专利名称:用于汽车面板的模制产品的制作方法
技术领域:
本发明涉及模制产品以及其生产方法。
背景技术:
在汽车工业中,结构面板被广泛地用于需要具有高强度和低重量的各种应用中。 模制的加强面板尤其用在汽车中作为例如包裹架、顶棚盖、发动机舱面板或货箱底板,而且还可以用作位于车辆外侧的面板,诸如下发动机罩或外轮罩拱衬套。另外,衰减噪音的额外声学特性尤其是材料的吸声系数可以是一种要求。例如,最终具有蜂窝芯的复合材料面板被用在装饰部分、天窗面板、硬质顶盖、包裹架、备用轮罩以及行李板组件。根据选择的材料,它们还能够用作地板覆面层、发动机盖或发动机舱盖。纤维增强的复合材料被用作这些产品的主要材料或表层,有时,结合有用于特殊目的的额外的层。复合的材料(或简称复合材料)是由两个或更多的具有显著不同的物理或化学特性的组成材料制成的工程材料,在微观层次上成品结构内依然是独立的和不同的。复合材料由被称为组成材料的单独的材料制成。组成材料有两种基质材料和加强材料。每种类型的至少一部分是必需的。基质材料通过保持它们的相对位置环绕并支撑加强材料。加强材料施加它们特殊的机械特性和物理特性从而增强了基质材料。配合作用产生了从单独的组成材料难以获得的材料特性。工程复合材料必须被成形加工成一定的形状。在将加强材料放到模具型腔内或模具表面上之前或之后,可以将基质材料引入到加强材料中。该基质材料在物理状态上经历变化,例如,对于热塑性材料而言,在熔化状态后,零件形状基本确定。根据基质材料的性质,这种在物理状态上的变化可以以各种方式发生,诸如从熔化状态(热塑性状态)变化到化学聚合状态(硬塑状态)或凝固状态。绝大多数商业上生产的复合材料使用通常被叫做树脂溶液的聚合物基质材料。 取决于起始的原材料,存在可利用的许多不同的聚合物。存在几个主要的种类,每个种类具有很多变型。最常见的被称为聚酯、乙烯基脂、环氧树脂、酚醛树脂、聚酰亚胺、聚酰胺、 聚丙烯、聚醚醚酮以及其他等等。加强材料通常为纤维,而且通常地为地产矿物(ground minerals)。复合材料可以通过使用至少部分地由诸如玻璃纤维的加强纤维构成的纤维材料层或纤维材料垫以及黏合材料制成,黏合材料为粉末、液体溶液的形式或者为黏合纤维。 材料被混合并固化,通常地将材料在模压机中热成型并直接地生产出想要的产品形状。美国专利申请US20050214465公开了一种利用聚酰胺作为基质材料生产复合材料的方法,藉此,加强材料被浸渍有内酰胺熔化物,将该内酰胺熔化物活化用于阴离子聚合作用并随后加热。另一种已知的方法是拉挤成型工艺。生产的材料可以被颗粒化并随后被用在注射成型或挤压成型的方法中。使用的另一种方法是将加强纤维混合有热塑性塑料熔化物。同样,这里接下来主要是通过注射成型,最终通过在注射成型后的压模从而得到想要的产品形状。使用热塑性塑料熔化物或具有熔化物的浸渍物使得到的产品紧凑并无孔,这是由于熔化物将填充加强材料之间的间隙并封闭存在的所有孔隙。
美国专利US7132025公开了一种利用热塑性纤维作为基质材料的方法。首先,将这些纤维混纺有加强纤维随后干铺成为混纺网。接着将该混纺网用横撑(needling)加固、 加热并压紧而得到最终产品。利用常规的烤炉或通过红外辐射将该混纺网加热到高于热塑性纤维的软化点的温度并直接地将其压紧,从而提供一种压紧的并且部分加固的可热成型的半成品。美国专利申请US20050140059公开了一种生产由纤维制成的模制零件的方法,藉此,首先将该纤维在板间加热然后压缩成型,利用额外的抽气而得到形状更好的产品。所用的纤维为作为黏合纤维的双组份纤维以及作为散纤维如再加工棉以及聚丙烯的其他纤维。 