专利名称:生产陶瓷泡沫的方法
技术领域:
本发明涉及陶瓷泡沫,更确切地说,是涉及一种通过在无机凝胶化过程中释放出挥发性反应产物来生产陶瓷泡沫的方法。
背景技术:
通常将发泡剂(例如一种如二氧化碳或氟利昂的超临界液体)引入到聚合物中来生产有机泡沫。对聚合物快速降压,发泡剂就会在聚合物中形成气泡。这个过程产生了一种含气泡的固体,即泡沫。
陶瓷泡沫可以由多种材料制得,也可以用在如隔热、分离工艺、催化剂和低介电常数物质等多种用途中。简单地说,陶瓷泡沫也即一种固相由陶瓷材料组成的泡沫。
最普通的生产陶瓷泡沫的方法是将用陶瓷悬浮体注入有机泡沫聚合物(例如,聚氨基甲酸乙酯)。被涂覆的有机聚合物经干燥,然后燃掉有机相。经烧结,最终的陶瓷泡沫是原始有机母体的复本。
生产陶瓷泡沫的另一种方法是将所谓的高内相乳液法("HIPE"),其是在表面活性剂作用下分散在造孔相(如,石油溶剂)中的聚合单体(如,硅酸钠)的连续相的浓乳液。连续相经聚合反应稳定下来,洗涤,然后干燥以获得泡沫。
以上所述的两种方法都可用来生产开孔陶瓷泡沫。但是,这些方法没有在用发泡剂产生泡沫的方法中所使用的气液相组合。
将物理发泡剂混入陶瓷悬浮体中已生产出多孔二氧化硅和SiC须加强的多孔二氧化硅(分别见Fujiu et al_J.Am.Ceram.Soc_vol.73,pp.85-90(1990)和Wu et al_J.Am.Ceram.Soc_vol.73,pp.3497-3499(1990))。这个过程使用了一种稳定的胶态二氧化硅水性悬浮液。在表面活性剂和甲醇的作用下,发泡剂以小液滴的形式分散在悬浮液中。调节悬浮液的PH值以便产生凝胶化效应。凝胶化伴随着粘度的迅速升高。在这一阶段,温度迅速升高到发泡剂的沸点以上,从而在凝胶中产生气泡,并形成泡沫。为了防止气泡破裂,在这一阶段必须严格控制粘度上升时间和定形温度。
在另一种陶瓷泡沫生产方法中(P.Sepulveda,Am,Cer.Bull_76,61-65(1997)),泡沫结构是通过混入陶瓷粉末悬浮体中的有机单体的聚合得以稳定的。在发泡以后,将引发剂和催化剂加入体系中来引发单体聚合和孔状结构的定形。
上述方法有一些不足。大多数这些方法都包括一系列的步骤(如,将原料发泡,加发泡剂等)。这不仅复杂,而且增加了泡沫制造过程的成本。此外,这样生产的泡沫通常孔率度为70-90%。因此,从提高孔率度的观点出发,有必要改进陶瓷泡沫的生产方法。
发明概述本发明提供了一种用于陶瓷泡沫发泡的新方法。主要地说,陶瓷泡沫是由一种母体生产的,其中这种母体具有在凝胶化过程中能被激活的内发泡机理。母体或者母体的混合物含有至少一种陶瓷成形成分,并且在无机凝胶化过程中释放出至少一种挥发性产物。
在一个实施方案中,依靠含AlCl3(Pri2O)复合体晶体的母体发泡。原料母体分解产生溶解在异丙基氯液体中的聚合物。只要将溶剂和正在生成的AlOxCly(OPri)z类物质均匀地混合,溶液的沸点就会升高到纯的异丙基氯的沸点(35.4℃,在1个大气压)以上。聚合反应一直在液相中进行直至达到聚合物的临界尺寸,随后,发生相分离为富聚合物相和富溶剂相。析出溶剂的温度突然升高到沸点以上之后,立刻就会产生气泡。含有泡沫孔壁的富聚合物区的凝胶化使得泡沫稳定化。由此生成了一种超轻的凝胶化泡沫。
通过对母体温和地加热(T<100℃),可以提高反应速率,但也可以在室温下发泡。加热也会影响孔的大小,低温下会产生较大的孔。本方法的简单性,应归因于具有所有必要的发泡功能的母体。
在另一个实施方案中,母体混合物由仲丁醇铝和四氯化硅溶液组成。但加热时,在AlOxSiyClz(OR)n类物质(OR为仲丁醇供氧体)缩合的同时,溶液释放出挥发性的物质(仲丁基氯)。如以前的方法一样,挥发性物质作为在凝胶化过程中产生泡沫的发泡剂。
在无机凝胶化反应中被激活的内发泡机理仍然是本方法与用于生产多孔陶瓷的传统方法的主要区别。此外,这说明了本方法的固有简单性,即以单一母体作为原料。发泡、凝胶和干燥步骤同时进行。
与其它方法相比(例如,HIPE,陶瓷悬浮体的发泡),在本发明方法中,由于化学发泡剂的均一成核性,因此不需要对液相进行机械搅拌。这样就便于由液相生产厚薄不同的发泡薄膜,并且能够通过一个步骤就直接生产出形状复杂的整块泡沫材料。此外,本方法具有自动调节能力,因此比其它方法简单。更进一步地说,本方法可以生产出孔率度比传统的多孔陶瓷高很多的泡沫材料。
