专利名称:堇青石陶瓷体和方法
背景技术:
本发明涉及堇青石体,特别是具有适用于废气后处理应用(特别是柴油机废气过滤)性质的堇青石体。
堇青石陶瓷体,特别是那些形成蜂巢状多孔结构的堇青石陶瓷体被应用于许多高温用途,例如催化转炉、NOx吸附器、电热催化剂、熔化金属过滤器、再生炉芯、化学加工基底、加氢脱硫催化剂、加氢裂解催化剂或加氢处理催化剂和柴油机微粒过滤器之类的过滤器。
在柴油机废气过滤领域,低成本且热膨胀系数(CTE)低的堇青石已是一种可供选择的材料。自从二十世纪八十年代早期,壁流型多孔堇青石陶瓷过滤器已被用于除去柴油发动机产生的排气流中的微粒。理想的柴油机微粒过滤器(DPF)兼有低CTE(为了耐热震性)、低压降(为了发动机效率)、高过滤效率(为了除去排气流中大部分微粒)、高强度(为了能够经受加工、包装和使用中的振动)和低成本。然而,已经证明兼有高过滤效率、高强度和非常低的压降对堇青石柴油机微粒过滤器是很困难的。
一般商业可得的堇青石柴油机微粒过滤器的孔隙率约为48%,中值孔径约为12微米,而且有宽的孔径分布。尽管这种柴油机微粒过滤器具有足够的过滤效率和强度,当加载炭黑(carbon soot)时,它们的压降很高。当加载第一克/升炭黑时,压降便会快速增加。人们认为最初的炭黑(soot)进入了陶瓷的孔内,减小了过滤器壁的渗透性。第一克/升炭黑之后,压降随着炭黑加载的增加变得更加缓和。
最近已经报道了孔隙率更高(59%)且中值孔径更大(25微米)的过滤器(filter)能降低炭黑加载时的压降(SAE技术论文2002-01-0322,“为低压降和催化、非催化体系设计的SiC和堇青石柴油机微粒过滤器”Hashimoto等人)。然而,具有如此高孔隙率和大孔径的过滤器强度很低,以至于要求特别仔细的加工。另外,在加入第一克/升炭黑时,尽管不如以前可得的小孔径和低孔隙率的过滤器那么严重,但这种过滤器的压降仍然会表现出不希望的高速增加。本研究人员的工作已经表明,当中值孔径尺寸增加到超过25微米时,能够进一步降低压降;然而,这种堇青石陶瓷体过滤效率很低。
获得兼有高过滤效率、低压降和改进的强度的堇青石陶瓷体将被认为是本领域的一个进步。本发明提供了这样的堇青石陶瓷体和制造它们的方法。
发明概述本发明提供了一种堇青石陶瓷体,上述堇青石陶瓷体具有(i)满足关系式10.2474/[(d50)2(孔百分率)]+0.0366183(d90)-0.00040119(d90)2+0.468815(1/孔百分率)2+0.0297715(d50)+1.61639(d50-d10)/d50≤3.65的孔径分布和孔隙率,和(ii)≤15×10-7/℃,优选≤10×10-7/℃,更优选≤7×10-7/℃的CTE(25°-800℃),其中堇青石陶瓷体由包含堇青石形成原料的可模塑混合物制成,该堇青石形成原料包括(a)细滑石,该滑石用激光衍射测量的中值粒径小于10微米,优选小于7微米,更优选小于5微米,且它的B.E.T比表面积大于5平方米/克,优选大于8平方米/克,和(b)成孔剂(pore former)。
上述发明的陶瓷体适合于高温应用,特别是用作低压降、高过滤效率和优良强度的柴油机过滤器。在优选的实施方式中提供了一种柴油机微粒过滤器,该柴油机微粒过滤器含有蜂巢状体,它具有入口端(inlet end)和出口端(outletend),从入口端延伸到出口端的大量巢孔(cell),上述巢孔有多孔的壁,其中在入口端的一部分巢孔沿它们的一部分长度被堵塞,其余部分巢孔在入口端敞开,而在出口端沿它们的一部分长度被堵塞,使得从入口端到出口端通过巢孔的发动机排气流流入敞开的巢孔,然后通过巢孔壁,再通过出口端的敞开巢孔排出结构体。
