用于合成半导体金刚石的石墨材料以及由该材料制备的半导体金刚石的制作方法

文档序号:1956911阅读:457来源:国知局
专利名称:用于合成半导体金刚石的石墨材料以及由该材料制备的半导体金刚石的制作方法
技术领域
本发明涉及在由高压合成法合成含有大量硼的半导体金刚石中所使用的用于合成半导体金刚石的石墨材料、以及使用该材料制备的半导体金刚石。
背景技术
目前,工业金刚石的制备大多采用高压合成法。已知通过高压合成法制备工业金刚石时,如果向催化剂金属等中加入硼,则可合成含有硼的金刚石。并已知硼原子与碳原子交换而进入,在价电子带上方(0.37eV)的部位形成受主能级,形成p型半导体。
最近,发现了利用含硼的金刚石所具有的半导体特性应用于各种电极、耐化学品性感应器、导电性磨削砂轮等中的可能性,使得含硼的半导体金刚石有了大量需求。因此需要高效率、高收率地合成含硼的半导体金刚石。
传统的高压合成法有例如日本特公昭59-6808号公报所示的方法,该方法中,向金刚石合成中用作催化剂的金属中一起添加硼和铝,作为熔融金属兼熔融催化剂使用,这样可以使金刚石单晶在金刚石晶种上生长。然后调节加入到催化剂中的硼的加入量,从而调节合成的金刚石中的硼含量。
但是,该方法中,难以通过调节熔融金属兼熔融催化剂中的硼加入量来使硼以高比例含有。并且也难以使硼在金刚石中均匀分布。还难以高收率获得金刚石。
因此,本发明的目的在于提供用于合成半导体金刚石的石墨材料,该用于合成半导体金刚石的石墨材料可以以高收率制备高比例含有硼或硼化合物、且这些硼或硼化合物均匀分布的半导体金刚石;还提供使用这些材料制备的半导体金刚石。

发明内容
为解决上述问题,本发明人发现在用高压合成法制备含有硼的半导体金刚石时,通过向旨在转化为半导体金刚石的石墨材料中按使其均匀的方式加入硼或硼化合物并使其致密、高纯度化、降低氢含量,可以大幅提高作为原料的石墨材料转化为金刚石的转化率,从而完成了本发明。
即,本发明的用于制备半导体金刚石的石墨材料的特征在于石墨材料含有硼或硼化合物。石墨材料中的硼元素含量为0.1-15质量%,优选0.5-10质量%。石墨的体积密度为1.6g/cm3或以上,优选1.7g/cm3或以上。经过高纯度化处理,石墨材料中的氢含量为1000ppm或以下,优选500ppm或以下,进一步优选50ppm或以下。
附图简述

图1为表示按实施例1的石墨材料的偏光显微镜照片的图。图2为表示按实施例2的石墨材料的偏光显微镜照片的图。图3为用与本发明有关的石墨材料合成金刚石时的带式超高压装置中所用的样品管的剖面图。
发明的最佳实施方式本发明的用于合成半导体金刚石的石墨材料是使用硼粉或碳化硼粉末、人造石墨粉末、易石墨化碳粉作为原料,将这些原料以任意的方法进行混合、成型、烧结、石墨化、高纯度化而成的。
这里,硼粉或碳化硼粉末并没有特别限定,通常可以使用市售的商品。特别地优选平均粒径为50μm或以下。若平均粒径超过50μm,则在烧结、石墨化处理后,硼成分会不均匀存在于石墨材料中。
作为易石墨化碳粉,可以使用石油焦炭、沥青焦炭、煤焦炭等。其中,通过热处理沥青类生成的中间相小球具有自烧结性,即使不使用粘结剂等也可以进行烧结,因而优选。优选这些易石墨化碳粉的平均粒径为50μm或以下。平均粒径为50μm或以下时,上述硼或碳化硼粉末不会不均匀存在,可以均匀地混合。
与硼粉或碳化硼粉末、易石墨化碳粉同样,也优选人造石墨粉末的平均粒径为50μm或以下。通过使原料粉末的平均粒径一致至相同程度,它们不会各自不均匀地存在,可均匀混合。
