排气净化蜂窝状过滤器及其制造方法

文档序号:1841915阅读:298来源:国知局
专利名称:排气净化蜂窝状过滤器及其制造方法
技术领域
本发明涉及用于捕捉、除去柴油发动机等的排气中含有的以碳为主要成分的固体微粒(微粒)的排气净化蜂窝状过滤器及其制造方法。
背景技术
在汽车等的柴油发动机等的排气中含有相当浓度的以碳为主要成分的微粒(150~250mg/Nm3),这与氮氧化物等一样成为构成环境问题的一个原因,因此将其高效、经济地除去是当务之急。目前,已提出了被称为DPF(柴油微粒过滤器)等的用于捕捉、除去这种排气中的固体微粒的各种过滤器。
例如,日本专利特开昭57-35918号公报、日本专利特开平5-214922号公报中公开了,在蜂窝状体中于上流侧与下流侧端部交替闭塞多条流路而成的排气过滤器。在这种蜂窝状过滤器中具有以下结构,向过滤器的上流侧的开口供给要净化的燃烧排气;通过过滤器的间壁;由间壁捕捉、除去排气中的微粒后;从过滤器的下流侧的开口排出净化后的排气。
另一方面,作为上述蜂窝状过滤器的材质,在要求其具备高耐热性的同时,由于会被置于骤热、骤冷的环境下,因此还要求其热膨胀系数小,并且耐热震性强,因而提出、使用了碳化硅、堇青石的材料。但是,这些材料不是充分具有作为排气过滤器的特性的材料。
即,在排气过滤器中,被捕捉的未燃烧的碳的固体微粒异常堆积时,该碳起火燃烧,温度快速上升在局部可达到1400~1500℃。这种情况时,由于在过滤器的各部分产生温度分布、其热膨胀系数不足够低、为4.2×10-6K-1,因此由于材质所受的热应力、热震引起碳化硅材料的过滤器产生裂纹引起部分破损。另一方面,当为堇青石材料的过滤器时,由于热膨胀系数较小、为0.6~1.2×10-6K-1而由热震引起的裂纹的问题,如下问题才是大问题,即由于熔点不高、为1400~1450℃,因此由上述碳的异常燃烧引起部分熔损的问题。
一旦由于上述的过滤器的破损或熔损而在排气过滤器内部产生缺陷,则过滤器的碳捕集效率降低的同时,过滤器所受排气的压力在缺陷部形成过剩的负荷,诱发更新的破损,结果排气过滤器整体丧失功能。
作为上述蜂窝状过滤器的材料,在WO01/037971号公报中,提出了碳化硅或堇青石的同时,也提出了钛酸铝。钛酸铝具有在超过1700℃的高温下的耐热性、小的热膨胀系数和优良的耐热震性。但是,另一方面,钛酸铝通常在800~1280℃的温度范围内具有分解范围,因此具有不能在包括该温度范围的变化温度范围内稳定使用的大问题。再者,由于结晶结构的各向异性较大,在晶界易由于热应力而产生位错从而造成机械强度不大,因此在壁厚薄的孔(cell)密度较大的蜂窝状的制造;以及作为安装在汽车等上在高温下承受机械振动等负荷的,排气过滤器使用中还存在问题。
发明的揭示本发明提供了,耐热性优良、热膨胀系数较小且耐热震性也优良的,并且在变动的高温下也不发生热分解等的,由于机械强度大可长期稳定使用的,可高效捕捉、除去柴油发动机等的排气中所含的微粒碳等微粒的排气净化蜂窝状过滤器及其制造方法。
本发明为解决上述课题进行了认真的研究,着眼于钛酸铝,获得了新的发现,即,使用在规定温度范围烧结按照规定比例在含有规定比例的形成钛酸铝的TiO2和Al2O3的混合物中,添加特定的碱性长石、含有Mg的尖晶石型结构的氧化物、或者MgO或经烧结转换成MgO的含Mg化合物所得的混合物而得的钛酸铝烧结体的排气净化蜂窝状过滤器,既维持了目前钛酸铝烧结体原来的高耐热性和以低热膨胀性为基础的耐热震性,又与目前的钛酸铝烧结体不同,具有较大的机械强度和耐热分解性,并以此为基础完成了本发明。