在本发明的另一个方面中,也提供了一种制造堇青石制品的方法,上述方法包含(a)形成一批原料,此批原料包括氧化铝、二氧化硅、用激光衍射法测量的中值粒径小于10微米和B.E.T比表面积大于5平方米/克的细滑石、成孔剂和任选的粘土;(b)将上述混合物塑化和成形;并且(c)一定温度烧制足够的时间,以将上述原料转变为晶体堇青石。
图1说明了一组对比例和本发明实施例中,沿过滤器的压降(以千帕为单位(千帕斯卡))随炭黑加载量(以克/升为单位)变化的函数关系。压降值在11.25scfm(每分钟标准立方英尺)的空气流速下测得。
图2说明了一组对比例和本发明实施例中,在5克/升的炭黑加载量和11.25scfm的空气流速下沿过滤器的压降(千帕)随孔隙率因子Pf变化的函数关系。
发明详细描述依照本发明实践,提供了一种主要由组成接近于Mg2Al4Si5O18的堇青石构成的陶瓷体。这种陶瓷体特别适用于柴油机废气过滤器之类的过滤应用。
传统上,堇青石柴油机微粒过滤器是通过将包含粗滑石、粗二氧化硅和粗成孔剂的原料与高岭土、铝土和氢氧化铝中一种或多种反应形成的。在烧制过程中,此前的粗滑石颗粒的脱水产物在1340℃下与部分反应的堇青石发生了熔化反应,形成能填入周围细小孔隙的液体,而在此前滑石颗粒所占据的位置留下了大的残留孔。烧制完成之后得到的孔微结构由互相不良好相连的大孔组成。已经发现这会导致孔在过滤时被炭黑堵塞,随着炭黑加载造成不希望的压降快速增加。
本发明探索通过使用比以前应用的滑石具有更小粒径的滑石,将高温下的短暂熔化反应减到最小。在此方法中,烧结体中的孔微结构得到了改进,其特征为更小的中值孔径、更窄的孔径分布和更多的孔连接。已经发现这样的微结构能够在保持高过滤效率的同时,随着炭黑加载达到更低的压降增加率。
因此,本发明中堇青石陶瓷体的孔隙率、中值孔径和孔径分布满足关系式Pf≤3.65,其中Pf为孔隙率因子,定义为10.2474/[(d50)2(孔百分率)]+0.0366183(d90)-0.00040119(d90)2+0.468815(1/孔百分率)2+0.0297715(d50)+1.61639(d50-d10)/d50。优选Pf≤3.3,更优选Pf≤3.0。上述术语“孔百分率(pore fraction)”为用水银孔率测定计测量的孔隙率除以100所得的体积百分数。上述参数d10、d50和d90涉及孔径分布。上述参数d50为基于孔体积的中值孔径,以微米计;因此,d50为陶瓷开放孔隙的50%被水银侵入时的孔径。参数d90为90%孔体积由直径小于d90值的孔构成时的孔径;因此d90等于陶瓷开放孔隙的10%体积被水银侵入时的孔径。参量d10为10%的孔体积由直径小于d10值的孔构成时的孔径;因此d10等于陶瓷开放孔隙的90%体积被水银侵入时的孔径。d10和d90数值的单位也为微米。参数(d50-d10)/d50描述了小于中值孔径d50的孔径分布宽度。
本发明陶瓷体的孔隙率至少为43%,优选至少为50%,更优选至少为55%。为了保持兼有优秀的强度和低压降,孔隙率优选不大于75%,更优选不大于65%。上述中值孔径d50≥3微米而<25微米;优选≤20微米,更优选≤12微米;还优选≥5微米,更优选≥7微米。上述参数d90≤70微米,优选≤50微米,更优选≤30微米。上述参数(d50-d10)/d50不大于0.70,优选小于0.60,更优选小于0.55,还更优选小于0.50,最优选小于0.45。
本发明陶瓷体的另一个优点是能导致极好耐热震性(TSR)的低热膨胀。TSR与热膨胀系数(CTE)成反比。也就是说,具有低热膨胀的蜂巢状结构具有良好的耐热震性,且能够经受住在应用中遇到的宽的温度波动。因此,用膨胀测量法测量的22℃到800℃的热膨胀系数≤15×10-7℃-1,优选≤10×10-7℃-1,更优选≤7×10-7℃-1。