尽管在说明中提及使用高压蒸汽或流动空气作为用于在压缩成型前对材料加热的可选方案,然而实际公开的方法仅使用加热板获得一分钟的200°C来对纤维材料加热和加固。在所用的材料以及所公开的方法中并未公开使用蒸汽。W02004098879公开了一种利用针状的(needled)无纺网作为原材料生产热塑性纤维和加强纤维的混合物的复合材料的方法。这种网结合有一对金属薄片,一个为高熔点的热塑性材料的金属薄片,一个为低熔点的热塑性材料的金属薄片。然后,或者使用红外波或者使用热空气将分层的叠片加热到这样的温度,以使得热塑性纤维以及低熔点热塑性材料的金属薄片被加热高于它们的熔化温度并持续一个短暂的时间,该时间足以使其软化。 然后直接按压分层材料,例如使用滚子。该专利公开了以聚酰胺-6作为黏合纤维并以玻璃纤维和PET(聚对苯二甲酸乙二酯)纤维作为加强纤维的组合物的一种实施例。此外,W02007000225公开了一种利用低熔点纤维和高熔点纤维的组合物生产刚性零件的方法,藉此,将纤维网加热到高于低熔点纤维的熔化温度。该应用还公开了在型芯材料中利用玻璃纤维或聚酯纤维作为高熔点纤维并利用聚丙烯或聚酯纤维作为低熔点纤维。 这种型芯材料在两个外部的热塑性金属薄片层之间是分层的。在加热步骤中,内部型芯材料由于型芯纤维的内部压强而膨胀,给整个材料一种高耸效果(lofting effect) 0最终产品包含部分的高压缩区域以及部分的这种高耸区域。实际上,这是以聚丙烯和玻璃纤维的组合物来完成的并被称为软高耸。现有技术的缺点是需要高温来得到最终的复合材料。将要达到的加热温度取决于基质聚合物。为了形成该复合材料,利用诸如热空气、接触加热或红外线加热的干热方法来加热基质纤维和加强纤维。产品被正常地加热到高于基质聚合物的实际熔点从而补偿例如从加热装置到成型装置的温度损失。将聚合物加热到高于熔点加速了降解。使用接触加热器具有另外的缺点,S卩,必须压缩产品从而获得遍及产品厚度的良好的热传递。热空气通常在温度高于黏合聚合物的熔化温度时使用因此聚合物遭到热损害,同时,使用红外线加热仅仅对于薄的材料是可行的。在更厚的材料中,需要加热内部型芯的能量对于聚合物外表面是有破坏性的。通常,这种方法仅用于高达4-5mm的厚度。另一个缺点是大部分用作基质纤维和加强纤维的热塑性聚合物具有彼此接近的熔化温度,例如聚对苯二甲酸乙二酯(PET)的熔化温度为230-260°C的范围内,聚丙烯的熔化温度在140-170°C之间,聚酰胺-6的熔化温度在170-225°C之间以及聚酰胺-6. 6在 220-260°C之间。使用同为热塑性聚合物的基质纤维和加强纤维,例如PA6. 6作为基质纤维并以PET作为加强纤维,必须将它们加热到基质纤维的熔化温度之上,这会导致加强纤维开始熔化或软化。这将导致结构皱缩,形成非常紧凑的复合材料。
毛毡由于它们的热绝缘特性和声绝缘特性而尤其广泛地用在汽车工业中。该趋势向可回收材料发展,因此热塑性粘结剂在过去几年中已经作出了显著的贡献。由诸如聚酯纤维、聚酰胺的高性能聚合物制成的纤维由于它们的机械特性以及耐热特性从而是非常令人感兴趣的。但是必要的黏合剂形成它们应用在模制的3D零件中的限制。迄今为止,黏合剂通常比加强纤维具有更低的熔点,使其对于模制的纤维网具有相对差的性能表现并限制了其应用到车辆的回火区域。这些类型的模制的纤维网中没有一个适合于发动机舱或引擎间的高温暴露表面,尤其是发动机接触区域的高温暴露表面。由于黏合剂的改性结构尤其易感于水解现象,故这些黏合剂的一些是具有浇注性能的改性聚合物(例如共聚酯)。用于模制这种现有技术已知的毛毡的工艺是“冷”成型工艺,在此,通过各种手段将毛毡预热,然后再将毛毡转到冷模中,为了得到零件形状毛毡在其内被压紧;或者用于模制这种现有技术已知的毛毡的工艺是“热”成型工艺,在此,将毛毡引入到封闭的模具中,热传递介质如空气被引入其内用于使黏合剂处于其熔点,然后排出热传递介质。然后将该零件通过或者不通过冷却辅助设备在工具内或工具外冷却(参见例如EP 1656243, EP1414440 以及 EP590112)。