所述本发明主要包括以下要旨。
(1)排气净化蜂窝状过滤器,所述过滤器是用于除去排气中的以碳为主要成分的固体粒子的蜂窝状过滤器,其特征在于,该蜂窝状过滤器的材质是在1250~1700℃烧结含有以前者/后者的摩尔比率为40~60/60~40含TiO2和Al2O3的混合物(称为X成分)100质量份以及,
式(NayK1-y)AlSi3O8(式中,0≤y≤1)所示的碱性长石、含Mg的尖晶石型结构的氧化物、或者MgO或经烧结转换成MgO的含Mg化合物(称为Y成分)1~10质量份的原料混合物而成的钛酸铝烧结体。
(2)如上述(1)所述的排气净化蜂窝状过滤器,其特征还在于,Y成分是(NayK1-y)AlSi3O8(式中、0≤y≤1)所示的碱性长石、含Mg的尖晶石型结构的氧化物和/或MgO或者经烧结转换成MgO的含Mg化合物的混合物。
(3)如上述(1)或(2)中所述的排气净化蜂窝状过滤器,其特征还在于,蜂窝状过滤器壁厚为0.1~0.6mm、孔密度15~93孔/cm2,并且间壁的气孔率为30~70%、热膨胀系数在3.0×10-6K-1以下。
(4)排气净化蜂窝状过滤器的制造方法,其特征在于,调制含有以前者/后者的摩尔比率为40~60/60~40含TiO2和Al2O3的混合物(称为X成分)100质量份以及,式(NayK1-y)AlSi3O8(式中,0≤y≤1)所示的碱性长石、含Mg的尖晶石型结构的氧化物、或者MgO或经烧结转换成MgO的含Mg化合物(称为Y成分)1~10质量份的混合物,向该混合物中添加成形助剂混炼再可塑化使之可挤出成形,挤压成形为蜂窝状体后,在1250~1700℃烧结。
(5)上述(4)所述的排气净化蜂窝状过滤器的制造方法,其特征还在于,Y成分为(NayK1-y)AlSi3O8(式中,0≤y≤1)所示的碱性长石、含Mg的尖晶石型结构的氧化物和/或MgO或经烧结转换成MgO的含Mg化合物的混合物。
(6)排气净化装置,其特征在于,在罐体内安装上述(1)~(3)中任一项所述的排气净化蜂窝状过滤器。
(7)上述(6)所述的排气净化装置,其特征还在于,用于安装有柴油发动机的汽车的排气净化。
对于本发明的钛酸铝烧结体的蜂窝状过滤器如上所述具有原来的高耐热性和小的热膨胀系数,并且耐热震性优良的同时,为何还具有较高的耐热分解性以及较大的机械强度,还不甚清楚,推测是由以下理由引起的。
即,由于在形成钛酸铝的混合物中添加了碱性长石,因而从钛酸铝生成温度附近存在成为液相的碱性长石,所以钛酸铝的生成反应在液相下发生,形成致密的结晶机械强度上升。而且,碱性长石中所含的Si成分在钛酸铝的晶格中固溶取代Al。由于Si与Al相比离子半径较小,因此与周围氧原子的结合距离变短,与单纯的钛酸铝相比晶格常数较小。结果,所得的烧结体是结晶结构稳定且显示非常高的热稳定性的物质,是耐热分解性大大提高的物质。
另外,在形成钛酸铝的混合物中,添加含Mg尖晶石型结构的氧化物或者MgO或经烧结而转换成MgO的含Mg化合物时,可得到致密的烧结体,与单纯的钛酸铝相比,可形成具有非常高的机械强度的烧结体。