接着,将0.1-15质量%、优选0.2-10质量%的硼粉或碳化硼粉末和76-98.9质量%、优选81-98.8质量%的易石墨化碳粉以及1-9质量%的人造石墨粉末以任意的方法混合1-2小时,通过冷各向同性加压法等任意的成型法使其成型为任意的形状、大小。在非氧化气氛下、在600-1300℃温度下进行烧结(一次烧结)。一次烧结后,在惰性气体气氛下、在1800-2200℃、优选在2000℃下进行烧结(二次烧结)。接着在非氧化气氛下、在2400-2600℃温度下进行热处理,进一步提高石墨化度,同时使杂质升华,制成纯度得到提高的石墨材料。通过这些,可以使氢含量为1000ppm或以下。另外,通过提高石墨化度,可以进一步提高金刚石的转化率。
通过这样在2000℃进行烧结,可以使硼成分的挥发损耗大体上得到抑制,制得分散极均匀且机械加工性、热传导率、热膨胀系数等重要物性得到提高的含硼石墨材料。其原因至今尚未清楚,估计是通过在超过硼稳定存在的温度界限下进行加热,反复进行硼成分的游离、向碳部分中转移、扩散、再结合等,硼成分几乎没有损失,极均匀地分散,且由于是高温烧结,使得碳部分的石墨化反应得以进行。另外,由于是这样的高温烧结,可能转变为硼整体均匀分散的固溶体、被硼部分置换的石墨晶体的聚集体、恰如纯石墨材料一样的含硼石墨材料。
通过上述处理,制成了体积密度为1.6g/cm3或以上,优选1.7g/cm3或以上、硼均匀分散的石墨材料。并且可使石墨材料中的硼元素含量为0.1-15质量%、优选0.2-10质量%。体积密度小于1.6g/cm3,则转化为金刚石的转化率变差,因而不优选。通过调节作为原料加入的硼或碳化硼粉末的加入量,该石墨材料中的硼元素含量可以控制在0.1-15质量%、优选0.2-10质量%范围内。硼元素含量比0.1质量%少时,无法在由石墨转换的金刚石中显示显著的半导体特性。含有超过15质量%时,则析出碳化硼,在应用方面不优选。
为了降低石墨材料中的氢等杂质含量,还可以进行高纯度化处理。由此可以进一步提高金刚石的收率。如果石墨材料中含有水分、氢、氧、硫等杂质,特别是即使含有少量氢,石墨材料转化为金刚石的收率则极端降低。因此,最好将在上述高温下进行了石墨化处理的石墨材料在0.1Pa或以下、优选在0.01Pa或以下的压力下,以1800℃或以上的温度进行2小时或以上的热处理。通过该处理,上述石墨材料中的水分、氢、氧、硫等杂质,特别是氢会进一步降低,可使氢含量为1000ppm,优选500ppm,进一步优选50ppm或以下。氢含量由碳/氢/水分分析装置(LECO公司制造,RH-IE型)测定。
通过上述处理,由高压合成法制备金刚石时,与传统的方法相比,可得到转化为含硼半导体金刚石时转化率高的石墨材料。使用这样得到的石墨材料,可以工业化制备半导体金刚石,也可以应用于各种电极、耐化学品性感应器、导电性磨削砂轮等中。
以下通过实施例具体说明本发明。
(实施例1)将各原料按照碳化硼粉末(平均粒径13μm)15质量%、中间相小球(平均粒径11μm)80质量%、人造石墨粉(平均粒径4μm)5质量%的比例混合,在常温下进行干混1小时,然后用冷各向同性加压法在80MPa的压力下成型,得到120×520×720mm的成形物。将成型物装入焦炭粉末中,在非氧化性气氛下升温至1000℃,得到一次烧结物。在电阻式加热炉内,将该一次烧结物埋于焦炭粉中,在惰性气体气氛中、在2000℃下进行热处理,再在アチエソン(阿切孙)炉中、在2400℃下进行热处理,进一步提高石墨化度,同时使石墨材料中的硼的分散性均匀。该石墨材料的体积密度为1.8g/cm3、肖氏硬度为12、固有电阻为9μΩ·m、弯曲强度为60MPa、压缩强度为65MPa、弹性系数为3GPa、硼元素含量为10质量%、热膨胀系数为2×10-6/℃、热传导率为40W/(m·℃)、氢含量为300ppm。
