超轻质陶瓷板及其制备方法

文档序号:2430194阅读:383来源:国知局
专利名称:超轻质陶瓷板及其制备方法
技术领域
本发明涉及一种用于非承重墙的陶瓷板及其制备方法。更具体地说,本发明涉及一种通过利用粘土矿物的发泡性和在板材内部形成的孔而具有超轻质并在物理性质诸如防水性、阻燃性、隔热性和刚性上获得改进的超轻质陶瓷板及其制备方法。
背景技术
适用于工业应用的陶瓷板应该满足诸如在建筑物的结构变化时具有方便简单的可建筑性的要求,并且为了顺应建筑物扩大和具有更高层的趋势,该陶瓷板应该是轻质的。另外,为了减少能量消耗,板材应该具有诸如热量保存/绝缘的作用,并且由于在城市中建筑物的密度较高,该板材应该对各种噪音具有吸声/绝缘的作用。
建筑公司在工地已部分地采用了由某些国内的厂商生产的传统的蒸压加气轻质混凝土(ALC)板或块,但遇到了与渗水性、配线和管道布置的不一致性和过重有关的问题,从而在相关技术领域中难以普及。
干砌墙,即一类通过在工地使用石膏板、玻璃棉和钢螺栓组装并建造单独构件而使用的建筑材料,同样也遇到了诸如在安装过程中或安装后明显的误差和变化、冲击强度较弱以及钉承载强度(nail-bearingstrength)较弱的问题,因此导致了住宅质量较差。此外,由于其防水性较差,由漏水引起的玻璃棉吸水导致真菌的生长,因此其未能得到普及和应用。
泡沫玻璃,即在其内部具有孔结构的玻璃,由于孔结构的物理性质并结合玻璃本身的固有物理性质,为表现出隔热性和轻质特性的无定形材料。在不同的应用诸如石油化学工厂、液化天然气储罐底部、冷藏仓库和烟囱衬壁中,泡沫玻璃被广泛地用作隔热材料、隔冷材料和抗腐蚀材料。
除了如上所述的那些板材材料,还有挤压轻质加气混凝土板诸如Acotec板,但这样的板材也遇到诸如重质和可加工性较差的问题,从而导致应用很少。
这样的传统轻质板材易受许多问题的影响,诸如由其高渗水性产生的在高湿度季节中细菌增殖的危险、在将其安装在大型建筑物中时过重和钉承载强度较低、以及在密集修建的城市建筑物中隔音和阻燃特性较差。
同时,夹心板,其中将诸如钢板的板状材料粘附在诸如隔热材料的芯材的两侧,作为内部及外部的加工材料被用于建筑物诸如临时性建筑物、非居住性建筑物、隔墙结构和外墙结构。
根据内部隔热材料的种类,可将传统的夹心板主要分成可膨胀聚苯乙烯(EPS)板、膨胀的聚氨酯板、聚异氰脲酸酯(PIR)板和玻璃棉板。
在这些板材中,EPS板和膨胀的聚氨酯板不能保证耐火性,因此不能用于要求耐火的场所。此外,这些板材不能保证不燃性,因此可应用于非常有限的场所,并且不能应用于可从内部看到的场所,从而限制了其实际用途和应用。
PIR板表现出阻燃等级为3的不燃性,但不能保证耐火性。因此,这种板材不能应用于要求具有阻燃等级高于2的不燃性或耐火性的场所,而且也是非常昂贵的。
玻璃纤维板可以保证耐火性,因此可用于各种场所,然而由于该板材对水的脆弱性,暴露于水引起对其重大的损害,因此减小了夹心板的作用。另外,由于在切割和安装该板材时产生了玻璃纤维的尘埃,存在诸如工人躲避建筑物的缺点。
韩国专利公开第1992-0017801号和韩国专利登记第135439号披露了一种包括由作为中间插入材料的泡沫树脂组成的隔热材料和作为外墙材料的聚合物混凝土的夹心板。韩国专利公开第2001-0003718号披露了一种用于预制隔板的薄石夹心板和一种用于人行道和车行道的界石,所述预制隔板通过以下步骤制造使用石板材料制备具有在其内部形成空腔的多层或单层块材,使用诸如混凝土废料的材料填充所述空腔,然后切割并修整所述石料。韩国实用新型登记第344475号披露了一种夹心板,其中中空的六面体形夹心板的外层的内部空间通过灌浆法填充轻质加气混凝土。然而,由于使用了混凝土材料或石料,这种传统的夹心板具有诸如重质和可加工性能较差的缺点。