再者,在形成钛酸铝的混合物中同时添加碱性长石和尖晶石型结构的氧化物和/或MgO或经烧结转换成MgO的含Mg化合物时,碱性长石中所含Si以及尖晶石型结构的氧化物和/或MgO或者经烧结转换成MgO的含Mg化合物中所含的Mg,在钛酸铝中主要取代Al的位置。单独添加这些元素时,在本来3价的维持电荷平衡的Al的位置上,取代成2价(Mg)或者4价(Si)元素。因此,烧结体为了维持电荷的平衡,添加Mg时,向体系外释放氧,造成氧缺陷来维持电荷的平衡,添加Si时,由于Si为4价,因此通过使原本4价的Ti还原成3价来维持电荷的平衡。
另一方面,由于Mg与Al相比电荷小1,Si与Al相比电荷大1,因此通过同时添加碱性长石以及尖晶石型结构的氧化物和/或MgO或者经烧结转换成MgO的含Mg化合物可得到电荷的平衡,可在不影响其它的烧结体构成元素,并且可以固溶。
特别是,以近似等摩尔数添加碱性长石以及尖晶石型结构的氧化物和/或MgO或者经烧结转换成MgO的含Mg化合物,与单独添加相比,添加物可更稳定地存在。由于这些理由,两者发挥协同作用,形成了与单独使用相比强度大大提高的,不损害钛酸铝原本具有的低热膨胀性的,并且具有高机械强度的,同时耐热分解性也提高的钛酸铝烧结体。
附图的简单说明

图1是显示从本发明的排气净化蜂窝状过滤器的一例中截取的一部分的斜视图。
图2是图1的蜂窝状过滤器的端面的模式图。
图3是图2的蜂窝状过滤器的沿A-A线的断面的模式图。
图4显示了本发明的实施例1、2和比较例2的各烧结体中的钛酸铝残存率β的经时变化。
符号说明1蜂窝状过滤器2间壁3贯通孔 4、5封闭材料实施发明的最佳方式本发明中,作为上述蜂窝状过滤器的材质,使用在1250~1700℃烧结含有以前者/后者的摩尔比率为40~60/60~40含TiO2和Al2O3的X成分100质量份以及1~10质量份Y成分的原料混合物而形成的钛酸铝烧结体。
作为上述的形成钛酸铝的TiO2以及Al2O3,没有必要分别使用纯的TiO2以及Al2O3,只要是经烧结可形成钛酸铝的成分就没有特殊的限定。通常可从作为氧化铝铝磁、二氧化钛陶瓷、钛酸铝陶瓷等各种陶瓷的原料使用的物质中适当选择使用。也可使用例如在金属成分中含有Al、Ti的复合氧化物、碳酸盐、硝酸盐、硫酸盐等。
以前者/后者的摩尔比率为40~60/60~40的比例使用TiO2以及Al2O3,较好为45~50/55~60。特别是在上述范围内,通过使Al2O3/TiO2的摩尔比在1以上可以避开烧结体的共晶点。本发明中使用Al2O3和TiO2的混合物,在本发明中有时总称为X成分。
对本发明的蜂窝状过滤器而言,必须在上述X成分中添加Y成分作为添加剂。作为Y成分之一的碱性长石可使用式(NayK1-y)AlSi3O8所示的物质。式中,y需满足0≤y≤1,较好为0.1≤y≤1,特好为0.15≤y≤0.85。具有该范围y值的碱性长石熔点低,对于促进钛酸铝的烧结特别有效。
作为Y成分中其它成分的含Mg的尖晶石型结构的氧化物,例如可使用MgAl2O4、MgTi2O4。作为这种尖晶石型结构的氧化物,可以是天然矿物,也可以是含有MgO和Al2O3的物质、含有MgO和TiO2的物质或者烧结该物质所得的尖晶石型氧化物。另外,也可以混合使用2种以上的不同种类的具有尖晶石型结构的氧化物。另外,作为MgO前体,只要是经过烧结形成MgO的物质均可以使用,可例举如MgCO3、Mg(NO3)2、MgSO4或者这些的混合物。