在另一个实施方案中,将母体放置在一个压力容器中,然后加热,加压,以加速复合体转变为异丙基氯溶液和部分缩合的Al-O-Al类物质。此外,在加压下发泡,且然后降低压力容器的压力。降压会引起泡孔壁的破裂和/或泡孔壁的扩张以及新的微孔的产生。通过凝胶化稳定泡沫。进一步地说,通过降压引发发泡。
最后,提供了一种制造隔热器或隔音器的方法。该方法包括以下步骤对含AlCl3(Pri2O)复合体或其晶体的母体进行发泡,加热母体,在异丙基氯中溶解母体分解产物,对溶液进行冷却以控制缩合反应从而延迟发泡;和向表面或空气中喷涂溶液。
在喷涂前,可以先对溶液减压。
喷涂步骤包括向热表面,冷表面或热空气的喷涂。
附图的简要说明结合附图,从下面的描述和说明中可以清楚地看出本发明的以上及其它特点,其中相似的引用特征可参见全文的相似内容,包括
图1是说明本发明的一个实施方案所述的发泡步骤的流程图;图2A,2B和3是说明图1所示的实施方案中各个工序的典型失重特征的曲线;图4是说明图1所示的实施方案中的典型的发泡特征的曲线;图5是说明开孔或部分开孔的泡沫形成机理的简要步骤的流程图;图6是说明隔热器的生产步骤的流程图。
典型实施方案描述以下给出几个实验,举例说明由母体或母体的混合物生产陶瓷泡沫的方法。每一种母体都含有一种陶瓷成型成分。根据本发明,母体(或母体混合物)在无机凝胶化过程中释放出至少一种挥发性产物。但是,本发明并不局限于这些具体形式。
图1概括了由AlCl3(Pri2O)复合体的晶体形成泡沫的机理的步骤。几个可选择的步骤由虚框表示。随后将讨论本方法中的这些和其它步骤的细节。
图1所示的方法可以使用AlCl3(Pri2O)复合体的晶体作为唯一的母体(100,102和106框)。控制加热是本体系中唯一的“强制”操作。加热可以加速晶体向陶瓷泡沫的转变,并不改变微孔尺寸。
当加热AlCl3(Pri2O)复合体晶体时,异丙基氯被释放出来,形成体系的溶剂(112框)。由同一反应(114框)产生的异丙氧基侧基提高了铝化合物在异丙基氯中的溶解性。铝化合物充分溶解后,成为透明的,高浓度的溶液,由于铝化合物的含量很高,所以化合物溶液的沸点温度大大高于异丙基氯的正常沸点。发生同相聚合物生产Al-O-Al网状体统(116框)。在引发阶段,聚合物以相对快的速率继续伸长,速率取决于溶液的温度,而温度又归因于铝化合物的高浓度。当聚合物达到临界尺寸(118框)时,就会发生相分离为富聚合物区和富溶剂区。降低富溶剂相的沸点,蒸气压很高的气泡就会成核,扩张,升到表面,破裂。随着富聚合物区不断生成的聚合物粘度的升高,这种情况会逐渐稳定下来,最后通过凝胶化(可能伴有简单的老化,框119)形成孔状干燥材料的结构,生产出干燥的凝胶状泡沫(框120)。然后可以将这种泡沫煅烧和/或烧结(两个步骤是可任选,框122和124)成陶瓷泡沫(框126)。但是。这种泡沫也可以凝胶的形式使用。
以上是概括性的描述,现在详细讨论使用AlCl3(Pri2O)生产泡沫材料的方法。许多文献中已记载存在AlCl3∶乙醚的复合体。复合体中AlCl3∶乙醚的比例通常为1∶1,但也可能为1∶2或2∶1,取决于乙醚的性质。Accost et al已经证实,将异丙醚加到二氯甲烷中的三氯化铝中,生成AlCl3(Pri2O)的复合体,同时伴随有少量离子化合物的生成,反应如下主反应副反应
Accost et al."Better Ceramics Through Chemistry,"J.Solo-GelSci.Tech,1997年印刷。这本书中采用的AlCl3/CH2Cl2的摩尔比为1∶3.2。
在下面所述的实验中,配制AlCl3/CH2Cl2的摩尔比为1∶8.7~1∶2.4(图1,框100)的溶液,AlCl3/Pri2O的摩尔比取2∶3。将反应物混合后,立即在90℃的油浴中加热溶液,以便快速引发和再次溶解AlCl3(框102)。5分钟后,从油浴中移出透明溶液,冷却到室温。根据浓度,在冷却15-120分钟(框106)后,生成了AlCl3(Pri2O)晶体。