发明内容
因此,本发明的目的是为了找到一种可替代的方法用以结合基质纤维和加强纤维而没有当前现有技术的缺点,并得到能被用到汽车应用中的产品,尤其还被用到发动机舱或其他具有高温的区域。利用权利要求1所述的复合材料产品以及权利要求8所述的利用蒸汽处理固化聚酰胺网的方法,包含加强纤维的高耸的网结构是可能的,从而得到多孔的加强材料,其中复合材料产品包括至少一个由聚酰胺基质和加强纤维构成的聚酰胺加强层,其特征在于由于将以纤维或粉末或薄片形式的基质材料以及该加强纤维利用加压蒸汽的处理方法固化,该聚酰胺加强层是多孔的;以及所述的方法是利用蒸汽处理来固化用粉末、薄片或纤维的形式作为基质以及加强纤维构成的聚酰胺网。这样的材料具有良好的动态杨格模量以及热稳定性。已经开发了一种制备高耸的空气渗透性的复合材料的方法,该复合材料具有刚性增加的、随机布置的黏合纤维和加强纤维,该黏合纤维和加强纤维在纤维交叉点通过黏合纤维的热塑性树脂的球状体结合在一起。在这种方法中,高模数的加强纤维混纺有形成聚酰胺纤维的基质或混纺有聚酰胺粉末或聚酰胺薄片用以通过任何合适的方法诸如气流成网方法、湿法成网方法、梳棉工艺等而形成网。然后利用饱和蒸汽将这个网加热使树脂基质材料在低于该聚合物的熔化温度的温度而熔化,该聚合物的熔化温度为如根据IS011357-3使用差示扫描量热仪(DSC)所测量的。例如,如利用DSC所测量的,聚酰胺-6 (PA-6)的熔化温度Tm* 220°C。然而,根据本发明在蒸汽工艺中同样的PA-6的熔化温度为例如190°C。该网被放置在具有至少一个蒸汽可渗透面的耐压模具中。封闭并夹紧该模具用以承受内部压强。施加至少9巴绝对气压的饱和蒸汽从而熔化黏合剂。高于20巴绝对气压的饱和蒸汽是不经济的。优选地,11到15巴绝对气压的范围是好的工作范围。聚酰胺的熔化温度的实际转换取决于在容腔内产生的蒸汽压强,在该容腔中蒸汽模塑产品。因此,选择所用的压力也取决于加强纤维的熔化温度。例如,用PA-6作为黏合纤维,优选的压强为11 巴绝对气压到15巴绝对气压。通过使用蒸汽取代通常的热空气、热板或红外波,利用蒸汽中的水分子的作用可以将聚酰胺的熔点转变成较低的温度。水对聚酰胺的作用是已知的并且通常被认为是不利的;许多现有技术描述了用以避免其影响或试图防止它的方法。出乎意料地,刚好是这样的作用,使用PA (聚酰胺)作为单独的黏合材料并保持加强纤维如PET (聚酯纤维)处于其纤维形式,使得其可以将以粉末、薄片或纤维形式应用的PA与具有同样熔点的其他热塑性纤维(如PET)相结合,上述熔点如由DSC所测量。现在,可以得到具有多孔结构的热稳定的成型产品,因此,增强了声学特性,如吸声性和气流阻性,以及热传导性。蒸汽作用是基于可逆的扩散机制。使用小纤维直径形式的或颗粒大小形式的聚酰胺,熔化和固化是快速的并且提供了短的生产循环。一旦蒸汽从模具排放,聚酰胺就变成为固体状态并且可以将零件作为刚性零件而脱模。相比于其他的在得到可处理的结构件之前需要在模具内或模具外被明确地冷却的热塑性黏合剂,这是有利的。相比于没有蒸汽的加热方法,因为现在可以将所用的整体温度保持得非常低,所以PET纤维的弹性保持完整,这就获得更高耸的材料。而且已经发现PA的黏合剂足以得到最终产品所需要的刚性。