由于结构中的微细裂纹,本发明陶瓷体的CTE低于大约为15×10-7℃到18×10-7℃的堇青石平均晶格CTE(mean lattice CTE)。任选地,上述堇青石体也可具有优选的、组成此陶瓷体的堇青石晶体非随机结晶取向。当上述的陶瓷体具有管状、多孔状或蜂巢型几何结构时,堇青石晶体c轴优选处于平行于形成的陶瓷体壁表面的平面内。这种优选的晶体取向有助于减少沿平行于陶瓷体壁表面方向测量的热膨胀,这是由于堇青石在晶体c轴方向具有负的CTE。
本发明的堇青石体可以具有任何适合特殊应用的形状或几何结构。在本发明堇青石体特别适合的柴油机微粒过滤之类的高温过滤应用中,上述堇青石体优选具有蜂巢状整体(honeycomb monolith)之类的多孔结构体。
上述蜂巢状结构具有入口端或面和出口端或面,和大量从入口端延伸到出口端的巢孔,此巢孔具有多孔的壁。本发明过滤器的巢孔密度从70巢孔/平方英寸(10.9巢孔/平方厘米)到400巢孔/平方英寸(62巢孔/平方厘米)。如引入本文作为参考的美国专利4329162所述,在入口端或面处的一部分巢孔用具有与过滤器相同或类似组成的糊状物堵塞。仅在巢孔未端处堵塞,深度一般为大约5到20毫米,但这种深度可以变化。出口端处但是并不与入口端巢孔对应的一部分巢孔也进行堵塞。因此,每个巢孔都仅仅在一端堵塞。优选的排列使得在特定面上每隔一个巢孔有一个被以方格的式样堵塞。
这种堵塞构型可以让排气流和基底的多孔壁之间更充分接触。排气流在入口端通过开放的巢孔流入基底,然后通过多孔的巢孔壁,然后在出口端通过开放巢孔流出该结构体。这里描述的这种类型的过滤器称为“壁流”过滤器,这是由于由交替通道堵塞产生的流动路线要求被处理的废气在离开过滤器之前流过多孔的陶瓷巢孔壁。
现已制得比现有堇青石过滤器具有更低的压降兼有高过滤效率和改进强度的堇青石柴油机微粒过滤器。在过滤器中的压降与炭黑在柴油机微粒过滤器壁上积聚有关。随着炭黑积累量的增加,对排气流通过过滤器壁和炭黑层的流阻会逐渐增加。上述流阻可以通过测量沿过滤器长度的压降来表明,并会增加对发动机的反压。
在特定炭黑加载量(以克/升为单位)条件下,压降的增加取决于过滤器的几何结构、陶瓷壁的渗透性和积聚炭黑层的渗透性。影响压降的几何因素包括过滤器的长度和直径、在过滤器未端处的堵塞深度、每单位面积巢孔的数量和壁的厚度。在炭黑加载之前清洁陶瓷壁的渗透性由孔隙率、孔径分布和孔连接性控制。另外,在炭黑加载的起始阶段,一些炭黑进入陶瓷壁表面的孔内。相对于沉积炭黑之前的清洁壁的渗透性,这减小了壁的渗透性。这种渗透性的减小增大了过滤器中的压降。在炭黑加载的这些起始阶段,在特定炭黑加载量条件下压降增加的程度取决于停留在过滤器壁孔内炭黑的渗透性。陶瓷壁孔内炭黑的渗透性又取决于炭黑微粒在孔内堆积得有多紧密。堆积得更紧密的炭黑微粒会使气体通过孔内炭黑的渗透性更低,并且因此使得通过其中含有炭黑的陶瓷壁的渗透性也更低。已经发现在陶瓷壁中炭黑的堆积密度和含有这种炭黑的陶瓷壁的渗透性也受到构成该陶瓷壁的陶瓷的孔隙率、孔径分布和孔连接性影响。因此,该孔隙率、孔径分布和孔连接性会影响清洁的和炭黑加载的过滤器的压降,而过滤器的压降又会影响燃料燃烧效率和柴油发动机效率。
一旦过滤器壁中的表面孔被炭黑充满,其余的炭黑主要积聚在该壁的表面,形成炭黑层。随着炭黑的进一步沉积,炭黑层会逐渐加厚。这种炭黑层的低渗透性导致了压降的进一步增加。