上述X成分与Y成分的使用比例是很重要的,对应于100质量份X成分,Y成分为1~10质量份。另外,这是X成分和Y成分均作为氧化物的比例,如使用氧化物以外的原料,则为换算成氧化物的值。相对于100质量份X成分,Y成分小1质量份时,Y成分的添加效果、即改善烧结体特性的效果变小。相反,如超过10质量份时,由于大大超过了到钛酸铝结晶的Si或者Mg元素的固溶限,过剩添加的剩余成分在烧结体中作为单独的氧化物存在,特别是存在导致热膨胀系数增大的问题。其中,对应于100质量份X成分,Y成分更好为3~7质量份。
另外,本发明中,较好为并用式(NayK1-y)AlSi3O8所示的碱性长石以及含Mg的尖晶石型结构的氧化物和/或MgO或者其前体,使用它们的混合物来作为上述Y成分。使用该混合物时,可得到上述协同作用的提高。上述碱性长石(前者)以及含Mg的尖晶石型结构的氧化物和/或MgO或者其前体(后者)的混合物中前者/后者的质量比率较好为20~60/80~40,特好为35~45/65~55。上述范围中,Si/Mg的比例为等摩尔存在,不包含在该范围时,由于难以发挥Si和Mg同时固溶于钛酸铝的较协同效果,因此不适宜。
本发明中,除了上述的X成分以及Y成分,还可以根据需要使用其它烧结助剂,可改善所得烧结体的性质。作为其它烧结助剂,可例举如SiO2、ZrO2、Fe2O3、CaO、Y2O3等。
使上述的含有X成分以及Y成分的原料混合物充分混合,粉碎。对于原料混合物的混合、粉碎,没有特别的限定,可按照已知的方法进行。例如可使用球磨机、介质搅拌磨机等来进行。原料混合物的粉碎程度没有特别的限定,平均粒径较好在30μm以下,特好为8~15μm。只要在不形成二次粒子的范围中越小越好。
在原料混合物中,可较好掺入成形助剂。作为成形助剂,可使用粘合剂、造孔剂、脱模剂、消泡剂以及胶溶剂等已知的助剂。作为粘合剂较好为聚乙烯醇、微晶蜡乳胶、甲基纤维素、羧甲基纤维素。作为造孔剂,较好为活性炭、焦炭、聚乙烯树脂、淀粉、石墨等。作为脱模剂,较好为硬酯酸乳胶等,作为消泡剂较好为n-辛醇、辛基苯氧基乙醇等,作为胶溶剂,较好为二乙胺、三乙胺等。
对于成形助剂的使用量没有特别的限定,本发明中,相对于作为原料使用的X成分、Y成分(按氧化物换算)的合计量100质量份,均较好为换算成固形物的以下范围。即,适宜使用较好为0.2~0.6质量份左右的粘合剂,较好为40~60质量份左右的造孔剂,较好为0.2~0.7质量份左右的脱模剂,较好为0.5~1.5质量份左右的消泡剂以及较好为0.5~1.5质量份左右的胶溶剂。
添加上述成形助剂的原料混合物,通过混合、混炼、将经可塑化的可挤出成形的物质挤出成形形成蜂窝状体。对于挤出成形的方法可使用已知的方法,蜂窝体的孔的形状可以是圆形、椭圆形、四边形、三角形中的任一种。另外,蜂窝状成形体的整体形状可以是圆柱体、方体中的任一种。成形的蜂窝状体较好为干燥,再在1250~1700℃,较好为1300~1450℃烧结。对于烧结气氛没有特别的限定,较好为通常采用的空气等的含氧气氛。
烧结时间,烧结至烧结充分进行既可,通常采用1~20小时左右。
对于上述烧结时的升温速度以及降温速度也没有特别的限定,可以适当设定不会使所得的烧结体中产生裂纹的条件。例如,较好是,为了充分除去原料混合物中所含有的水分、粘合剂等成形助剂不急剧升温,而是缓缓升温。另外,在加热至上述烧结温度之前,根据需要较好在500~1000℃左右的温度范围内,进行10~30小时左右的稳步升温来实施预烧结,这样可缓解作为形成钛酸铝时产生裂纹的原因的烧结体内的应力,可抑制烧结体中裂纹的产生,形成致密且均一的烧结体。
