专利名称:结合方法
技术领域:
本发明涉及一种用于将由金属氧化物如蓝宝石制成的部件与另一个部件相结合的方法。
蓝宝石,即高热稳定性的金刚砂(α-相氧化铝)难以溶于酸性和碱性溶液,因此广泛用作耐火材料、绝缘体、研磨剂等。当用具有上述性能的部件作为外壳时,即使测量目标是腐蚀性液体时,上述压力传感器也可以通过隔膜的直接接收而测量液体的压力。
如图7所示,上述压力传感器块通过固定在底座上而用作压力传感器。如图7所示,压力传感器块701置于用如玻璃制成的底座702的中心部位形成的凹窝703中,以面对图7上部的隔膜部分。在底座702的凹窝703的底表面上形成穿过底座702底表面延伸的电极插脚704的终端705,终端705分别与导向块701衬底下表面的电极线相连接。在凹窝703的底表面上形成沟通底座702底表面的通风口706。
中间部位有开孔部分的盖板707压挤块701上表面的周缘,从而使其固定在凹窝703上。将盖板707与底座702的上表面结合,方法是一次性熔融玻璃,然后使其固定在底座702上。盖板707与块701相互密封,使要通过与块701的上表面接触而测量的液体无法进入块701周围的凹窝703。
为了保证压力测量的精确性,用与块701相同的材料蓝宝石制备盖板707,使二者随温度的变形程度一样,这样就不会有压力作用于块701。如上所述,为了通过尽可能排除相异金属结合密封块,将盖板707和块701的邻接表面直接结合。为了结合两个用上述蓝宝石制成的部件,将它们的结合面镜面抛光后紧靠在一起,将要结合的两个蓝宝石材料加热,同时在二者之间的部位施加压力,从而将其紧紧地结合在一起,而不使用粘结剂等物质。
但是,在上述直接结合方法中,因为两个用蓝宝石制成的部件的邻接表面必须镜面抛光至0.3nm或更小的粗糙度,所以需要昂贵的部件(盖板)。当使用普通粘结剂时,不必将结合表面镜面抛光。但是,因为有不同的材料插入在两个部件之间,所以将产生压力,并且在结合部位不能得到与蓝宝石相同的耐蚀性和热稳定性。这将限制其应用范围。
如上所述,当用传统方法结合由金属氧化物制成的两个或多个部件以形成一个器件时,直接结合这些部件可以充分利用这些部件的材料性能,但是,直接结合的成本高。相反,当用粘结剂等物质结合两个部件时,能够低成本地形成该器件,但是不能充分利用部件的材料性能。
在本发明的一个方面的结合方法中,在由金属氧化物制成的衬底结合面上形成用溶解有含金属氧化物的金属和氧的化合物的溶液形成的溶液层,加热溶液层,在衬底结合面上形成中间相的含金属和氧的粘结层,该粘结层比金属氧化物的稳定性差,并且能级易于变成较低能级,另一个部件布置在粘结层上,在衬底和另一个部件之间施加压力,同时加热粘结层,使中间相粘结层发生相变,成为稳定性高于粘结层的更稳定的相的金属氧化物,从而使衬底和另一个部件相结合。
根据该结合方法,衬底和另一个部件的结合中没有在其间使用任何不同于衬底材料的材料。
在上述结合方法中,当在加热粘结层的同时在衬底和另一个部件之间施加压力时,可以同时向粘结层施加电场,以加速如氧离子的扩散,从而促进相变。
在上述结合方法中,金属氧化物是α-相氧化铝,粘结层是用其相是非α-相的氧化铝制成。
在上述结合方法中,含金属和氧的化合物是含金属和酸的盐、有机金属化合物或金属的氢氧化物。另外,含金属和氧的化合物是勃姆石。另外,其相是非α-相的氧化铝是一种选自γ-、θ-、ι-、κ-、ε-、χ-、δ-和σ-相氧化铝或其复合物的材料。
图1用于解释根据本发明的一个实施方案的结合方法。本申请中以蓝宝石衬底相互结合的情况作为例子。
如图1所示,用勃姆石(AlO(OH),这是一种铝的氢氧化物,水溶液涂覆蓝宝石衬底101,形成涂层102。当少量硝酸加入涂层溶液使其氢离子浓度(pH)大约为4时,即使勃姆石的浓度很高,也能得到稳定的溶解状态。