除了更低的压降以外,本发明的其它优点包括相对于更高孔隙率过滤结构的高过滤效率和改进的强度。这是由于上述对孔隙率、中值孔径和孔径分布的限制与上述孔隙率因子Pf相关。因此,根据微粒数目计算,本发明过滤器的过滤效率≥95%,优选≥98%,且其四点断裂模量至少为150psi,优选至少为200psi,更优选至少为250psi。上述的四点断裂模量在具有大约170到200巢孔/平方英寸矩形断面和大约0.011到0.012英寸壁厚且蜂巢状结构孔道与长度平行的蜂巢状棒材上测得本发明还涉及本发明堇青石体的制造方法。至今人们认为,为了获得在特定孔隙率下可以产生更好孔连接性的狭窄孔径分布,必须使用不含滑石和粘土的堇青石制造原料混合物。这个观点记载在Beall等人的同样待审、一起转让的题为“适用作柴油机微粒过滤器的镁铝硅酸盐结构体”的申请中,其申请号为60/392699。现已发现,由包含细滑石和任选高岭土的堇青石形成混合物原料能够获得类似或更好的孔径分布和孔连接性。
相对于以氧化镁作为镁源的原料混合物,使用细滑石能够在更低的温度下烧制。另外,使用细滑石能够使原料在1405℃完全反应形成堇青石,而不是在使用MgO、Al2O3和SiO2作为原料时要求的1430℃。因为堇青石在1455℃熔化,所以在制造过程中在熔炉加热区内允许有更大的温度梯度范围。上述术语“细滑石”是指用激光衍射法测量的中值粒径小于10微米且B.E.T比表面积大于5平方米/克的滑石。上述细滑石的中值粒径优选小于7微米,更优选小于5微米。B.E.T比表面积优选大于8平方米/克。
除了细滑石之外,其它原料包括氧化铝(Al2O3)形成源(forming source)和二氧化硅。上述Al2O3形成源可以是例如氧化铝、氢氧化铝、水合氧化铝、α-氧化铝、γ-氧化铝或ρ-氧化铝之类的过渡氧化铝、勃姆石、硝酸铝、碳酸铝或它们的混合物。优选的是,氢氧化铝Al(OH)3用量至少占原料混合物的10重量%。当原料混合物含有超过约15重量%中值粒径小于1.0微米的Al2O3形成源时,所述成孔剂加料的重量百分数与成孔剂微粒比重之比必须至少为13。例如,此比率相当于加入大约30重量百分数石墨(比重=2.26)或加入19重量百分数淀粉(比重=1.45)或12重量百分数聚乙烯(比重=0.92)。
二氧化硅由二氧化硅形成源提供。该二氧化硅形成源包括石英、方石英、熔凝硅石或凝胶溶胶二氧化硅之类的非晶态二氧化硅、沸石、胶体二氧化硅、硅藻土二氧化硅和它们的混合物。上述二氧化硅源的中值粒径至少为1微米,优选至少3微米,更优选至少10微米。
上述混合物可任意地包含高岭土。其中值粒径大于大约0.5微米而小于大约15微米,优选小于大约5微米。
上述原料批料还包含一种成孔剂,此成孔剂优选是选自石墨、纤维素、淀粉、聚丙烯酸酯和聚乙烯之类的合成聚合物和它们混合物的颗粒材料。上述成孔剂的重量百分数通过下式计算100×[成孔剂的重量/堇青石制造原料的重量]。石墨和马铃薯淀粉为优选的成孔剂。该成孔剂的中值粒径至少为3微米而且不超过140微米,优选至少为5微米而不超过80微米,更优选至少为10微米而不超过50微米。当该二氧化硅源的中值粒径大于20微米时,成孔剂的中值粒径必须不超过100微米。
在优选的实施方式中,这批原料包含15到17重量百分数的氢氧化铝作为氧化铝形成源,13到23重量百分数的氧化铝作为氧化铝形成源,11到23重量百分数的石英作为二氧化硅,39到42重量百分数的用激光衍射测量的中值粒径小于10微米且B.E.T比表面积大于5平方米/克的细滑石,和20到40百分数的石墨作为具有15到50微米中值粒径的成孔剂,和任选的8到17百分数高岭土。可以理解,对于特定混合物要选择堇青石制造原料的实际重量,使得在烧制之后生成主要由堇青石相组成的物体。
将上述原料混合物与赋形剂(vehicle)和成形助剂充分混合。当在原料成形为坯体时,上述赋形剂和成形助剂给予原料塑性和湿强度。可通过例如模塑或挤出来成形。当通过挤出来成形时,大多数情况下将甲基纤维素用作粘合剂,而把硬脂酸钠用作润滑剂。成形助剂的相对含量根据原料性质和数量等之类的因素变化。例如,成形助剂的一般含量为大约2重量%到大约10重量%甲基纤维素,优选大约3重量%到大约6重量%,和大约0.5重量%到大约1重量%硬脂酸钠,优选大约0.6重量%。上述原料和成形助剂在干态下混合,然后与用作赋形剂的水混合。水的用量可随批料的不同而变化,因此是通过预检测具体批料的可挤出性来确定的。