同样地,传统的夹心板也遇到多种问题,诸如由其高渗水性产生的在高湿度季节中细菌增殖的潜在危险、在将其安装在大型建筑物中时过重和钉承载强度较低、以及在密集修建的城市建筑物中隔音和阻燃特性较差。
为了确保夹心板不受许多与其应用有关的限制的影响,该板材应该具有不燃性和耐火性,并且为了达到用户对产品的所需满意程度,该板材应该具有优良的隔音性、弯曲强度、冲击强度、钉承载强度、防水性和耐用性。

发明内容
技术问题因此,考虑到上述问题作出了本发明,本发明的目的是提供一种超轻质陶瓷板,所述陶瓷板通过形成封闭孔结构改善了物理性质诸如轻质、刚性、防水性、阻燃性和隔热性,并同时保持了陶瓷的固有功能,而能够被用作建筑物的内部和外部材料。
本发明的另一个目的是提供一种通过高温焙烧的方法制备超轻质陶瓷板形式的无机材料陶瓷的方法。
本发明的又一个目的是提供一种通过解决传统板材所表现出的问题而满足所有要求并因此可被广泛应用的夹心板。
技术方案根据本发明的一个技术方案,通过提供一种超轻质陶瓷板可达到上述和其它目的,该超轻质陶瓷板包括大量的在由可膨胀粘土矿物和玻璃形成的玻璃相内通过捕获由碳化硅的氧化产生的二氧化碳气体和由氧化铁的还原产生的氧气而形成的封闭孔结构。
在此,优选的是,封闭孔的孔密度在343~1000孔/cm3的范围内,并且相对于所述板的总体积,其孔体积在74~89%的范围内。
由于如上所述的封闭孔的结构和物理性质,根据本发明的陶瓷板为超轻质的、坚固的,并且具有优良的物理性质诸如高防水性、阻燃性、隔热性和远红外辐射率。
具体地说,根据本发明的陶瓷板的特征在于该陶瓷板具有0~5%的水渗透率,0.3~0.7g/cm3的密度,依据KS F 2271阻燃等级为1的不燃性,13.8~40.2%的线性膨胀率,8~50kgf/cm2的挠曲强度,0.90~0.93的远红外辐射率,350~400W/m2的远红外辐射能,0.10~0.13W/m·K的导热率和40~80kgf/cm2的弯曲强度。
根据本发明的陶瓷板由包含90~98重量%的可膨胀粘土矿物、1~5重量%的作为熔剂的玻璃和0.5~5重量%的作为发泡剂的碳化硅的组合物组成。在此,就生产成本的降低而言,废料玻璃优选用作熔剂。
用于本发明的可膨胀粘土矿物包含61.5~70重量%的SiO2、15~20重量%的Al2O3、1~5重量%的Fe2O3、2~4重量%的CaO、1~3重量%的MgO、0.5~1.5重量%的K2O和2~5重量%的Na2O。
根据本发明的陶瓷板可用作隔热材料和芯材,并且可应用于具有夹层结构的夹心板,其中该陶瓷板的顶侧和底侧均与钢板粘附。用于粘合陶瓷板和钢板的粘合剂优选选自环氧树脂粘合剂、聚氨酯粘合剂、乙烯乙酸乙烯酯(EVA)粘合剂及其任意组合。
在根据本发明的陶瓷板中,在其一侧形成凸出部分,并且在相对的一侧形成凹槽部分。因此,在不使用单独的组装构件的情况下,可以通过在凸出部分和凹槽部分之间的耦合来组装两块相邻的陶瓷板。
根据本发明的另一个技术方案,提供了一种制备超轻质陶瓷板的方法,该方法包括以下步骤混合90~98重量%的可膨胀粘土矿物、1~5重量%的作为熔剂的玻璃和0.5~5重量%的作为发泡剂的碳化硅;将所得到的混合物挤压成板形状;以及焙烧该模制材料并使其发泡。