AlCl3/CH2Cl2的摩尔比超过1∶2.84时,在室温下可以观察到针状晶体的形成。摩尔比为1∶2.84相当于5.5molAl/l CH2Cl2。通过提高溶胶的浓度,可以大大提高晶体的产率和减少沉淀时间(或提高沉淀温度)。在1∶2.84的溶胶中,室温下2小时以后晶体才开始沉淀,而在1∶2.4的溶胶中,不到15分钟。尽管经实验测定,晶体的摩尔比为AlCl3∶Pri2O=1∶1。尽管晶体的光学显微图像显示为多晶衍射,还是可以清楚地看到晶面。必须指出,本体系中无水的未凝结的铝化合物的晶体形成过程完全不同于水软铝石和三羟铝石在铝的水溶液中晶相的生成过程。此外,结晶过程是可逆的,将晶体加热到其生成温度以上,可以获得AlCl3浓度超过AlCl3/CH2Cl2的摩尔比为1∶2.84的胶体。
通过沉淀分离,从母体中分离出晶体,然后室温真空(10-1mmHg)干燥4小时。由于这种晶体高度吸湿,所以要特别注意防止吸收空气中的水分。在发泡前,要将干燥的晶体存放于5℃下,充有氩气的密封玻璃瓶中。因此,对晶体的所有操作都要在氮气流下,并在充有氩气或真空干燥箱中进行。
下面讨论四种不同加热温度(框110)的发泡实验。实验1中,晶体在约70℃的油浴中加热。实验2中,将晶体放置在一个充有25℃的氩气的密封玻璃瓶中,在室温下观察发泡过程。实验3中,使用高达900℃的快速加热处理步骤。最后,在实验4中,采用在150℃下缓缓加热处理的方法。
在实验1中,将约10克的晶体放置在一个200ml的密封反应器中,然后加热到70℃,以加快发泡速率。当晶体加热到约70℃时,开始出现液相,溶解了晶体,晶体变得透明,同时有一些气体放出。接着形成均一的液相。在此温度下,这步反应要花几分钟的时间。取决于液体的温度,不到1分钟,气泡就会大量的或缓慢的成核。表面上到达临界尺寸的气泡会破裂。但是,在液相浓度足以稳定泡沫结构以前,成核和发泡过程仍会继续。70℃下,从气泡成核到泡沫结构的完全稳定需要2-4分钟的时间。
由液体到泡沫状态,体积大约增长10倍。泡沫中含有嵌在固体封壳的泡沫中的气相。重要的是,与其它陶瓷发泡方法不同,本实施方案中,不需要进一步的分离和干燥工序。现在更详细地讨论上述方法的本质特征。
发泡过程的第一步指通过加热AlCl3(Pri2O)复合体晶体加速液相的逐步形成。在液相形成前,用NMR法分析控温加热到70℃时放出的气体。所分离出的唯一挥发性化合物为异丙基氯。结果表明,加热过程中AlCl3(Pri2O)复合体发生了分解,按下列式生成了异丙氧基和异丙基氯(框112)NMR没有检测到微量的异丙醚,表明所有残余的异丙醚都可能吸附到未反应的复合体组分上了。晶体分解过程中形成的异丙氧基氯化铝同样来源于二氯甲烷为溶剂的非水解反应。晶体分解进程中放出的异丙基氯的沸点通常为35.4℃。然而在一个密闭反应器中或异丙基氯快速释放出时,紧接着生成的异丙基氯将溶解生成的二异丙氧基氯化铝和未反应的残余AlCl3(Pri2O)复合体,形成均相溶液,由于铝化合物的浓度很高,所以这个溶液的沸点很高。
气相中测得的异丙基氯的含量约占本体系中理论上生成的异丙基氯总量的51%。假定液相中起始的异丙基氯含量为这么多,则此溶液中Al/PriCl总的摩尔比就约为1∶1,远远高于结晶沉淀所要求的Al/CH2Cl2的l∶2.84的摩尔比。即使在此阶段异丙基氯存在理论上的最大值,相应的Al/PriCl的摩尔比最小也超过1∶2了,但这暗含着所有的铝化合物在这一阶段都缩合了。据估计,充分缩合的铝只有在生成的泡沫最后煅烧阶段才存在。换句话说,Al/PriCl的摩尔比必须在1∶2以上,最好是1∶1左右。这可能是由于异丙基氯(与二氯甲烷相比)溶解能力更强,但最可能的是,含有在复合体的分解过程中形成的异丙氧基的铝化合物可溶性更强。事实上,一个月以内溶解在二氯甲烷母液中的AlCl3(Pri2O)复合体晶体的重结晶产率越来越低。一个月之后,就观察不到沉淀了,表明这些化合物随时间延长越来越易溶了。这与老化过程中生成异丙氧基,从而提高了铝化合物在二氯甲烷中的可溶性是一致的。
液相的形成伴随着一个取决于液相温度(70℃不到1分钟;而25℃需1天)的引发期。按照非水解化学原理,在这一阶段发生均相聚合反应,生成Al-O-Al键(框116),根据以下式但是,由于铝化合物的浓度大,本体系的聚合反应要比相应的溶胶-凝胶法快。从方程4中可看出,异丙基氯也是聚合反应的产物。由NMR和GC分析知,异丙基氯是发泡之后气相中唯一的挥发性产物。均相溶液中异丙基氯的生成将会降低聚合反应中生成的聚合物的浓度。引发期随后,并取决于温度,已观察到上升到液体表面的气泡大量的或缓慢的成核。均相溶液转变为非均相,可能是由于聚合过程中聚合物的量增加了。只要将溶剂和不断生成的AlOxCly(OPri)z类物质均匀地混合,溶液的沸点就会升高到纯异丙基氯的沸点(一个大气压下35.4℃)以上,同时它的蒸气压也会降低。
