这可以降低模具本体内热应力因而可防止模具腔的变形,而如果发生变形,就会引起局部的非纺织织物基本重量不均匀。如果愿意用,可以给本发明的模具添加热输入器件。还可以增加隔热层,以便在模具使用过程中控制其热特性。
本发明的较佳的熔料挤出吹拉系统能够生产出高度均匀的非纺织织物。如果用一连串(例如3到10个)从靠近非纺织织物的端部中间处(距离边缘应足够远以避免边缘效应)切割下来的0.01m2的试样来评价,本发明的较佳的熔料挤出吹拉系统生产出的非纺织织物的基本重量的均匀性误差约为±2%,甚至低于±1%。用类似地聚集的试样进行评价,本发明的较佳的熔料挤出吹拉系统能够生产出包括至少一层熔料吹成纤维的非纺织织物,这层纤维的多分散性与平均纤维多分散性的差异不超过±5%,甚至较佳地不超过±3%。
用本发明的熔料挤出吹拉系统可将各种合成的或天然的纤维形成材料制成非纺织织物。较佳的合成材料包括聚乙烯、聚丙烯、聚丁烯、聚苯乙烯、聚乙烯对苯二甲酸酯、聚丁烯对苯二甲酸酯、诸如尼龙6或尼龙11的线型聚酰胺、聚氨酯、聚(4甲基戊烯1)、以及这些物质的混合物或化合物。较佳的天然材料包括石油沥青或树脂沥青(例如用于制成碳纤维)。纤维形成材料可以是熔化状态的或加有适当的溶剂。各种活性的单聚物也可以用在本发明中,而且它们可以在通过泵或进入或通过模具的过程中互相反应。非纺织织物可以在一个单层里含有纤维混合物(例如在制造时用两个靠近布置的模具腔共用一个公共模具端头),也可以含有多层纤维混合物(例如在制造时用诸如图7所示的模具),或含有一层或多层多组分的纤维(如美国专利No.6,057,256中所述)。
用本发明的熔料挤出吹拉系统制成的非纺织织物中的纤维可能有多种尺寸的直径。例如,纤维可能是平均直径小于5微米甚至小于1微米的超细纤维,平均直径小于约10微米的细纤维,或平均直径为25微米或更大的较粗纤维。
用本发明的熔料挤出吹拉系统制成的非纺织织物可以包含另外的纤维状或颗粒状材料,如美国专利Nos.3,016,599;3,971,373和4,111,531中所述。非纺织织物里也可以添加其他的辅料,诸如染料、颜料、填料、磨粒、耐光照稳定剂、阻燃剂、吸收剂、药物、等等。这些辅料的添加可以用多种方式进行,例如,把它们引入纤维形成材料流中,或把它们在纤维聚集成非纺织织物的过程中或之后喷涂在纤维上,或衬在非纺织织物上,或用熟悉本领域的人已知的其它技术方法。例如,可以在非纺织织物上喷涂纤维光饰层,以改善非纺织织物的手感性质。
最终制成的非纺织织物的厚度可以有宽泛的范围。对于大多数应用,厚度在约0.05和15cm之间的非纺织织物是较佳的。对于某些应用场合,可以把两层或多层单独制成的或一并制成的非纺织织物层叠起来作为一个较厚的片状产品。例如,可以把一个离心粘合纤维层、一个熔料吹成的非纺织织物层和再一个离心粘合纤维层(诸如美国专利No.6,182,732中所述)层叠成一个SMS结构。用本发明的熔料挤出吹拉系统也可以这样来制造非纺织织物,就是把纤维流沉积在将构成最终制成的非纺织织物的一部分的另一片材料上,诸如一层孔性非纺织织物上。也可以通过机械的接合、热熔合或粘结把其它的结构物,诸如不渗透的薄膜,层叠在非纺织织物上。
还可以对聚集后形成的非纺织织物进行进一步的处理,例如,用热和压力将其压实到引起点粘合的程度,用以控制非纺织织物的毛细管作用,或在非纺织织物上压出图案,或增大其上粒状材料的保持牢度。还可以通过在纤维形成的过程中给纤维充以电荷,这种做法如美国专利No.4,215,682中所述,或者在非纺织织物形成之后给非纺织织物充以电荷,这种做法如美国专利No.3,571,679中所述,使非纺织织物带有静电,以增强其过滤性能。