因为PET纤维保持它们的弹性而且PA熔化基质材料仅仅将交叉点黏合。由于网内的空隙体积,材料保持其高耸的外观。因此,最终产品将是气体可渗透的。 而且还发现当使用玻璃纤维作为加强纤维同时使用聚酰胺纤维作为基质,则使用蒸汽是有利的。由于对黏合特性的精准控制,在加热和冷却的两个期间内对于该方法需要更少的能量。在正常的加热工艺中,将材料加热到热塑性基质材料的熔点。由于产品较慢的热对流材料的冷却是慢的,并且由于加强纤维缺乏弹性材料同时下坍并变得更紧凑。因此,熔化状态将持续更长的时间。所以更难以控制黏合剂的量。而且,在冷却期间,由于黏合基质处于更长的熔化状态,材料保持松软并因此更难以处理。尤其当处理较大的汽车装饰零件如货车或更大车辆的顶棚或货箱地板时。出乎意料地,还发现蒸汽一从材料排出,熔化工艺就立即停止并且材料重回其固体状态。由于可立即地处理材料,这对于能降低产品循环时间是有利的。能够立即停止熔化工艺的事实也是控制黏合特性并因此控制材料的多孔性的非常精确的方法。这对于材料的空气可渗透性是重要的。用于聚酰胺基质的材料可以是粉末、薄片或纤维的形式。然而,使用结合加强纤维的纤维是最优的,因为纤维混合得更好并且在固化之前处理形成的网期间,纤维趋向于保持在混合位置。薄片或粉末可能落在网外的加强纤维之间或者落在成型模的底部上。所有类型的聚酰胺是可行的,特别地,CoPA(共聚聚酰胺)聚酰胺-6(PA_6)或聚酰胺_6.6(PA6. 6)是可行的。然而,根据本发明,聚酰胺的不同类型或聚酰胺的不同类型的混合同样将作为黏合剂起作用。期望的是在基本的聚酰胺配方中正常使用的添加剂是所主张的基本的聚酰胺材料的一部分,例如为了得到耐紫外性的化学化合物。加强纤维可以是具有根据DSC测量的熔化温度的任何热塑性聚合物基材料,该熔化温度比在蒸汽环境中的聚酰胺黏合剂的熔化温度高。具有在230-260°C之间的熔化温度的PET将如加强纤维一样工作良好。加强纤维还可以是任何矿物材料,尤其是玻璃纤维 (GF)、碳纤维或玄武岩纤维。而且也可以使用两个加强纤维组的混合,例如PET与GF的混合。材料的选择基于最终产品的整体的热稳定性要求以及单独材料的价格。根据所需的材料特性,加强纤维可以是切断纤维、环状细丝或粗纱。
参考附图,在下面对作为非限定性的实施例的优选形式的说明中,本发明的这些特征以及其他特征将是清楚的。图1为不同的样品的动态杨格模数的曲线图;图2为同样的样品的损失系数的曲线图;图3为使用热成型板或根据本发明的蒸汽工艺来固化的网的吸声性比较;图4为使用热成型板或根据本发明的蒸汽工艺来固化的网的热导率比较。
具体实施例方式对于根据本发明的复合材料,基质形成的黏性纤维混合有加强纤维并梳理而形成网。为了处理的目的利用横撑将网预粘结。(但是可以使用任何类型的预粘结工艺)。为了防止复合材料样品尤其在工具释放蒸汽压强时粘着或固化到模具上,可以使用薄的无纺物作为表面覆盖物。所用的无纺物对于最终产品的主要特征诸如厚度、声学特性或刚性基本没有影响。根据本发明,聚酰胺加强层的网按照说明利用饱和蒸汽而固化。目前工艺水平的样品与根据本发明的聚酰胺加强层进行了比较。目前工艺水平的复合材料根据市场上的可利用性来购买。复合材料1,一种目前工艺水平的复合材料,其基于聚丙烯作为黏合剂以及玻璃纤维作为加强材料,其具有881kg/m3的密度并在市场上已知为Symalite。复合材料2,一种目前工艺水平的毛毡基材料,其由双组份的PET作为黏合剂以及棉作为加强材料而制成,其具有314kg/m3的密度。复合材料3,一种根据本发明由45 %的PA黏合纤维和55 %的玻璃纤维作为加强纤维而制成的复合材料。网的起始重量为1000克每平方米。