当聚合物达到临界尺寸时,均相聚合物溶液就会转变为富聚合物区和富溶剂区(框118)。在这个例子中,在发泡点时,多相混合物中同时发生两种不同的反应。在富溶剂区,放出的溶剂突然升高到沸点以上,或伴有显著的蒸气压变化。在浮力的作用下,气泡开始在溶液中成核,扩张并升到表面。只要富聚合物区的粘度比较低,气泡的扩张,上升,合并,生长和破裂就会继续。但是,由于富聚合物相一生成,聚合物浓度就会升高,聚合速率将极大地提高。这样,富聚合物相的粘度和表面张力迅速上升,导致许多更小更稳定的气泡产生。接着,泡沫通过聚合物相的凝胶化(框120)稳定下来。
在最后阶段,异丙基氯缩合产物的析出理论上将导致富聚合物区聚合物浓度的降低。但是,由于这一阶段异丙基氯的析出与聚合物分子量的增加直接有关,此外,还包括一个相分离过程,生成的异丙基氯组分扩散到富溶剂区。这样导致发泡过程中凝胶相的部分干燥。
图2A和2B分别是晶体在氩气和空气中的TGA/DTA曲线。在氩气和空气中,晶体的主要失重(>总失重的80%)都发生在70~150℃之间。这说明晶体的分解反应在70℃时就开始发生了,并且是吸热的。图2A和2B中在220~600℃放热量的不同应归因于在空气中发生有机残留物的氧化,而在氩气中不发生。
此外,由于AlCl3/Pri2O的摩尔比为1∶1,(乙醚)内部没有足够的氧按化学计量生成Al2O3。为了获得Al2O3的组成,在加热时必须将从晶体中分离出的物质与空气中的氧气反应。当使用空气时,在220~600℃估计发生下面的总反应在大约850℃时,在图2B中出现,但在图2A中没有出现的小的放热峰是η-Al2O3的结晶峰,这与方程3是一致的。根据方程3计算所得的失重量为 与图2B中所得的实验值78.2%非常一致。
实验2举例说明可以在室温下发泡。按照对相应的凝胶化过程测得的活化能大小估计,发泡过程需要几天而不是几分钟的时间。25℃的发泡机理本质上与70℃的相似。将干燥的晶体放在密封的玻璃瓶中,保持25℃。在这个温度下,一星期以后出现透明的液相。不象在70℃下有大量的成核现象,在本实验中,起初在表面上仅有少量的成核点。气泡通过气体扩散长大,随后又由于没有足够的表面粘度破裂。其它的成核点出现,产生了一个或更多的气泡。在发泡的早期看到的一般特征包括气泡成核,通过气体扩散长大或气泡合并,以及气泡破裂。
孔的尺寸的数量级是几个毫米,比70℃得到的泡沫中的孔的尺寸的数量级要大得多。这个结果突出了在决定孔的最终尺寸中温度,气体压力和液体浓度间的相互作用。
图3是在空气中25℃下加热生产的泡沫的TCA/DTA曲线。约250℃时失重约占总失重67.4%的35.5%,远远小于此温度下母体AlCl3(Pri2O)复合体晶体的失重量,其失去总重量78.3%的70%。NMR和GC结果表明,发泡过程中放出的唯一挥发性物质为异丙基氯。特别地,在气相中没有检测到异丙基乙醚,表明所有的氧仍然吸附在铝原子上。以AlCl3(Pri2O)复合体作为起始原料,发泡过程的整个质量平衡可以用下面的式6表示(6)接着,在空气中煅烧(框122)由式6中产生的发泡组分,使其转化为氧化铝。其总反应也即被空气中的氧完全氧化,反应式如下比较式7所算得的失重量和由TGA实验结果得出的失重量可以估算出发泡过程中放出的挥发性异丙基氯,在方程6中用x表示。可以由下式计算方程7的失重量(WL) 由图3中TGA值和方程8估计的x值为0.51,与TGA实验得的失重量一致。在100℃以下,物理键结合的异丙基氯可能会出现解吸附作用,但用TGA法检测不到明显的失重。图2B中的DTA/TGA曲线可以粗略的分为两个区,在25~170℃和170~650℃段的失重分别为65%和13%。另一方面,由图3可见,在同样的温度范围内,泡沫材料失去了其起始重量的16%和51%,这表明晶体和泡沫的反应路径不同。
在实验3中,使用高达900℃的快速热处理成型工具(FH),以300℃/h的加热速率加热3小时,在900℃保温。在空气中,1500℃下进一步对FH材料进行1小时的热处理。