这样所得的烧结体,是以由X成分形成的钛酸铝作为基本成分,作为Y成分的碱性长石中所含的Si成分、来自含Mg的尖晶石型结构的氧化物以及MgO或者通过烧结转换成MgO的含Mg化合物的Mg成分在钛酸铝的晶格中固溶而得的烧结体。这种烧结体,如上所述,兼备高机械强度和低热膨胀系数,而且通过使结晶结构稳定化,成为具有优良耐热分解性的烧结体。
结果,由该烧结体形成的蜂窝状过滤器具有壁厚例如为0.1~0.6mm,较好为0.3~0.48mm、孔密度例如为15~93孔/cm2的薄壁蜂窝状构造。间壁的气孔率例如为30~70%较好为40~60%,热膨胀系数例如在3.0×10-6K-1以下,较好在1.5×10-6K-1以下。该蜂窝状过滤器从室温至1600℃左右的高温均可抑制钛酸铝的热分解反应,可稳定使用。
图1是本发明的排气净化蜂窝状过滤器的一例的斜视图。图2是图1的蜂窝状过滤器的端面的模式图,图3是图2的蜂窝状过滤器沿A-A线的断面的模式图。这些图中,排气净化蜂窝状过滤器1中,用封闭材料4、5将蜂窝状体的上流侧以及下流侧的两端部交替封闭,该蜂窝体是通过由多个间壁2构成的贯通孔3形成的。即,如图2所示,在上流侧或者下流侧的端部,封闭材料4、5封闭贯通孔3使之成为格子状,同时如从各贯通孔3的角度来看,则是上流侧或者下流侧中某一侧的端部被封闭材料4、5封闭。对于这样的蜂窝状体,向蜂窝状体的上流侧的贯通孔3供给需要净化的排气,使之通过其间壁2,通过间壁2捕捉、除去排气中的微粒后,通过下流侧的贯通孔3排出净化后的排气。
本发明的蜂窝状成形体,作为排气净化蜂窝状过滤器,使用适宜的保持材料,较好为安装在罐体内,用于捕捉、除去排气中所含的以碳为主要成分的固体微粒(微粒)。作为排气的种类,可以是从固定体以及移动体中任一燃烧源等排出的气体,其中如上述,特别适用于有最严格的要求特性的来自安装柴油发动机的汽车的排气净化。
实施例以下将通过实施例具体说明本发明,但是本发明不限定解释于这些范围内。
实施例1向由易烧结性α型氧化铝56.1质量%(50摩尔%)以及锐钛矿型氧化钛43.9质量%(50摩尔%)形成的混合物100质量份中,添加(Na0.6K0.4)AlSi3O8所示的碱性长石4质量份作为添加剂、聚乙烯醇0.25质量份作为粘合剂、二乙胺1质量份作为胶溶剂、聚丙二醇0.5质量份作为消泡剂,还有粒径50~80μm活性炭50质量份作为造孔剂在球磨机中混合3小时后,在120℃的干燥机中干燥12小时以上得到原料粉末。
粉碎所得原料粉末至平均粒径在10μm以下,使用真空挤出成形機(宫崎铁工公司制)挤出成形得到蜂窝状成形体。干燥该成形体后,于1500℃在大气中烧结2小时,之后,通过放冷得到图1~图3所示的具有断面为四边形的孔的整体为圆柱形的蜂窝状过滤器。该蜂窝状过滤器壁厚0.38mm、孔密度31孔/cm2,圆柱的外径为144mm,长为152mm。
比较例1除不使用碱性长石之外,与实施例1完全相同,得到由钛酸铝烧结体形成的蜂窝状过滤器。
实施例2向由易烧结性α型氧化铝56.1质量%(50摩尔%)以及锐钛矿型氧化钛43.9质量%(50摩尔%)形成的混合物100质量份,添加(Na0.6K0.4)AlSi3O8所示的碱性长石4质量份、化学式MgAl2O4所示的尖晶石化合物6质量份、作为粘合剂的聚乙烯醇0.25质量份、作为胶溶剂的二乙胺1质量份、作为消泡剂的聚丙二醇0.5质量份,还有作为造孔剂的粒径50~80μm的活性炭50质量份,在球磨机中混合3小时,在120℃的干燥机中干燥12小时以上得到原料粉末。