用本发明的熔料挤出吹拉系统制成的非纺织织物可有广泛的用途,包括作为过滤介体和过滤器具、医用纤维制品、卫生用品、吸油毡、服装用纤维制品、隔热或隔声材料、电池隔片和电容器绝缘层。
显然,熟悉本领域的人在本发明的精神和范围内可以对本发明做出各种变型和改变。所以,不能将本发明限制于本文中仅仅为了说明的目的而阐述的内容。
权利要求
1.一种熔料挤出吹拉装置,包括a)一个熔料挤出吹拉模具,该熔料挤出吹拉模具有(i)许多细丝出口和(ii)许多促细流体流动通道,这些流动通道与模具上靠近所述许多细丝出口的许多促细流体出口流体连通;b)与所述许多流动通道流体连通的流体歧管,所述流体歧管有至少一个促细流体进口;以及c)位于所述歧管进口和对应的促细流体出口之间的促细流体分布通路,其特征在于,为使所述流动通道里的促细流体的温度比较均匀,可以在装配所述模具和流体歧管时改变所述通路的分布特性。
2.如权利要求1所述的装置,其特征在于,可以通过改变所述分布特性使所述促细流体在所述许多促细流体出口处的温度基本上相等。
3.如权利要求1或2所述的装置,其特征在于,可以在所述模具处于工作状态时改变所述分布特性。
4.如前面任一权利要求所述的装置,其特征在于,所述模具有一个宽度,所述流体歧管有一个中线,所述流体歧管沿着所述模具的宽度延伸并且其第一端和第二端都有促细流体进口。
5.如权利要求4所述的装置,其特征在于,所述通路包括延伸于所述模具的宽度的细长的流体槽口,流过所述槽口的促细流体的体积流量在所述中线处为最大并且至所述进口处连续变化为最小。
6.如权利要求1至3中之任一权利要求所述的装置,其特征在于,所述模具有一个宽度,所述流体歧管沿着所述模具的宽度延伸并且其第一端有促细流体进口而其第二端是封闭的。
7.如前面任一权利要求所述的装置,其特征在于,所述模具有一个宽度,所述通路包括沿着所述模具的宽度延伸并有带有锥形槽口的侧壁的管道。
8.如权利要求7所述的装置,其特征在于,可以通过改变所述槽口的宽度来改变流过所述通路的促细流体的质量流量。
9.如前面任一权利要求所述的装置,其特征在于,所述促细流体是空气,所述分布特性可以改变为适应20-100升每分钟每厘米通路长度的空气体积流量,同时能够将所述流动通道里的促细流体的温度沿着所述模具的宽度保持在±5℃之内。
10.一种用于制造纤维状非纺织织物的方法,它包括a)使纤维形成材料流过如前面任一权利要求所述的装置;b)使促细流体流进所述流体歧管的至少一个进口;以及c)在装配所述模具和流体歧管时改变所述流体通路的分布特性,以使所述流动通道里的促细流体的温度比较均匀。
全文摘要
一种用在用于制造熔料吹成非纺织织物的熔料挤出吹拉模具(12)中的促细流体歧管(22),在装配模具(12)和歧管(22)时可以改变歧管的流体分布通路的分布特性。通过调整通路的分布特性,可使流过模具(12)里的流动通道的促细流体的质量流量和模具的促细流体出口(18)处的促细流体温度比较均匀。
文档编号D04H3/16GK1662685SQ03814287
公开日2005年8月31日 申请日期2003年4月21日 优先权日2002年6月20日
发明者S·C·艾利克森, J·C·布莱斯特 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1