对晶体高达900℃(300℃/h)的热处理形成了极轻的单片式泡沫材料。SEM观察表明,泡沫主要由内径在50-300μm的完全封闭孔组成。也可能出现几个大孔(高达500μm),可能是由于分隔小孔的壁破裂所致。在SEM支持器上固定样品时,由于机械压力的作用也会有少数孔破裂。由SEM测得,平均孔厚度为1~2μm,这说明此材料的孔率度很大。经1500℃处理以后,由质量/体积比估计此泡沫材料的有效密度在0.05~0.25g/cm3之间,相当于孔率度的94~99%。对于简单地立体排列的中空球,直径150μm,孔厚1~5μm,并且α-Al2O3的密度为4.0g/cm3,理论孔率度为98%。
在氩气中处理的FH泡沫材料的表面积(见图4)大于150m2/g。在空气中另外煅烧,碳失重10%之后,表面积降到大约70m2/g。
在空气中处理的FH泡沫材料,如在氩气中处理的,或者在氩气中处理再在空气(氩气/空气)中煅烧的FH泡沫材料一样具有同样的宏观结构。但是,SEM显微照片显示,在空气中处理的FH泡沫材料的破裂的孔壁与氩气/空气处理的FH泡沫材料相比,在μm级尺度上其表面几何形状完全不同。在空气中处理的FH泡沫材料的孔壁包括μm级尺寸上不均一的均相成核和由这种不均匀性的沉降和解吸附形成的孔。在空气中900℃下处理的FH泡沫的表面积其数量级仅仅为10m2/g,这个数量级远远低于此温度下SH泡沫或其它FH泡沫的数量级。与其μm级尺寸上的不均一生相符的相对低的表面积表明,在空气中处理的HT泡沫材料含有较少的大孔隙。
当在1500℃下处理的泡沫转变为释放出所有大孔隙的α-Al2O3时,泡沫的总收缩非常小(5±3%)。此外,在此温度下,封闭的孔的特殊表面几何形状仍然没变。由孔壁形貌可推知不同的煅烧阶段(图1,框124)和孔率度。1500℃时,密度为0.5m2/g的泡沫,它的表面积相当于平均粒径为1μm。
在实验4中,在氩气中采用在150℃的缓慢热处理(SH),以70℃/h的升温速率加热3小时,在150℃保温。在空气中250-900℃下对SH材料进一步热处理。
由图4中BET的表面积测量值可看出,泡沫的表面积相对比较大。在150℃下成型或另外在空气中250℃下热处理以后,就测不出它的表面积了。表面积在更高的煅烧温度下会继续变大,在650℃时达到最大值265m2/g。但一开始结晶,在900℃表面积就会降到100m2/g。泡沫材料表面积的扩大与本系统中获得的相应干凝胶表面积的扩大非常相似。此外,这也表明孔壁具有在其形成过程中凝胶过程产生的微孔率度。
也可以在不加溶剂的情况下,将AlCl3与异丙基醚混合,由溶胶直接制得泡沫材料。但是,上述结晶技术主要有两个优点。AlCl3在纯异丙基醚中的溶解要求高温(或长时间)。因此,在AlCl3完全溶解前开始发泡,会产生不均一的泡沫。其次,由于晶体易于运输和储存,因此在泡沫制备的所有阶段只使用固体,而不使用反应性和腐蚀性液体。
在另一种实施方案中母体由仲丁醇铝和四氯化铝溶液组成。实验1中,铝∶硅的摩尔比为1∶1。在一个密闭的容器中将溶液加热到100℃,大约10分钟以后,溶液开始发泡。在实验结束时,可获得孔率度为90-98%的陶瓷泡沫。不象前面的实施方案一样,部分或所有母体都用固体,在本实施方案中,两种母体都是固体。
在本实施方案中,挥发性试剂为仲丁基氯。仲丁基氯作为发泡剂在溶液凝胶时产生泡沫。
本实施方案举例说明了可以用不同的原料释放出挥发性物质。重要的是,在此实施方案中,挥发性物质来源于金属母体,而不是乙醚。此外,本实施方案举例说明了可以用不同的挥发性物质作为发泡剂。
以上所述的陶瓷发泡方法在工艺要求和控制方面比传统方法简单得多。工艺简单性部分是由于发泡需要的所有功能材料都包括在一种母体中。母体含有所有必要的发泡成份,这样,对其进行温和的加热,就会转变为固体的,干燥的,发泡材料。
机理包括溶胶化学反应和包括相分离的物理以及过程无机凝胶过程中释放挥发性产物以发泡。在AlCl3-异丙基醚体系中,AlCl3(Pri2O)复合体晶体的分解导致异丙基氯和异丙氧基氯化铝的生成,两者在起始时都不存在。由于这两种产品的内在的双重作用,发泡是可能的。异丙基氯在相分离后的富溶剂区起溶剂和发泡剂的双重作用。而异丙氧基氯化铝也起双重作用,其一方面作为产生微观相分离(和多余的异丙基氯)的聚合物,一方面作为相分离后富聚合物区的凝胶化/稳定试剂。此外,这些物质在发泡点发生相分离,功能发生变化,它们的这种双重性导致三个同时进行的过程,即发泡,凝胶化和干燥。这种网状反应的结果产生了发泡的,稳定的,干燥材料。