焙烧和发泡步骤优选在1100~1200℃的温度下进行。上述焙烧温度的范围最适于本发明中所用的粘土矿物和配方(formula)。
优选的是,在焙烧和发泡步骤中的焙烧时间在20分钟~24小时的范围内,并且保持时间在1分钟~1小时的范围内。更优选的是,焙烧时间为38分钟,并且保持时间为2分钟。保持时间为保持温度条件的一段时间,以确保可较好地在所述板材的内侧和外侧上均匀地形成孔。
在焙烧时间和保持时间过短的情况下,不能充分地形成孔,这样可能增加比重。相反,在焙烧时间和保持时间过长的情况下,形成的孔较大,这样可能减小比重而削弱冲击强度。
通过根据本发明的高温焙烧方法制备的超轻质陶瓷板由无机材料陶瓷组成,由于具有封闭孔结构使其具有物理性质诸如轻质、防水性、阻燃性、隔热性、刚性和隔音性,同时保持了陶瓷本身固有的功能,因此该陶瓷板在建筑材料工业中适用作内部/外部材料。另外,由于使用了便宜的自然资源的天然粘土矿物,所以本发明的陶瓷板为新的非常经济的和环境友好的墙体材料。
此外,本发明的超轻质陶瓷板为满足不燃性和耐火性的无机材料,因此通过使用作为内隔热材料的该板并使其两面与钢板粘附而可能提供一种具有平均地结合的不燃性、耐火性、防水性、隔音性、弯曲强度、冲击强度、钉承载强度、耐用性、轻质和隔热性的轻质夹心板,从而制造了所需的产品。
由于陶瓷很轻并具有不燃性,所以根据本发明的陶瓷板非常适于作为用于夹心板的隔热材料和芯材。由于通过使用少量的原材料并使其发泡而降低了原材料成本和能量消耗,所以根据本发明的陶瓷板是非常经济的,并且由于使用了天然材料所以也是环境友好的。


由下面结合附图给出的详细描述,将更清楚地了解本发明的上述和其它目的、特征和其它优点,其中图1为制备根据本发明的超轻质陶瓷板的流程图;图2为示出根据本发明的一个实施方式制备的超轻质陶瓷板的样品的照片;图3为应用根据本发明的超轻质陶瓷板的夹心板的透视图;图4为应用根据本发明的超轻质陶瓷板的夹心板的剖视图;
图5为示出在应用根据本发明的超轻质陶瓷板的夹心板的连接部分之间的耦合的剖视图;以及图6为示出安装应用根据本发明的超轻质陶瓷板的夹心板的示意图。
具体实施例方式
下文,将参考附图对本发明进行更详细的描述。
图1为制备根据本发明的超轻质陶瓷板的方法流程图,其中该方法通常包括粘土-添加剂的混合、模制、脱模、焙烧和磨光步骤。
具体地说,所述制备方法包括以下步骤混合90~98重量%的可膨胀粘土矿物、1~5重量%的玻璃和0.5~5重量%的碳化硅(步骤A);干燥所得到的混合粉末并对在模子中干燥的混合物进行单轴挤压,从而以板的形式制备模制材料(步骤B);从模子中使模制材料脱模(步骤C);在隧道式窑或梭式窑中于1,100~1,200℃温度下焙烧模制材料并使其发泡,随后自然冷却(步骤D);以及磨光焙烧材料的表面(步骤E)。
根据本发明的陶瓷板的特征在于使用了具有发泡性质的粘土矿物,因此与制备该板材有关的关键点是有效经济地控制可膨胀粘土矿物的发泡程度。
控制可膨胀粘土矿物的发泡程度的必要条件可主要分为如下三个关键点研究在具有发泡性的粘土矿物、发泡剂(碳化硅)和熔剂(玻璃)之间的最佳组成范围,找到最佳发泡和焙烧条件的焙烧时间和保持时间的范围,以及最后,制定泡沫轻质陶瓷的制造方法技术。