使用所得的原料粉末,通过实施与实施例1同样的粉碎、成形、干燥以及烧结得到蜂窝状过滤器。
实施例3向由易烧结性α型氧化铝56.1质量%(50摩尔%)以及锐钛矿型氧化钛43.9质量%(50摩尔%)形成的混合物100质量份,添加化学式MgAl2O4所示的尖晶石化合物6质量份作为添加剂、聚乙烯醇0.25质量份作为粘合剂、二乙胺1质量份作为胶溶剂、聚丙二醇0.5质量份作为消泡剂,还有粒径50~80μm的活性炭50质量份作为造孔剂,在球磨机中混合3小时后,在120℃的干燥机中干燥12小时以上得到原料粉末。
使用所得的原料粉末,通过实施与实施例1同样的粉碎、成形、干燥以及烧结得到蜂窝状过滤器。
比较例2、3分别使用市售的碳化硅粉末(昭和电工公司制、商品名シヨウセラム)以及堇青石粉末(2MgO·2Al2O3.·5SiO2)作为蜂窝状过滤器的材料,分别通过用现有已知的方法进行制造,由这些材料得到蜂窝体过滤器。在此,碳化硅制蜂窝状作为比较例2、堇青石制蜂窝体作为比较例3。
对由上述实施例1、2、3以及比较例1、2、3所得的蜂窝状过滤器,测定气孔率(%)、从室温到800℃的热膨胀系数(×10-6K-1)、水中投下法的耐热震抵抗(℃)、软化温度(℃)以及压缩强度(MPa),其结果示于表1。另外分别按照JISR1634、JISR1618、JISR1648、JISR2209、JISR1608来测定气孔率、热膨胀系数、耐热震抵抗、软化温度、压缩强度。
另外,对于压缩强度,自各蜂窝状过滤器,切出过滤器横断面的长度方向、宽度方向均为5孔、轴向为15mm的方体检体,从(A)长轴方向(axial)、(B)垂直方向(tangential)、(C)与长轴呈45度夹角的方向(diagonal)三个方向测定检体压缩强度。
表1

由表1可知,实施例1、2、3以及比较例2、3的蜂窝体均保持了可充分满足实装的40~60%范围内的气孔率和高压缩强度。比较例1不能满足实装需要。但是,实施例1、2、3的蜂窝体与比较例2相比均具有非常小的热膨胀系数,另外,与比较例3相比具有极高的软化温度。而且,在对于耐热震抵抗上,实施例1、2、3的蜂窝状烧结体与比较例2、3相比均具有极高的特性。
分别从实施例1、2以及比较例1的蜂窝状过滤器切出纵10mm×横10mm×长10mm的试验片,保持在1000℃的高温气氛中,通过考察钛酸铝的残存率β(%)的经时变化来进行耐热分解性试验。
另外,钛酸铝残存率通过X线衍射测定(XRD)的光谱按照以下的方法来求得。
首先,由于在钛酸铝热分解时,生成Al2O3(刚玉)TiO2(金红石),利用金红石的(110)面的衍射峰的积分积分强度(ITiO2(110))和钛酸铝的(023)面的衍射峰的积分强度(IAT(023))通过下式求出钛酸铝相对于金红石的强度比r。
r=IAT(023)/(IAT(023)+ITiO2(110))再用相同的方法,对在1000℃进行热处理之前的烧结体求出钛酸铝的相对于金红石的强度比r0。接着,利用按照上述方法所求得的r和r0,按照下式求出钛酸铝的残存率β(%)。
β=(r/r0)×100对实施例1、2以及比较例1的各蜂窝形状的烧结体,各结晶的残存率β的经时变化以图形示于图4。由图4可知,实施例1、2与比较例1相比经历长时间后仍维持着高残存率,耐热分解性优良。另外,图4中经过50小时之后实施例1的残存率稍微降低,但是实施例2仍然维持高残存率,与实施例1相比耐热分解性更加优良。