而传统的发泡机理可以是上述过程的一种或多种,在有机的,陶瓷的或金属泡沫的生产过程中不存在类似的机理,此外,给出足够的原料,最终的泡沫材料将会充满发泡容器并固定下形状。由于发泡,凝胶化和干燥过程同时进行,可以以浇铸的方式现场制备泡沫材料,例如,用圆柱形筒或管生产形状复杂的泡沫材料(图1,框108)。
由上面可知,本发明提供了孔率度特别高的改进型陶瓷泡沫。作为典型,讨论了本发明中具有一定典型性的实施方案,但本发明并不限于这些典型形式,而是广泛适用于所附权利要求书范围内的所有改变。对于本领域的熟练人员,可以对本发明进行许多修改和应用。
例如,各种混合物的组合物都可以用作母体。陶瓷形成材料包括与卤化物和供氧体结合的Al,Ti,Zr,Si,V,Zn或Fe等中一种或几种元素,其中供氧体指醚,醇盐,酮,醛,酯或它们的任意组合物。后者可与前面元素以任意比例组合。
复合体也可以采用不同的比率。典型的Al∶Pri2O摩尔比可以在1∶0.1和1∶10之间。优选的在1∶0.5~1∶3之间。典型的Al∶Si摩尔比在1∶0.1和1∶10之间。优选的在1∶0.25和1∶4之间。
此外,可以将如粉末、陶瓷纤维、聚合纤维、复合纤维或有机填加剂等有机或无机填料在发泡过程的任意阶段(例如,见框104)加到泡沫母体中,以改变泡沫的机械、物理化学性质。例如,可以加碳化硅纤维以提高泡沫强度。见上面提到的Fujiu等和Wu等的参考文献,其内容在此引入作为参考。此外,SiO2等氧化物纤维也可用作填料。又,也可以用Pal Polymers出售的QPAC有机聚合物(或聚合物)。再者,在本发明的实施中,也可以采用不同的加热和发泡技术。因此,上面详细讨论的具体结构和方法仅仅是举例说明本发明的少数具体实施方案。
用上面所述的方法生产的泡沫是“封闭”孔的泡沫,也即分割不同泡沫孔的“孔壁”是结实或封闭的。本领域的熟练人员也会意识到,此发泡技术也适于生产“开口”孔的泡沫。
本技术使用减压法获得多孔泡沫。随着反应起始和终了阶段压力差的增加,泡沫具有更多的“开口”孔结构。所生产的泡沫的类型也取决于其它几个变量,如分子量,粘度,异丙基氯和加入其中的有机或无机填加剂的量。
现在参看图5,图5是一个流程图示例,概括了生产开孔或部分开孔泡沫的各个步骤的机理。
图5所示的方法与根据图1所述的上述方法是相似的。本实施方案中所用的成份与前面优选实施方案中所述的类似,这里就不再进一步描述了。用AlCl3(Pri2O)复合体或其晶体作为母体(框100)。将有AlCl3(Pri2O)复合体晶体的容器放在压力容器中(框108)并减压。然后加热(框110)压力容器以加速复合体同异丙基氯溶液和部分缩合的Al-O-Al化合物(框116)的转变。温度平衡取决于压力容器。发泡时间又取决于温度(例如,80℃下约需10分钟)。
有两种可供选择的发泡方法,一种为发泡后减压(步骤140-144),另一种为发泡前减压(步骤132,134)第一种选择方法是发泡后减压(步骤140-144),由于气体膨胀,原始的孔壁就会破裂,从而生产出开孔材料。如果孔壁不破裂,泡沫将会扩散并含有较大的孔。通常,特别是在压力降(ΔP)很大时,可以获得大部分具有开孔结构的新的较大的孔。
在此方法中,在聚合物达到临界尺寸以后,相分离和发泡都是在加压(步骤140)下进行的。泡沫通过凝胶化作用得以稳定。对容器减压,泡沫孔壁就会破裂,从而形成开孔泡沫。快速降压使孔之间的壁破裂,结构扩张,这样就会获得开孔或部分开孔的结构(步骤144)。例如,开孔结构特别适用于用作填料和催化剂的载体。
第二种供选方法(步骤130,134)中,发泡前减压。由于异丙基氯在加压下沸点升高,减压可在容器中引起发泡(框132)。当减压并冷却到室温时,获得最终的泡沫材料。根据发泡条件的不同,所生成的泡沫材料可以是闭孔的或开孔的,或部分开孔的。
从容器中移出泡沫并对其进行热处理,以便形成开孔或闭孔结构的泡沫材料,孔率度约94-98%(框134)。此供选方法的优越性在于可在指定时间(根据需要)引发泡沫。根据降压条件,温度和Al-O-Al化合物分子量的不同,可以生产开孔的或半开孔结构的泡沫材料。半开孔实验1.将1克AlCl3-乙醚复合体放入容器中。
2.将容器放在一个压力容器中,并通氮气加压到2个大气压。
3.将压力容器浸入预热到70-150℃的油浴中。
4.15分钟后,温度达到均衡。