根据本发明的陶瓷板包含90~98重量%的可膨胀粘土矿物、1~5重量%的作为熔剂的玻璃和0.5~5重量%的作为发泡剂的碳化硅,其中可膨胀粘土矿物包含61.5~70重量%的SiO2、15~20重量%的Al2O3、1~5重量%的Fe2O3、2~4重量%的CaO、1~3重量%的MgO、0.5~1.5重量%的K2O、2~5重量%的Na2O和其它有机物质。
当所述组合物中组成无机矿物的可膨胀粘土矿物、玻璃和碳化硅的含量在上述范围内时,可以制备适用于本发明目的的陶瓷板。将对具体的原因进行如下描述。
当可膨胀粘土矿物的含量增加时,超轻质陶瓷板的发泡性变差而其强度增加。另外,当可膨胀粘土矿物的含量减小时,超轻质陶瓷板的发泡性增强而其强度减小。因此,在所述组合物中可膨胀粘土矿物的含量在90~98重量%的范围内是适当的。
玻璃影响所述超轻质陶瓷板的组成和性能。在焙烧时,玻璃在低温下形成玻璃相,并且将放出的气体(CO2)限制在陶瓷板的内部,从而形成封闭孔结构。然而,加入过量的玻璃可导致密度减小,因此玻璃的含量优选在1~5重量%的范围内。
碳化硅在由用作熔剂的玻璃形成的玻璃相中产生气体,从而导致形成封闭孔结构。加入过量的碳化硅导致产生大量气体,这由此降低了其密度,由于这些气体导致了封闭孔的开放,由此引起气体喷射到外界,从而降低了超轻质陶瓷板的强度。因此,碳化硅的含量优选在0.5~5重量%的范围内。
图2为示出根据本发明的一个实施方式制备的超轻质陶瓷板的样品的照片,并且可以确定,超轻质陶瓷板包括在由可膨胀粘土矿物和玻璃形成的玻璃相内通过捕获由碳化硅的氧化产生的二氧化碳气体和由氧化铁的还原产生的氧气而形成的封闭孔结构。
下文,将对封闭孔结构的形成原理进行简要描述。
当可膨胀粘土矿物、玻璃和碳化硅被混合、模制及焙烧时,形成了玻璃质和晶体材料。然后,如下面反应1所示在高温下由碳化硅的氧化以及如下面反应2所示由Fe2O3的还原产生了气体,从而导致在玻璃相内形成封闭孔结构。

图3和4分别为应用根据本发明的超轻质陶瓷板的夹心板的透视图和剖视图。在此,根据本发明的夹心板10为这样一种板材,其中,使用具有耐火性、不燃性、防水性、轻质、隔热性和隔音性的基于无机材料的超轻质陶瓷板11作为隔热材料和芯材,并且使用粘合剂将两块顶部和底部钢板12和13完整地粘附在陶瓷板11的顶侧和底侧。
可用于此的钢板12和13的例子包括镀锌钢板、涂覆聚酯的钢板、涂覆硅/聚酯的钢板、涂氟的钢板、铝板(可涂覆有氟)和steel use stainless(SUS)板(可进行各种各样的表面处理诸如消光修饰、细纹(Hair Line)、磨光整理(Mirror)等)。
图5为示出在应用本发明的超轻质陶瓷板的夹心板的连接部分之间的耦合的剖视图。在此,分割并弯曲用作成品的钢板12和13的侧面,以使其具有能够用作成品并同时起到用于组装连接构件的作用的形状。也就是说,凸出部分15在根据本发明的夹心板10的一侧形成,并且凹槽部分14在相对的一侧形成,在不使用单独的组装构件的情况下,借助上述连接部分可单独通过板10的内部安装(inter-fitting)完成板的组装。
图6为示出安装应用根据本发明的超轻质陶瓷板的夹心板的示意图,其中将本发明的夹心板10安装在顶部导轮20和底部导轮21上。这种方法是夹心板的常规安装方法,其中顶部导轮20和底部导轮21用来支撑和固定板10,并且确保气密性和隔音性。当使用顶部导轮20和底部导轮21获得将要构建的板材10的精确位置以及板材10在导轮20和21上滑动时,可实现方便的建筑。