根据本发明利用饱和蒸汽的11 巴绝对气压持续9秒钟来模制该复合材料。形成的聚酰胺加强层的最终密度为384kg/m3。复合材料4,一种根据本发明由55 %的PA黏合纤维和45 %的玻璃纤维作为加强纤维而制成的复合材料。网的起始重量为1000克每平方米。根据本发明利用饱和蒸汽的11 巴绝对气压持续9秒钟来模制该复合材料。形成的聚酰胺加强层的最终密度为303kg/m3。测量遍及温度范围的动态杨格模数,并根据ISO 6721-4由该动态杨格模数计算抗张强度的损失系数。利用VA2000型的0. IdBMetravib黏性分析器来完成测量和计算。对于所有复合材料的结果,参见图1和图2。对于用在汽车工业中的复合材料零件,热稳定性要求是日益增加的。尤其在发动机舱中,归因于新电动发动机产生的更多的热量以及归因于通过隔离将热量保持在内部用以使燃油的整体使用最优化的可选择的方法,直接地导致更高的热稳定性要求。通常地,发动机舱材料的测试为长期的在120°C或150°C的热稳定性测试。然而,实际的温度可以在很短的时间轻易地升到180-190°C。该温度范围可能发生在接近热的发动机侧面或者发生在热的发动机侧面的周围,如排气管道、歧管或压缩机。热稳定性测试的一个要求是需要知道复合材料产品在暴露于高温期间是否保持其结构和形状。例如,放置在阳窗下的包裹架不应当在过了不久便下陷。发动机舱盖应当保持其刚性。遍及该温度范围的抗张强度损失系数对于产品在使用时的刚性保持是重要的。图1示出了动态的杨格模数。复合材料1是一种目前工艺水平的产品,其基于PP 基质以及玻璃纤维作为加强材料,示出了按绝对值计算的比根据本发明的复合材料3和复合材料4更高的模数。这主要归因于更高的整体密度。然而,趋势是在更低的密度下得到同样的或更好的刚性性能以节省汽车的重量。然而,更重要的是,目前工艺水平的复合材料 1显示出在被测的温度范围上动态杨格模数的显著损失。因此,由PP组合物制成的产品在更高温度下趋于变得更软。复合材料2为CoPET/PET双组份黏合纤维以及棉作为加强材料的组合物,其示出了自支撑的整体上非常低的动态杨格模数。根据本发明的复合材料在被测的温度范围内显示了非常好的性能。已发现聚酰胺加强层的动态杨格模数在150°C到210°C的温度范围内的改变没有超过20%。呈现出整体上更热稳定的产品。图2示出了复合材料产品在被测的温度范围内的抗张强度损失系数。复合材料1 为目前工艺水平的产品,其是基于聚丙烯(PP)作为基质黏合纤维以没有蒸汽的成型方法生产的。尽管该产品在高达160°c时具有好的损失系数,然而由于熔化其迅速地失去其热稳定性。复合材料2为CoPET/PET双组份黏合纤维连同棉作为加强纤维的组合物。因此, 在被测的温度范围内的差的损失系数基本上归因于CoPET,其在80°C已经软化并在高于 110°C开始熔化。尽管这取决于所用的CoPET。更高温熔化的CoPET具有其他的缺点,这些缺点包括在成本上的增加。在一种绝对的方法中,使用单独的PET的复合材料将使产品具有好的热稳定性,由于需要非常高的熔化温度T,在今天如何能够对加强纤维没有热量损害地获得它并不是已知的故。复合材料3和复合材料4为根据本发明利用蒸汽来固化的PA黏合剂与玻璃纤维加强纤维的组合物。两者在60-210°C的温度范围内具有小于0. 15的稳定的抗张强度损失系数。可以将聚酰胺加强产品完全地压紧或部分地压紧用以得到成形产品。由于根据本发明的使用饱和蒸汽的固化工艺,可以得到具有较低密度的产品并依然得到想要的刚性。 因为利用饱和蒸汽的加热工艺将聚酰胺黏合纤维在比热塑性加强纤维更低的温度熔化,并且在厚度上所有的聚酰胺黏合纤维在几乎相同的时间熔化,所以加强纤维的网结构上的弹性可以被保持。