产业上利用的可能性本发明的由钛酸铝烧结体形成的蜂窝状过滤器材料,维持了耐热性优良、小热膨胀系数、耐热震性,还具有高耐热分解性以及大机械强度,与目前的过滤器材料相比具有显著的优良特性。因此,本发明的排气蜂窝状过滤器适宜使用于除去自固定体以及移动体的任一燃烧源排出气中的固体微粒。其中,如上述,最适宜用于来自安装有最严格的要求特性的柴油发动机的汽车的排气净化。
权利要求
1.排气净化蜂窝状过滤器,所述过滤器是用于除去排气中的以碳为主要成分的固体粒子的蜂窝状过滤器,其特征在于,该蜂窝状过滤器的材质是在1250~1700℃烧结含有X成分100质量份以及Y成分1~10质量份的原料混合物而形成的钛酸铝烧结体,所述X成分是以前者/后者的摩尔比率为40~60/60~40含TiO2和Al2O3的混合物,所述Y成分是式(NayK1-y)AlSi3O8所示的碱性长石、含Mg的尖晶石型结构的氧化物、或者MgO或经烧结转换成MgO的含Mg化合物,式中,0≤y≤1。
2.如上述权利要求1所述的排气净化蜂窝状过滤器,其特征还在于,Y成分是(NayK1-y)AlSi3O8所示的碱性长石、含Mg的尖晶石型结构的氧化物和/或MgO或者经烧结转换成MgO的含Mg化合物的混合物,式中、0≤y≤1。
3.如权利要求1或2所述的排气净化蜂窝状过滤器,其特征还在于,蜂窝状过滤器壁厚为0.1~0.6mm、孔密度为15~93孔/cm2,并且间壁的气孔率为30~70%、热膨胀系数在3.0×10-6K-1以下。
4.排气净化蜂窝状过滤器的制造方法,其特征在于,调制含有X成分100质量份以及Y成分1~10质量份的混合物,向该混合物中添加成形助剂混炼再可塑化使之可挤出成形,挤出成形为蜂窝状体后在1250~1700℃烧结,所述X成分为以前者/后者的摩尔比率为40~60/60~40含TiO2和Al2O3的混合物,所述Y成分是式(NayK1-y)AlSi3O8所示的碱性长石、含Mg的尖晶石型结构的氧化物、或者MgO或经烧结转换成MgO的含Mg化合物,式中,0≤y≤1。
5.如权利要求4所述的排气净化蜂窝状过滤器的制造方法,其特征还在于,Y成分为(NayK1-y)AlSi3O8所示的碱性长石、含Mg的尖晶石型结构的氧化物和/或MgO或经烧结转换成MgO的含Mg化合物的混合物,式中,0≤y≤1。
6.排气净化装置,其特征在于,在罐体内安装了权利要求1~3中任一项所述的排气净化蜂窝状过滤器。
7.如权利要求6所述的排气净化装置,其特征还在于,用于净化安装有柴油发动机的汽车的排气。
全文摘要
提供了由于耐热性以及耐热震性优良、且具有高耐热分解性以及大机械强度因而即使在变动的高温下也可稳定使用的排气净化蜂窝状过滤器及其制造方法。该过滤器是用于除去排气中的以碳为主要成分的固体粒子的蜂窝状过滤器,该蜂窝状过滤器的材质是在1250~1700℃烧结含有以前者/后者的摩尔比率为40~60/60~40含TiO
文档编号C04B35/478GK1838983SQ200480023739
公开日2006年9月27日 申请日期2004年8月20日 优先权日2003年8月22日
发明者福田勉, 福田匡洋, 福田匡晃, 横尾俊信, 高桥雅英 申请人:王世来股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1