(实施例2)除不在アチエソン炉中在2400℃下进行热处理之外,与实施例1同样地制备石墨材料。该石墨材料的体积密度为1.8g/cm3、肖氏硬度为70、固有电阻为15μΩ·m、弯曲强度为60MPa、压缩强度为140MPa、弹性系数为22GPa、硼元素含量为10质量%、热膨胀系数为5×10-6/℃、热传导率为30W/(m·℃)、氢含量为1000ppm以上。
(实施例3)将实施例2中的石墨材料在2150℃、1.5×10-3pa的压力下进行热处理。该石墨材料的体积密度为1.8g/cm3、肖氏硬度为70、固有电阻为11μΩ·m、弯曲强度为70MPa、压缩强度为150MPa、弹性系数为20GPa、硼元素含量为10质量%、热膨胀系数为5×10-6/℃、热传导率为35W/(m·℃)、氢含量约为150ppm。
实施例1和实施例2的石墨材料的偏光显微镜照片分别如图1和图2所示。图1和图2表明实施例1的石墨材料比实施例2的石墨材料的石墨化度高。
接着,分别将实施例1-3的石墨材料加工为15mm×3mm,使用带式超高压装置转化成金刚石。图3表示该带式超高压装置中所用的样品管的剖面图。图3中,1为砧,2为缸,3为叶腊石衬垫,4为用向食盐中添加混合10%氧化锆粉而形成的成型物制作的绝缘板,5为催化剂金属板,6为本发明的石墨材料,7为用于通电而成为加热器的石墨环。金刚石的合成如图所示,在用与绝缘板4相同材质制的未图示的筒体中,将石墨材料6和催化剂金属板5交替叠层,向配置于该筒体上下的环7通电,在1400℃温度、约5.5GPa的压力下保持30分钟。之后减少对环7的通电,冷却至室温,然后慢慢降低压力,取出样品。将该样品用盐酸、硝酸进行酸处理后回收金刚石。得到的金刚石含有硼,显示半导体的特性。
使用实施例1中的石墨材料时,得到的金刚石的平均粒径为25μm,由石墨材料6转化为金刚石的转化收率为97%。使用实施例2中的石墨材料时,得到的金刚石的平均粒径为25μm,转化为金刚石的转化收率为17%或以下。使用实施例3中的石墨材料时,得到的金刚石的平均粒径为20μm,转化为金刚石的转化收率为99%或以上。这里,金刚石的转化收率可通过测定填充的石墨原料和合成的金刚石的重量来计算。
如上所述,由于提高了石墨材料的石墨化度,降低了石墨中的氢含量,可以特别提高金刚石的收率,可以获得能够按工业化充分制备的金刚石收率。
产业实用性通过向旨在转化为半导体金刚石的石墨材料中按使其均匀的方式加入硼或硼化合物,使其致密、高纯度化,降低氢含量,可以大幅提高石墨原料转化为金刚石的转化率。由此,可以工业化制备半导体金刚石,也可以应用于各种电极、耐化学的性感应器、导电性磨削砂轮等。
权利要求
1.用于合成半导体金刚石的石墨材料,所述石墨材料是在由高压合成法制备半导体金刚石中所采用的石墨材料,所述石墨材料含有硼或硼化合物。
2.权利要求1的用于合成半导体金刚石的石墨材料,其中所述石墨材料的硼元素含量为0.1-15质量%。
3.权利要求1或2的用于合成半导体金刚石的石墨材料,其中所述石墨材料的体积密度为1.6g/cm3或以上。
4.权利要求1或2的用于合成半导体金刚石的石墨材料,其中所述石墨材料的氢含量为1000ppm或以下。
5.半导体金刚石,该半导体金刚石使用权利要求1-4中任一项的用于合成半导体金刚石的石墨材料来制备。
全文摘要
在由高压合成法制备含硼的半导体金刚石时,向旨在转化为半导体金刚石的石墨材料中按使其均匀的方式加入硼或硼化合物,使之致密、高纯度化,降低含氢量。
文档编号C04B35/645GK1582257SQ0182391
公开日2005年2月16日 申请日期2001年12月28日 优先权日2001年12月28日
发明者福长修, 大久保博, 曾我部敏明, 东城哲朗 申请人:东洋炭素株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1