通过将基质形成的聚酰胺的量降低到这样的程度,即,整个产品刚好完全地被黏合,可以得到多孔加强层,该多孔加强层仅具有复合材料的材料体积密度的5%到 80 %的密度。然而优选地,从5 %到60 %的范围,甚至更优选地从5 %到25 %的范围是可以得到的并且由于整个零件的成本更低所以是更有利的。因此,可以得到非固态但保持多孔的产品,由于材料的多孔性以及更好的热传导性(参见附图4)故而表现为更好的声学吸收体(参见附图幻。通过或者压得更紧或者增加PA基质的量而调节密度,可以调节声学特性以及热传导性两者。利用由65%的玻璃纤维和35%的PA黏合纤维构成的同样的网材料生产样品A和样品B。根据本发明利用饱和蒸汽固化复合材料A并利用热板之间的压紧固化复合材料B。 处理复合材料A和复合材料B两者以获得完全黏合的产品。根据用于阻抗管测量(在200Hz到3400Hz之间测量)的ASTM (E-1050)以及 ISO(10534-1/2)标准,形成的复合材料的声学吸收特性利用阻抗管测量。根据IS08301利用防护热板测量热传导性。相比于在热板中处理的产品,发现在蒸汽中处理的产品的声学吸收性和热传导性更好。这部分地归因于在热处理期间需要利用热板压得更紧从而得到完全黏合的产品。所以,首先得到更紧密的产品B,因此得到在热传导性和声学特性两者上显示出下降的更少孔的产品。
权利要求
1.一种复合材料模制产品,包括至少一个由聚酰胺基质和加强纤维构成的聚酰胺加强层,其特征在于,由于利用加压蒸汽处理来固化以纤维、粉末或薄片为形式的基质材料以及所述加强纤维,所述聚酰胺加强层是多孔的。
2.根据权利要求1所述的模制产品,其特征在于,对所述加强纤维进行选择以使得所述聚酰胺加强层的动态杨格模数在150°C到210°C的温度范围内的变化不超过20%。
3.根据权利要求1或2所述的模制产品,其特征在于,所述复合材料的密度为所述聚酰胺加强层的材料的体积密度的5%到80%。
4.根据前述任一权利要求所述的模制产品,其特征在于,最终产品的抗张强度损失系数在60°C到210°C的温度范围内小于0. 15。
5.根据前述任一权利要求所述的模制产品,其特征在于,所述聚酰胺基质为聚酰胺-6 或聚酰胺-6. 6或不同类型的聚酰胺的混合物。
6.根据权利要求1-5任一项所述的模制产品,其特征在于,所述加强纤维为矿物纤维, 如玻璃纤维或碳纤维或玄武岩纤维。
7.根据权利要求1-5任一项所述的模制产品,其特征在于,所述加强纤维为热塑性聚合物纤维,其根据DSC所测得的熔化温度比在蒸汽压力下的聚酰胺的熔化温度高。
8.生产多孔的模制产品的方法,包括随机布置聚酰胺黏合纤维或薄片或粉末,以及加强纤维用以形成网,并且用加压蒸汽处理所述网以固化所述网。
9.根据权利要求8所述的方法,其特征在于,使用范围在9-20巴的绝对气压的饱和蒸汽。
10.根据权利要求8或9所述的方法,其特征在于,在耐压模中利用至少一个蒸汽可透过表面处理所述网形成模制产品。
11.根据前述任一权利要求所述的方法,其特征在于,在转到蒸汽处理之前优选通过横撑预黏合所述网。
全文摘要
一种复合材料模制产品,包括至少一个由聚酰胺基质和加强纤维构成的聚酰胺加强层,其特征在于,由于利用加压蒸汽处理来固化,所述聚酰胺加强层是多孔的。
文档编号D04H1/60GK102510801SQ201080042197
公开日2012年6月20日 申请日期2010年9月13日 优先权日2009年9月16日
发明者文策尔·克劳泽, 斯蒂芬·柯尼希鲍尔, 皮埃尔·达尼罗, 菲利普·戈达诺 申请人:欧拓管理公司