然后所得的塑性混合物形成生坯(green body),优选为蜂巢状结构。未烧结的坯体被称为生坯。挤出技术在本领域中众所周知。上述生坯被干燥,然后在足够的温度下烧制足够时间形成最终产物结构体。烧制优选通过在50到300小时内加热到大约1405到1415℃的最高温度,并在该最高温度保持至少5小时,优选15小时来完成。
本发明的组合物导致形成了大体上为近似化学计量组成Mg2Al4Si5O18相的陶瓷结构。
如果从得到的蜂巢状结构体形成柴油机特殊过滤器,接下来还要进行堵塞操作。在入口端或面的第一部分巢孔在端处以大约6到12毫米的深度进行堵塞,在出口端或面处将与入口端巢孔不同的第二部分巢孔也另外进行了堵塞,使得该结构体中每个巢孔只在一端堵塞。优选的安排是使特定面上每隔一个巢孔有一个被以方格的式样堵塞。
为了更全面地阐明本发明,下面列出了非限制性实施例。除非特别指出,所有的份数和百分数均按重量计。
实施例本发明实施例和对比例都通过按照表2、3、4和5中各实施例列出的比例混合选自表1的原料制得。100重量份的干成分(氧化物加上成孔剂)与大约4到6重量份的甲基纤维素和一重量份的硬脂酸钠混合。然后这些物料用大约25到40重量份的去离子水增塑并挤出成标称巢孔密度为200巢孔/平方英寸和壁厚为0.012英寸的蜂巢状坯体。干燥上述蜂巢状坯体,并随后烧制到1405到1415℃,在此温度分别保持11到25小时,然后冷却到室温。
对比例(非本发明)及其测得的性质列于表2。本发明实施例和各自的性质列于表3到5。孔体积、%孔隙率和孔径分布通过水银孔率测定计测量。轴向(平行于巢孔长度)热膨胀系数通过膨胀测量法测量。按格子状图案在相对端面的各交替巢孔末端处堵塞直径5厘米长16厘米的部分,使得巢孔在一端被堵塞而在另一端开放,从而形成了壁流过滤器。与过滤器外表面相邻且没有标准尺寸的正方形开口的巢孔两端都堵塞,形成了一种所谓的“堵塞环”。断裂模量是在大约2.5厘米×1.2厘米×16厘米巢孔与长度平行的棒材上用四点法测量的,所得结果的单位为磅/平方英寸(psi)。沿清洁过滤器长度方向上的压降在室温以及在11.25和26.25标准立方英尺/分钟(scfm)的空气流速下测量。
然后用人造大表面积炭黑,以大约0.5克/升到5克/升的加载量逐渐加载到过滤器上,并在11.25和26.25scfm测量每次炭黑加载时的压降。过滤器中炭黑的重量通过测量炭黑加载前和加载后过滤器的重量来确定。用来以克/升为单位计算炭黑加载的过滤器有效体积,通过将过滤器的有效正面面积与过滤器的有效长度相乘计算得到。有效正面面积通过过滤器面的直径计算得到,不包括环绕过滤器周界的堵塞环。过滤器有效长度通过过滤器的外部长度减去入口面的堵塞深度再减去出口面的堵塞深度。在1和5克/升炭黑加载量时的压降值通过对原始数据内插或外推导出。最优选发明实施例1、4、7。
本发明实施例和对比例的压降-炭黑加载曲线见图1。可以很清楚地看出,随着炭黑加载量的增加,本发明陶瓷体中独特的孔微结构使得压降增加能够明显低于对比例的压降增加。
将在5克/升炭黑加载量和11.25scfm流速条件下的压降对孔隙率因子Pf作图,见图2。该图进一步证明当Pf数值小于3.65时,上述炭黑加载时的压降值很低。
对本发明的许多实施例和对比例测量了断裂四点模量,这是一种巢孔取向平行于长轴方向的棒材上对挠曲强度的量度。所得结果见表2到5。可以很明显看出,在特定孔隙率水平下比较时,本发明实施例的强度远远高于对比例的强度。