实施例下文,将对制备根据本发明的超轻质陶瓷板的方法的实施例进行描述,并且从下述实施例,将更清楚地了解本发明的特征和其它优点。提供这些实施例仅用于举例说明本发明,而不应该被解释为限制本发明的范围和实质。
实施例1混合由96.0重量%的可膨胀粘土矿物、3重量%的废料玻璃和1重量%的碳化硅组成的100重量%的无机矿物12小时,所述可膨胀粘土矿物包含65重量%的SiO2、15重量%的Al2O3、2重量%的Fe2O3、4重量%的CaO、3重量%的MgO、1.5重量%的K2O、2.5重量%的Na2O和7重量%的其它有机物质,然后将混合物放入具有36mm直径的模子中并在100kgf/cm2的压力下对其进行单轴挤压。从模子中脱模后,模制材料在1140℃温度的电炉中经过氧化焙烧和发泡,随后自然冷却。最后,对焙烧的材料的表面进行磨光,从而制备超轻质陶瓷板。
实施例2除了将焙烧温度设为1170℃之外,通过与实施例1相同的方法制备超轻质陶瓷板。
实施例3除了将焙烧温度设为1200℃之外,通过与实施例1相同的方法制备超轻质陶瓷板。
实验例1测量实施例1至3中制备的超轻质陶瓷板的膨胀率、密度和挠曲强度。这样获得的结果示于下表1中。
表1

实施例4除了无机矿物的组成包含96.5重量%的可膨胀粘土矿物和0.5重量%的碳化硅以及焙烧温度设为1170℃之外,通过与实施例1相同的方法制备超轻质陶瓷板。
实施例5除了无机矿物的组成包含96.0重量%的可膨胀粘土矿物和1.0重量%的碳化硅之外,通过与实施例4相同的方法制备超轻质陶瓷板。
实施例6
除了无机矿物的组成包含95.5重量%的可膨胀粘土矿物和1.5重量%的碳化硅之外,通过与实施例4相同的方法制备超轻质陶瓷板。
实验例2测量实施例4至6中制备的超轻质陶瓷板的膨胀率、密度和挠曲强度。这样获得的结果示于下表2中。
表2

实验例3测量实施例1中制备的超轻质陶瓷板的阻燃性、导热率、水渗透率、弯曲强度和远红外辐射率。这样获得的结果示于下表3中。
表3


从表1至表3可以确定,根据本发明的陶瓷板是轻质的,同时表现出优异的强度,并且具有优异的物理性质诸如高防水性、阻燃性、隔热性和远红外辐射率。
实施例7通过使用实施例1制备的超轻质陶瓷板11作为隔热材料和芯材,使用粘合剂使两块钢板12和13完整地与陶瓷板11的顶侧和底侧粘附制备具有如图3所示结构的夹心板10,然后在该板材的两侧形成用于在板材之间组装的凸出部分15和凹槽部分14。
工业实用性根据本发明的超轻质陶瓷板通过形成封闭孔结构而具有物理性质诸如轻质、防水性、阻燃性、隔热性、刚性和隔音性,同时保持陶瓷本身固有的功能,在建筑材料工业中适用作内部/外部建筑材料。另外,由于由使用便宜的国产自然资源的天然粘土矿物造成的原材料成本和能量消耗的降低,所以本发明的陶瓷板是非常经济的,并且由于使用了天然材料,所以该陶瓷板同样是环境友好的。
此外,本发明的陶瓷板确保了不燃性和耐火性,和对工人和使用者的安全性,因此可被没有限制地用在任意场所。另外,本发明的陶瓷板包括封闭的隔室,因此导致具有非常低的渗水性,由此提供了良好的防水性。另外,当所述陶瓷板用作夹心板的隔热材料和芯材时,该陶瓷板与钢板结合在一起,因此表现出高的刚性,由此提供了优异的弯曲强度、冲击阻力、耐用性和钉承载强度,因此提高了顾客对产品的满意度。
尽管为了说明性目的而披露了本发明的优选实施方式,但本领域的技术人员将理解到,在不脱离如所附权利要求所披露的本发明的范围和实质的情况下,可对本发明进行多种修改、补充和替代。
权利要求