5.伴随发泡,对压力容器降压并冷却到室温。
6.从压力容器中移出泡沫材料,并在氩气中600℃下热处理,再在空气中800℃下热处理。
泡沫材料的最终孔率度为95-98%,并观察到部分开孔的表面几何形状。
通过改变压力,可以发现,在6个大气压以下发泡过程与通常一样,只是在加压下或得的孔比在敞口容器中的下小得多。在6个大气压以上,当减压步骤完全结束时,就见不到发泡了。这种材料可能在容器底部形成一层薄膜。在大气压下,对坩埚重新加热,又可以发泡。
在空气中而不是在氩气中(或氮气)燃烧起始泡沫材料可以得到部分开孔的材料。这将导致连接相邻孔的孔壁成为孔洞。
上述陶瓷泡沫在许多实际应用中是非常有用的。例如,陶瓷泡沫可以用作绝缘器。现在参照图6描述一下绝缘器的生产,图6是所包含生产步骤的流程图示例。
加热(框150)AlCl3(Pri2O)复合体晶体,释放出异丙基氯,形成体系的溶剂(框152)(与图1中的框112类似)。铝化合物在异丙基氯中溶解性的提高将导致异丙氧基侧基的形成,而异丙氧基侧基又促进了铝化合物在R-Cl反应产物(框154)(与图1中的框114类似)中的溶解。发生缩合和聚合反应(框155)。
然后冷却溶液(框156)以减慢缩合反应速率和延迟发泡时间。根据要求开始冷却,以按用途控制缩合反应。然后可以将溶液喷涂到一个热表面上(框158)以生产出现成的泡沫材料。也可以将溶液先减压(任选步骤160),然后在喷到一个热表面或喷入热空气中以引发发泡过程。
另外,也可以将溶液喷到一个冷表面上,然后加热。
除了用泡沫材料生产新型的绝缘器,溶液也能用于修补绝缘器现有的和毁损的地方,特别是适用于在不易够得着的地方,如现有燃烧炉内的裂缝。这种泡沫材料也可以用作隔音板。
权利要求
1.一种生产陶瓷泡沫的方法,基于含有至少一种陶瓷形成成份的至少一种母体,该方法包括在无机凝胶化过程中,释放出至少一种挥发性产物的步骤。
2.权利要求1所述的方法,还包括加热所述至少一种母体以加速所述至少一种挥发性产物的释放,从而引发无机凝胶化和发泡反应的步骤。
3.权利要求1所述的方法,还包括煅烧所述陶瓷泡沫的步骤。
4.权利要求1所述的方法,还包括烧结所述陶瓷泡沫的步骤。
5.权利要求1所述的方法,还包括将至少一种添加剂混入泡沫材料中的步骤。
6.权利要求1所述的方法,还包括加入选自于陶瓷纤维、聚合物纤维、复合纤维或它们的组合物中的一种填料。
7.权利要求1所述的方法,还包括泡沫材料的老化的步骤。
8.权利要求1所述的方法,还包括将所述溶液放在一个模具中,以制得模塑的陶瓷泡沫。
9.权利要求1所述的方法,还包括将母体存放在低于室温的温度下,留待以后使用。
10.一种生产陶瓷泡沫的方法,包括对含AlCl3(Pri2O)复合体的母体进行发泡的步骤。
11.权利要求10所述的方法,其中所说的母体包括AlCl3(Pri2O)复合体晶体。
12.权利要求10所述的方法,其中所说的母体包括AlCl3(Pri2O)复合体的溶液或溶胶。
13.权利要求10所述的方法,还包括加热母体以加速陶瓷泡沫的成型。
14.权利要求10所述的方法,还包括煅烧所述陶瓷泡沫的步骤。
15.权利要求10所述的方法,还包括烧结所述陶瓷泡沫的步骤。
16.权利要求10所述的方法,还包括将所述溶液放在一个模具中,以制得模塑的陶瓷泡沫。
17.权利要求10所述的方法,还包括将母体存放在低于室温的温度下,留待以后使用。
18.权利要求10所述的方法,还包括将至少一种添加剂混入泡沫材料中。
19.权利要求10所述的方法,还包括选自于加入陶瓷纤维、聚合物纤维、复合纤维或它们的组合物中的一种填料。
20.权利要求10所述的方法,还包括泡沫材料的老化步骤。
21.权利要求10所述的方法,其中所说的母体包括AlCl3(Pri2O)复合体,其中Al∶Pri2O的摩尔比在1∶0.1和1∶10之间。
22.权利要求10所述的方法,其中所说的母体包括AlCl3(Pri2O)复合体,其中Al∶Pri2O的摩尔比在1∶0.05到1∶3之间。
23.一种生产陶瓷泡沫的方法,包括对含ASB和SiCl4母体的混合物进行发泡的步骤。
24.权利要求23所述的方法,其中将所述的母体混合物溶解在溶剂中。
25.权利要求23所述的方法,还包括加热母体混合物,以加速陶瓷泡沫成型的步骤。
26.权利要求23所述的方法,还包括煅烧所述陶瓷泡沫的步骤。
