专利名称:涂层刀片的制作方法
技术领域:
本发明涉及用于金属机械加工的涂层刀具,其具有硬质合金基底,并且通过物理气相沉积(PVD)在所述基底的表面上沉积硬质的且耐磨的耐高温涂层。所述涂层附着(adherently bonded)于基底上并由复合层组成,该复合层具有至少两相并处于压缩应力下。所述层包括由不同组成与不同结构的两种组分组成的金属氧化物/氧化物复合物。所述复合层的晶粒粒度是纳米级的。
向例如硬质合金刀具上沉积例如氧化铝、碳化钛和/或氮化钛材料的薄陶瓷涂层(1-20μm)的工艺是很常用的技术,并且当用于金属的机械加工时,涂层刀具的刀具寿命显著延长。在某些情况下,所述刀具的使用寿命比未涂层刀具的使用寿命高出几倍。这些陶瓷涂层通常包括单层或多层组合。现代工业(commercial)刀具的特征在于具有双层或多层结构的多层组合。总涂层厚度在1与20μm之间,且单个子层的厚度在几微米与百分之几微米之间。
沉积这些层的常用技术是CVD和PVD(参见,例如,U.S.4,619,866和U.S.4,346,123)。PVD涂层的硬质合金或高速钢的工业刀具通常具有组成均匀的TiN、Ti(C,N)或(Ti,Al)N单层,或具有所述相的多层涂层,每层均为单相材料。
存在几种能够在刀具上形成薄的耐高温涂层的PVD技术。最常用的方法是离子电镀、磁控溅射、电弧放电蒸发和IBAD(离子束辅助沉积)以及上述方法的混合方法。每个方法均有自己的优点,并且取决于所选的具体PVD方法,所产生的层的固有性质例如显微组织和晶粒粒度、硬度、应力状态、内聚力以及对下面基底的附着力可以发生改变。因此,通过优化一个或几个上述性质,可以改善用于特定机械加工的PVD涂层刀具的耐磨性或刃的完整性(integrity)。
散料(bulk)形式的粒子强化陶瓷作为建筑材料是人们熟知的,但是其直到最近才作为纳米复合材料。J.F.Kuntz et al,MRS Bulletin Jan2004,pp22-27中公开了具有不同纳米分散粒子的氧化铝散料陶瓷(Alumina bulk ceramics)。在例如U.S.6,660,371、U.S.4,702,907和U.S.4,701,384中公开了氧化锆或氧化钛增韧的氧化铝CVD层。在后面的这些公开文件中,通过CVD技术来进行层的沉积,因此所形成的ZrO2相是热力学稳定相,即单斜晶(monoclinic)相。另外,CVD沉积的层通常处于拉伸应力或低的压缩应力下,但是PVD层由于PVD工艺的固有特性而通常处于高的压缩应力下。DE 10251404中记载了对氧化铝/氧化锆CVD层进行喷砂而得到一个压缩应力级。已知在喷砂工艺中引入中级压缩应力。
氧化锆的亚稳相,例如四方晶(tetragonal)相或立方(cubic)晶体相,可通过被称为转换韧化(transformation toughening)的机理来进一步增强散料陶瓷(Hannink et al,J.Am.Ceram.Soc 83(3)461-87;Evans,Am.Ceram.Soc.73(2)187-206(1990))。已知通过添加稳定元素如Y或Ce,或通过通常为PVD应用所需的缺氧环境如真空(Tomaszewski et al,J.Mater.Sci.Lett 7(1988)778-80),能够增加(promote)这些亚稳相。已知改变PVD工艺参数可造成氧化学计量的改变以及在氧化锆,特别是立方氧化锆相中形成亚稳相(Ben Amor et al,Mater.Sci.Eng.B57(1998)28)。
图1是本发明的涂层刀体截面的示意图,其中显示了根据本发明以氧化物/氧化物复合层(2)涂层的基底(1)。插图是高分辨率的TEM图像(透射电子显微镜),其中标明了氧化物复合层中的组分A(3)和组分B(4)。