1.一种超轻质陶瓷板,其包括大量的在由可膨胀粘土矿物和玻璃形成的玻璃相内通过捕获由碳化硅的氧化产生的二氧化碳气体和由氧化铁的还原产生的氧气而形成的封闭孔结构。
2.根据权利要求1所述的板,其中,所述封闭孔具有343~1000孔/cm3的孔密度。
3.根据权利要求1所述的板,其中,相对于所述板的总体积,所述封闭孔具有74~89%的孔体积。
4.根据权利要求1所述的板,其中,所述陶瓷板具有0~5%的水渗透率。
5.根据权利要求1所述的板,其中,所述陶瓷板具有0.3~0.7g/cm3的密度。
6.根据权利要求1所述的板,其中,依据KS F 2271,所述陶瓷板的阻燃等级为1。
7.根据权利要求1所述的板,其中,所述陶瓷板具有13.8~40.2%的线性膨胀率。
8.根据权利要求1所述的板,其中,所述陶瓷板具有8~50kgf/cm2的挠曲强度。
9.根据权利要求1所述的板,其中,所述陶瓷板具有0.90~0.93的远红外辐射率和350~400W/m2的远红外辐射能。
10.根据权利要求1所述的板,其中,所述陶瓷板具有0.10~0.13W/m·K的导热率。
11.根据权利要求1所述的板,其中,所述陶瓷板具有40~80kgf/cm2的弯曲强度。
12.根据权利要求1所述的板,其中,所述陶瓷板包括含有90~98重量%的可膨胀粘土矿物、1~5重量%的玻璃和0.5~5重量%的碳化硅的组合物。
13.根据权利要求12所述的板,其中,所述可膨胀粘土矿物包含61.5~70重量%的SiO2、15~20重量%的Al2O3、1~5重量%的Fe2O3、2~4重量%的CaO、1~3重量%的MgO、0.5~1.5重量%的K2O和2~5重量%的Na2O。
14.根据权利要求1所述的板,其中,所述陶瓷板具有向其顶侧和底侧粘附钢板的夹层结构。
15.根据权利要求14所述的板,其中,用于粘附所述陶瓷板和钢板的粘合剂选自环氧树脂粘合剂、聚氨酯粘合剂、乙烯乙酸乙烯酯(EVA)粘合剂及其组合。
16.根据权利要求1所述的板,其中,在所述陶瓷板的一侧形成凸起,在其相对的一侧形成凹槽,以及两块相邻的陶瓷板通过所述凸起和凹槽之间的耦合而组装。
17.一种制备超轻质陶瓷板的方法,该方法包括以下步骤混合90~98重量%的可膨胀粘土矿物、1~5重量%的玻璃和0.5~5重量%的碳化硅;挤压所得到的混合物以形成板;以及焙烧该板并使其发泡。
18.根据权利要求17所述的方法,其中,所述焙烧和发泡在1100~1200℃的温度下进行。
19.根据权利要求17所述的方法,其中,在所述焙烧和发泡步骤中,焙烧时间在20分钟~24小时的范围内,并且保持时间在1分钟~1小时的范围内。
全文摘要
本发明提供了一种使用可膨胀粘土矿物的用于非承重墙的超轻质陶瓷板及其制备方法。所述超轻质陶瓷板由包含90~98重量%的可膨胀粘土矿物、1.5~5重量%的熔剂(玻璃)和0.5~5重量%的碳化硅的粘土组合物组成,并且通过混合并挤压该粘土组合物、随后在1100~1200℃的温度下焙烧而制备。通过在陶瓷材料的内部形成封闭孔,根据本发明的超轻质陶瓷板是具有轻的重量、并在物理性质诸如防水性、阻燃性、隔热性和刚性上表现出进步的材料。
文档编号B32B15/08GK1878668SQ200580001237
公开日2006年12月13日 申请日期2005年11月4日 优先权日2004年11月4日
发明者辛相镐 申请人:Lg化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1