将带有涂层102的衬底101加热至如450℃。水分通过加热而蒸发,由勃姆石水溶液形成的涂层变成凝胶层。当再次加热衬底101上的勃姆石凝胶时,其通过脱水变成γ-相氧化铝(γ-氧化铝),并且与蓝宝石衬底101结合。结果如图2所示,在与其结合的衬底101表面上的结合区内形成由γ-氧化铝或无定形氧化铝制成的中间产品层(粘结层)102a。因为中间产品层201a是通过涂覆勃姆石水溶液形成的,所以为了使其平整,中间产品层201a的表面在衬底101表面上的吸收是不均匀的。当中间产品层201a是用蓝宝石制成的时,这种平整状态允许直接结合。
在金刚砂晶体结构(α-相)中,作为金刚砂如蓝宝石的氧化铝具有非常稳定的状态。相反,γ-氧化铝的立方体尖晶石晶体结构具有许多由于非天然晶体结构造成的氧原子缺漏而产生的晶格缺陷。即,γ-氧化铝与α-氧化铝相比不稳定,其处于能级易于变成较低能级的中间相。另外,无定形氧化铝的晶格缺陷比γ-氧化铝的晶格缺陷还多。当在蓝宝石上形成具有大量由于氧原子缺漏而产生的晶格缺陷的层时,为了达到稳定状态,蓝宝石表面上的蓝宝石所含有的氧将进入晶格缺陷。当发生这种反应时,蓝宝石衬底101和在衬底101表面上形成的中间产品层201a化学连接和结合。
然后制备作为另一个部件的蓝宝石衬底103,如图3所示,使衬底101上的中间产品层102a的表面紧靠衬底103的表面。在这种状态下,在衬底101和衬底103之间施加如100-30000Pa优选2000Pa的压力,并且将其加热至约1000℃。在衬底101和103上施加压力负荷可以防止其翘曲,从而使衬底101(中间产品层102a)和衬底103的结合区域完全接触。这些步骤均在减压气氛中进行。
进行上述操作后,通过加热使中间产品层102a的γ-氧化铝通过σ-氧化铝与→θ-氧化铝相变成α-相氧化铝(α-氧化铝)。
结果,中间产品层102a变成由α-氧化铝制成的晶体层104,该层和衬底的边缘最终消失,从而通过具有连续α-氧化铝状态的晶体层104结合衬底101和103(图4)。因为晶体层104已经变成α-氧化铝或蓝宝石,所以用与衬底相同的材料蓝宝石制成的晶体层104可以无缝而坚固地结合衬底101和103,其结合程度与直接结合相同。
在该实施方案中,衬底101和103的结合面粗糙度都设定为如约10nm,在通过涂覆溶液形成中间产品层时,只要中间产品层的表面能够吸收蓝宝石衬底的表面粗糙度,使其平整即可。表面粗糙度约为10nm的蓝宝石衬底一直用于如手表视窗,如此大小的蓝宝石衬底很便宜,只有几百日元。而和上述同样大小但表面粗糙度为0.3nm或更小的用于直接结合的蓝宝石衬底则需要几万日元。使用该实施方案的方法,衬底的结合可以达到与直接结合相同的结合程度,而不需使用成本高的高精度工艺。<第二个实施方案>
下面描述本发明的另一个实施方案。
在该实施方案中,用硝酸铝水溶液形成γ-氧化铝。如图5所示,首先,将硝酸铝水溶液涂覆在衬底101上,形成涂层502。当加热带有涂层502的衬底101时,涂层502中的水分被蒸发掉,然后,涂层502中的硝酸铝通过失去硝酸而成为碱式盐,并且最终变成γ-氧化铝。结果如图2所示,在衬底101上形成由γ-氧化铝制成的中间产品层201a。
这种状态与前面所述的实施方案相同。下面的过程与前面的实施方案相同。制备作为另一个部件的蓝宝石衬底103,如图3所示,使衬底101上的中间产品层102a的表面紧靠衬底103的表面。在这种状态下,在衬底101和衬底103之间施加约2000Pa的压力,并且将其加热至约1000℃。
在该实施方案中,如图4所示,通过上述操作,用与衬底相同的材料蓝宝石制成的晶体层104可以无缝而坚固地结合衬底101和103,其结合程度与直接结合相同。
在该实施方案中,用硝酸铝水溶液涂覆衬底。但是,可以用强酸或强碱的水溶液涂覆衬底后加热,使衬底表面上的蓝宝石本身发生化学反应,从而在衬底表面上形成硝酸铝层。<第三个实施方案>
下面描述本发明的另一个实施方案。