根据本发明提供了用于金属机械加工如车削、铣削和钻孔的刀具刀片,在该刀具刀片上沉积耐磨的多层涂层,该刀具刀片包括下述物质的硬质合金的刀体,所述物质为硬质合金、金属陶瓷、陶瓷、立方氮化硼或高速钢,优选硬质合金或金属陶瓷。刀具的形状包括带分度刀片(indexable insert)以及柄式工具如钻头、端铣刀等。根据现有技术还可以用厚度在0.2至20μm之间的金属碳化物、金属氮化物或金属碳氮化物的单层或多层来对所述刀体进行预涂层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si中的一种或多种。将涂层应用到整个刀体上或至少其作用表面(functfioning surfaces)上,例如,切削刃、倾斜面、齿根面或参与金属切削过程的其它任何表面。
根据本发明的涂层附着于刀体上,并且其包括至少一个金属氧化物/氧化物复合层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si。所述氧化物层的总厚度在0.2与20μm之间,优选在0.5与5μm之间。该层由具有不同组成与不同结构的两种组分组成。每种组分是一种金属元素的单相氧化物,或两种或更多种金属氧化物的固溶体。所述材料的显微组织的特征在于被组分B包围的纳米级晶粒或晶柱(column),其平均晶粒粒度或平均晶柱大小(column size)为1-100nm,优选1-70nm,最优选1-20nm(组分A)。组分B平均线性截距(mean linear intercept)为0.5-200nm,优选0.5-50nm,最优选0.5-20nm。优选实施方案中含有四方或立方氧化锆形式的组分A的晶粒或晶柱,以及无定形或结晶氧化铝形式的包围组分B。在一个可替换的实施方案中,组分B是alpha(α)-和/或gamma(γ)相的结晶氧化铝。复合氧化物(compound oxide)层的氧含量低于化学计量的氧含量,即化合物氧化物层的氧金属的原子比为化学计量的氧金属的原子比的85-99%,优选90-97%。组分A和B的体积含量分别为40-95%和5-60%。由于生产方法,所述的层还具有残余应力,该应力为压缩应力,其范围为200至5000MPa,优选1000至3000MPa。
所述涂层刀体还可以具有金属碳化物、金属氮化物或金属碳氮化物的单层或多层的外涂层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si中的一种或多种。该层的厚度为0.2-5μm。
通过PVD技术或此类技术的组合来制造根据本发明的层。所述此类技术的例子是RF(射频)磁控溅射、DC磁控溅射和脉冲双重磁控溅射(DMS)。在基底温度200-850℃下形成所述的层。
若所用PVD工艺的类型允许,使用复合氧化物(composite oxide)靶材料沉积氧化物层。可替换的工艺途径是一种在周围的反应性气体中使用金属靶的反应工艺。对于用磁控溅射方法生产金属氧化物层,可以使用两种或更多种单一金属靶,其中通过启用或关闭单独的靶来控制金属氧化物的组成。在一个优选方法中所述靶是化合物,该化合物的组成反映了所需的层的组成。对于射频溅射,通过对单独的靶施加独立调节性的功率值(power level)来控制组成。
实施例1使用具有高纯度氧化物靶的RF溅射PVD方法,应用不同的工艺条件,在基底上沉积纳米复合材料Al2O3+ZrO2层,所述不同的工艺条件是就温度而言和就氧化锆对氧化铝的比例而言。通过在氧化锆靶上施加一个功率值,并在氧化铝靶上施加另一功率值,来控制所形成的层中两种氧化物的含量。
通过XRD和TEM分析所得层。XRD分析没有发现结晶Al2O3。
在450℃下纯ZrO2层的生长既得到稳定的单斜晶相又得到亚稳的四方形相。以形成复合材料为目的,向氧化锆流(flux)中添加氧化铝使得亚稳ZrO2相变稳定。对于该情况,每个氧化物靶上的靶功率值为80W。调节溅射速率,使锆的at%比铝的高两倍。氧金属的原子比为化学计量的氧金属的原子比的94%。
TEM分析显示沉积层为平均晶粒粒度为4nm的晶粒(组分A)的金属氧化物/氧化物纳米复合材料,所述晶粒被线性截距为2nm的无定形相(组分B)所包围。该晶粒为立方ZrO2,但包围相的铝含量高。
实施例2在氩和氧的气氛下,使用具有高纯度Al和Zr靶的反应性RF溅射PVD方法,在基底上沉积纳米复合材料Al2O3+ZrO2层。通过在Zr靶上施加一个功率值,并在Al靶上施加另一功率值,来控制所形成的层中两种氧化物的含量。调节溅射速率,以形成锆的at%比铝的at%高1-2倍的复合材料。