27.权利要求23所述的方法,还包括烧结所述陶瓷泡沫的步骤。
28.权利要求23所述的方法,还包括将至少一种添加剂混入泡沫材料中。
29.权利要求23所述的方法,还包括加入选自于陶瓷纤维、聚合物纤维、复合纤维或它们的组合物中的一种填料。
30.权利要求23所述的方法,还包括泡沫材料的老化步骤。
31.权利要求23所述的方法,还包括将所述溶液放在一个模具中,以制得模塑的陶瓷泡沫。
32.权利要求23所述的方法,还包括将母体存放在低于室温的温度下,留待以后使用。
33.权利要求23所述的方法,其中所说的母体混合物中含有ASB和SiCl4,其中Al∶Si的摩尔比在1∶0.1和1∶10之间。
34.权利要求23所述的方法,其中所说的母体混合物中含有ASB和SiCl4,其中Al∶Si的摩尔比在1∶0.25和1∶4之间。
35.一种生产陶瓷泡沫的方法,包括对含MXn(RyOz)l的至少一种母体进行发泡的步骤,其中M选自于Al、Ti、Zr、Si、V、Zn、Fe和它们的任意组合物,X指卤化物,RyOz是一种供氧体分子,其是与金属比例为(1)的醚、醇盐、醛、酮、酯和它们的任意组合物中的一种。
36.一种生产陶瓷泡沫的方法,包括对含MXn(RyOz)l的至少一种母体进行发泡的步骤,其中M选自于Al、Ti、Zr、Si和它们的任意组合物,X指Cl或Br的卤化物,RyOz是一种供氧体分子,其是与金属比例为(1)的醚、醇盐和它们的任意组合物中的一种。
37.一种生产陶瓷泡沫的方法,包括对含MXn(RyOz)l的母体的发泡,其中M选自于Al、Si和它们的任意组合物,X指Cl或Br的卤化物,RyOz是一种供氧体分子,其是与金属比例为(1)的醚、醇盐和它们的任意组合物中的一种。
38.权利要求37所述的方法,还包括对所述至少一种母体进行加热和老化的步骤,以加速至少一种挥发性试剂的释放,以便引发所述至少一种母体的发泡和无机凝胶化反应。
39.一种用于生产陶瓷泡沫的组合物,至少包括一种含MXn(RyOz)l的母体,其中M选自于Al、Si和它们的任意组合物,X指Cl或Br的卤化物,RyOz是一种供氧体分子,其是与金属比例为(1)的醚、醇盐和它们的任意组合物中的一种。
40.权利要求1所述的方法,其中加热母体的步骤会影响泡沫中的孔的大小。
41.权利要求10所述的方法,还包括将母体放在压力容器中;对母体加热和加压,以加速复合体转变为异丙基氯溶液和部分缩合的Al-O-Al类物质。
42.权利要求41所述的方法,还包括加压发泡;和降低压力容器的压力,其中减压会引起泡孔壁的破裂、泡孔壁的扩张和新孔的形成这几种现象中的至少一种。
43.权利要求42所述的方法,其中泡沫是通过凝胶化稳定的。
44.权利要求41所述的方法,还包括通过减压引发发泡的步骤。
45.权利要求23所述的方法,还包括将母体放在压力容器中;对母体加热和加压,以加速复合体转变为异丙基氯溶液和部分缩合的Al-O-Al类物质。
46.权利要求45所述的方法,还包括加压发泡;和降低压力容器的压力,其中减压会引起泡孔壁的破裂、泡孔壁的扩张和新孔的形成这几种现象中的至少一种。
47.权利要求46所述的方法,其中泡沫是通过凝胶化稳定的。
48.权利要求45所述的方法,还包括通过减压引发发泡的步骤。
49.一种用于生产隔热或隔音器的方法,本方法包括将含有AlCl3(Pri2O)复合体或其晶体的母体发泡;加热母体;母体分解产物在异丙基氯中的溶解;冷却溶液以便控制缩合反应,从而延迟发泡;和将溶液喷到表面上或喷入空气中。
50.权利要求49所述的方法,还包括在喷涂以前先降低溶液的压力的步骤。
51.权利要求49所述的方法,其中所述喷涂的步骤还包括向热表面的喷涂。
52.权利要求49所述的方法,其中所述喷涂的步骤还包括向冷表面的喷涂。
53.权利要求49所述的方法,其中所述喷涂的步骤还包括向热空气的喷涂。
全文摘要
一种生产陶瓷泡沫的方法,其中由母体或母体混合物生产陶瓷泡沫,母体或母体混合物中含有至少一种陶瓷形成成份,并且在凝胶化过程中释放出至少一种挥发性反应产物。在一个实施方案中,基于含AlCl
文档编号C04B38/00GK1304390SQ99807095
公开日2001年7月18日 申请日期1999年3月17日 优先权日1998年4月6日
发明者吉迪恩·格拉德尔, 真纳蒂·施特尔, 约拉姆·德哈赞 申请人:塞拉里斯有限公司