在该实施方案中,将铝的有机金属化合物加热至约200-600℃,形成中间产品层。作为铝的有机金属化合物,可以使用二异丙醇铝合乙酰乙酸乙酯、异丙醇铝等。
当使用铝的有机金属化合物时,首先用铝的有机金属化合物的有机溶剂溶液涂覆衬底101,形成有机涂层602。
当加热带有有机涂层602的衬底101时,有机涂层602的有机溶剂被蒸发掉。然后,当将带有有机涂层602的衬底101加热至上述温度时,有机金属化合物分解以蒸发掉有机组分,所以剩下无定形氧化铝或γ-相氧化铝。用紫外线照射涂层或者在氧气等离子体中进行分解时,这种分解可以在较低温度下进行。结果如前面的实施方案中图2所示,在衬底101上形成由中间相氧化铝如无定形氧化铝或γ-氧化铝制成的中间产品层102a。
这种状态与前面所述的实施方案相同。下面的过程与前面的实施方案相同。制备作为另一个部件的蓝宝石衬底103,如图3所示,使衬底101上的中间产品层102a的表面紧靠衬底103的表面。在这种状态下,在衬底101和衬底103之间施加约2000Pa的压力,并且将其加热至约1000℃。
在该实施方案中,如图4所示,通过上述操作,用与衬底相同的材料蓝宝石制成的晶体层104可以无缝而坚固地结合衬底101和103,其结合程度与直接结合相同。
在该实施方案中,蓝宝石衬底的粘结方法是形成中间产品层,然后将其加热至约1000℃,导致相变。但是,在加热中间产品层的同时向中间产品层施加电场,以加速氧离子的扩散,从而可以在较低温度下发生向α-相的相变。
应当注意的是,这些实施方案都是用蓝宝石作为金属氧化物的例子,但是,本发明并不局限于此,例如,可以用氧化锆(ZrO2)得到同样的结果。
如上所述,根据上述实施方案,用α-相氧化铝如蓝宝石制成的部件可以与直接结合相同的结合程度与另一个部件结合。这就能够低成本且不降低材料性能地将其结合。
如上所述,本发明的结合方法适用于低成本且不降低材料性能地使用α-相氧化铝如蓝宝石制成的部件与另一个部件结合,其结合程度与直接结合相同。
权利要求
1.一种结合方法,特征在于其包括第一个步骤,在由金属氧化物制成的衬底结合面上形成用溶解有含金属氧化物的金属和氧的化合物的溶液形成的溶液层;第二个步骤,加热溶液层,在衬底结合面上形成处于中间相的含金属和氧的粘结层,中间相的粘结层比金属氧化物的稳定性差,并且能级易于变成较低能级;和第三个步骤,将另一个部件布置在粘结层上,在衬底和所说的另一个部件之间施加压力,同时加热粘结层,使中间相粘结层发生相变,成为稳定性高于粘结层的金属氧化物,从而使衬底和所说的另一个部件相结合。
2.根据权利要求1所述的结合方法,特征在于在第三个步骤中,在加热粘结层的同时向粘结层施加电场。
3.根据权利要求1所述的结合方法,特征在于所述金属氧化物包括α-相氧化铝,粘结层是用其相是非α-相的氧化铝制成的。
4.根据权利要求1所述的结合方法,特征在于所述含金属和氧的化合物包括含金属和酸的盐。
5.根据权利要求1所述的结合方法,特征在于所述含金属和氧的化合物包括有机金属化合物。
6.根据权利要求1所述的结合方法,特征在于所述含金属和氧的化合物包括金属的氢氧化物。
7.根据权利要求3所述的结合方法,特征在于所述金属氧化物包括勃姆石。
8.根据权利要求3所述的结合方法,特征在于所述含金属和氧的化合物包括勃姆石。
9.根据权利要求3所述的结合方法,特征在于其相是非α-相的氧化铝是一种选自γ-、θ-、ι-、κ-、ε-、χ-、δ-和σ-相氧化铝或其复合物的材料。
全文摘要
用一种铝的氢氧化物—勃姆石(AlO(OH))水溶液涂覆衬底(101),形成涂层(102),将涂层(102)改性成α-氧化铝,从而使衬底(101)和衬底(103)相结合。
文档编号C04B35/645GK1466557SQ01816588
公开日2004年1月7日 申请日期2001年10月1日 优先权日2000年9月29日
发明者增田誉 申请人:株式会社山武