通过XRD和TEM分析所得层。
XRD结果显示存在亚稳ZrO2相。TEM分析显示沉积层为平均晶粒粒度为6nm的晶粒(组分A)的金属氧化物/氧化物纳米复合材料,所述晶粒被线性截距为3nm的无定形相(组分B)所包围。该晶粒的锆含量高,而包围相的铝含量高。
实施例3如下生产刀片组分86.1重量-% WC+3.5重量-% TaC+2.3重量-% NbC+2.6重量-% TiC+5.5重量-%Co型号CNMG120408-PM烧结温度1450℃将刀片加工成圆刃,然后清洗(clean),并在涂层温度885℃下使用CVD技术以3.5μm厚的Ti(C,N)层对刀片进行涂层,之后刀片被分成两组样品(variants)。将样品A等离子清洗,然后根据实施例2以纳米复合材料对其进行PVD涂层。将样品B等离子清洗,然后在同样的涂层设备中以氧化锆层对其进行PVD涂层。对于这两种样品,氧化物层的厚度均为约0.5μm。
用车削工序来检验刀片,从而根据下列参数来比较氧化物层的耐磨性工件Ovako 825B切削深度2mm进刀0.30mm/rev切削速度200m/min切削时间10分钟使用冷却流体结果(凹口面积(crater area))样品A0.54mm2样品B1.67mm2这些结果说明根据本发明制造的样品A的氧化物层具有最佳的耐磨性。
权利要求
1.一种刀具刀片,包括硬质合金、金属陶瓷、陶瓷、立方氮化硼或高速钢的刀体,在该刀具刀片上,至少在其表面的作用部分上施加附着的硬质耐磨薄涂层,其特征在于所述涂层包括至少一个金属氧化物/氧化物复合物的PVD层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si,并且其中所述的氧化物层的总厚度在0.2与20μm之间,并由不同组成与不同结构的组分A和组分B两种组分组成,所述组分由一种金属元素的单相氧化物,或者两种或更多种金属氧化物的固溶体组成。
2.如前一权利要求所述的刀具刀片,其特征在于所述刀体具有厚度在0.2与20μm之间的金属碳化物、金属氮化物或金属碳氮化物的第一单层内层或多层内层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si中的一种或多种。
3.如前面任一权利要求所述的刀具刀片,其特征在于所述刀体具有厚度在0.2与5μm之间的金属碳化物、金属氮化物或金属碳氮化物的单层或多层的外涂层,其中金属原子选自Ti、Nb、V、Mo、Zr、Cr、Al、Hf、Ta、Y或Si中的一种或多种。
4.如前面任一权利要求所述的刀具刀片,其特征在于所述组分A的平均晶粒粒度为1-100nm,优选1-70nm,最优选1-20nm。
5.如前一权利要求所述的刀具刀片,其特征在于所述组分B的平均线性截距为0.5-200nm,优选0.5-50nm,最优选0.5-20nm。
6.如前面任一权利要求所述的刀具刀片,其特征在于所述组分A和组分B的体积含量分别为40-95%和5-60%。
7.如前面任一权利要求所述的刀具刀片,其特征在于所述组分A含有四方或立方氧化锆,并且所述组分B由结晶的或无定形的氧化铝组成。
8.如前面任一权利要求所述的刀具刀片,其特征在于所述组分B由阿尔法(α)-和/或伽玛(γ)相的结晶氧化铝组成。
9.如前面任一权利要求所述的刀具刀片,其特征在于氧化物层中的氧金属的原子比为化学计量的氧金属的原子比的85-99%,优选90-97%。
10.如前面任一权利要求所述的刀具刀片,其特征在于所述的刀体为硬质合金或金属陶瓷。
全文摘要
本发明涉及用于金属机械加工的刀具刀片,在该刀具刀片上,至少在其表面的工作部分上施加附着的硬质耐磨薄涂层。该涂层包括由晶粒粒度为1-100nm的两种组分所组成的金属氧化物/氧化物复合物。所述氧化物涂层处于压缩应力下。
文档编号B32B18/00GK1853831SQ2006100736
公开日2006年11月1日 申请日期2006年4月18日 优先权日2005年4月18日
发明者戴维·于伊·特林赫, 汉斯·霍格贝里, 拉尔斯·胡尔特曼, 玛丽安娜·科林, 英丽德·赖内克 申请人:山特维克知识产权股份有限公司