根据进入和离开过滤器的人造炭黑微粒的数量,对一些对比例和本发明实施例测量了过滤器的过滤效率。结果见表2和3。可以看到本发明实施例具有最高的过滤效率。
应当理解虽然本发明已经参照说明性和具体的实施方式中进行了详细描述,不应当认为是对本发明的限制,而是可以在不脱离本发明精神和附加权利要求书范围的基础上用于其它方法中。
表1
表2
表3
表4
表5
权利要求
1.一种堇青石陶瓷体,它具有(i)满足关系式10.2474/[(d50)2(孔百分率)]+0.0366183(d90)-0.00040119(d90)2+0.468815(1/孔百分率)2+0.0297715(d50)+1.61639(d50-d10)/d50≤3.0-3.65的孔径分布和孔隙率,和(ii)≤7-15×10-7/℃的CTE(25°-800℃),其特征在于,所述的堇青石陶瓷体由包含堇青石形成原料的可模塑混合物制成,所述堇青石形成原料包括(a)细滑石,该细滑石用激光衍射法测量的中值粒径小于10微米,且它的B.E.T比表面积大于5平方米/克,和(b)成孔剂。
2.如权利要求1所述的堇青石陶瓷体,其特征在于,所述的孔隙率在43-55%和65%之间。
3.如权利要求1所述的堇青石陶瓷体,其特征在于,定义为中值孔径的d50在3-7和12-25微米之间。
4.如权利要求1所述的堇青石陶瓷体,其特征在于,所述函数[(d50-d90)/d50]小于0.45-0.70。
5.一种柴油机微粒过滤器,它含有权利要求1所述的堇青石陶瓷体,并被成形为具有入口端和出口端的蜂巢状结构体,许多巢孔从入口端延伸到出口端巢孔,所述巢孔具有多孔的壁,其特征在于,入口端的一部分巢孔沿它们的一部分长度被堵塞,而其余部分巢孔在入口端敞开而在出口端沿它们的一部分长度被堵塞,使得从入口端到出口端通过所述巢孔的发动机排气流流入敞开的巢孔,透过巢孔壁,并通过出口端的敞开巢孔流出所述结构体。
6.一种堇青石制品的制造方法,该方法包括(a)形成一批原料,该批原料包含选自α-氧化铝、γ-氧化铝、ρ-氧化铝、勃姆石、氢氧化铝及其混合物的氧化铝形成源,选自石英、方石英、熔凝硅石、凝胶溶胶二氧化硅、沸石、胶体二氧化硅、硅藻土二氧化硅及其混合物的二氧化硅,用激光衍射法测量的中值粒径小于5-10微米且B.E.T比表面积大于5-8平方米/克的细滑石,选自碳、焦炭、石墨、淀粉、面粉和合成聚合物且中值粒径在5-10微米和50-80微米之间的成孔剂,以及任选的高岭土;(b)将所述混合物塑化和成形;和(c)在一定的温度烧制足够的时间,以将所述原料转变为晶体堇青石。
7.如权利要求6所述的方法,其特征在于,当所述二氧化硅的中值粒径大于20微米时,所述成孔剂的中值粒径不大于100微米。
8.如权利要求6所述的方法,其特征在于,所述批的原料包括15到17重量百分数的氢氧化铝作为氧化铝形成源、13到23重量百分数的氢氧化铝作为氧化铝形成源、11到23重量百分数的石英作为二氧化硅、39到42重量百分数的用激光衍射测量具有小于10微米的中值粒径和大于5平方米/克B.E.T比表面积的细滑石、20到40百分数的石墨作为具有15到50微米之间中值粒径的成孔剂和任选的8到17百分数的高岭土。
9.如权利要求6所述的方法,其特征在于,通过模头挤出使所述混合物成形。
10.如权利要求6所述的方法,其特征在于,在1400℃-1440℃烧制至少5-25小时。
全文摘要
一种具有(i)满足关系式10.2474/[(d
文档编号B32B3/12GK1802333SQ200480003007
公开日2006年7月12日 申请日期2004年1月16日 优先权日2003年1月30日
发明者G·A·米尔克 申请人:康宁股份有限公司