纳米结构化的排斥性纤维材料的制作方法

文档序号:2432386阅读:356来源:国知局

专利名称::纳米结构化的排斥性纤维材料的制作方法纳米结构化的排斥性纤维材料本发明涉及如权利要求1所述的方法和组合物,用于纤维基材的改性。本发明的目的是提供一种新颖的通过表面附着性质调节的排斥性(repellent)纤维材料,以及新颖的组合物和方法,其中聚合物组分铺展在纤维表面上。具体地,本发明的目的是提供一种纤维素基纤维材料组合物,该组合物具有上述特征。本发明的更具体的目的是提供一种可作为标签的背纸即剥离纸(rdeasepaper)的材料组合物,该组合物具有有利且可调节的剥离性质(releasecharacteristics),并且容易制备,另外,可以再循环,如果需要可以由再循环的纤维制备。由于纤维材料的结构,因此在毛细管力的影响下,它们通常具有将外部液体、凝胶状或胶粘性的物质(一般是流体)吸收到其表面上或纤维结构内部的倾向。表面结构通常也是不规则的。因此,在制备纤维材料如纸或纸板的过程中,传统上使用材料表面能够例如被改性至平整、毛细管渗透可以被阻止或例如胶粘性物质的粘附性可以被调节的表面涂布方法。可提及的例子是涂布印刷纸,用聚合物和填料的胶乳类混合物将纤维材料的表面封锁,并使表面平整,层的厚度通常为1-5微米。使用的物质是例如苯乙烯-丁二烯-胶乳、淀粉、聚乙烯醇和填料,例如高岭土、二氧化硅、二氧化钛颜料等等。此外,如果制备的表面的排斥性需要强于现有技术的水平,则可以用独立的聚硅氧垸层对纸进行涂布,或者使纸的表面硅化。但是,为了实现这些技术的有利的最终结果,需要使用较大量的改性物质如聚合物,这会导致成本上升,增加制备步骤,另外还会制约循环利用。如果需要使用较贵的组分如硅酮以提供特别良好的表面排斥性,则这些问题更为突出。由于纸的物理和化学迥异的性质,因此必须以不同的方式对原纸改性,这样纤维材料的品质才能满足目标应用的要求。目标是可控制地调节溶剂或其它流体如胶粘性物质或糊料毛细管渗透和吸收到纸纤维和纤维之间的孔中。用于改性的最重要的物理方法之一是纸的砑光处理,在温度和压力处理的帮助下,纤维被压紧为更密实的网状结构。传统上,用厚度通常约l-5微米的含有聚合物的颜料涂层在化学性质方面改善印刷表面。借助颜料涂层,通过用颜料覆盖疏松纤维网的空洞、孔洞和不平之处可以填平纸的表面。在已知的方法中,聚合物作为粘合剂,它最重要的作用是将颜料颗粒粘合在一起,以及将涂层粘合到背纸上。用作粘合剂的聚合物可以存在于水中,作为液体的形式或分散的状态。在结构上,聚合物可以是均聚物或无规共聚物。作为水溶性聚合物,通常使用聚乙烯醇和羧甲基纤维素等。分散体聚合物是合成胶乳或淀粉基涂料。这些聚合物是苯乙烯-丁二烯、丙烯酸酯和乙酸乙烯酯基胶乳等。通常,用辊筒将材料铺展到纸的表面中,但是近年来已经开发了新的涂布方法,例如幕式涂布和喷涂,这些方法需要用作涂料的聚合物具有新的性质。在本发明的设想中,本发明人已经惊奇地发现,使用纳米技术途径方法可以全新的方式影响纤维材料(例如纸或纸板)将液体或粘性流动物质如胶水或油状物质粘附或吸收到其表面的能力。特别在本发明中,纤维素基纤维基材的表面(例如纸和纸板的表面)和同样作为主要因素的结构的内部部分都可以通过与少量聚合物接触而被改性。在此使用的聚合物可以是在结构上均一的(structurallyhomogenic)均聚物或共聚物,或者它们可以是在结构上两性的(structurallyamphiphilic)嵌段聚合物。依据本发明,少量施涂作为纤维表面上的纳米涂层的聚合物已经铺展到纤维结构的表面上,至少部分地从稀水溶液、在水中形成的乳液或在水中形成的分散体浸入到纤维结构内。依据本发明的均一聚合物通常可溶于水中或者是可分散的均聚物或共聚物,例如有利的聚乙酸乙烯酯、聚乙烯醇或生物聚合物如乳酸基聚合物。两性聚合物是嵌段聚合物,其含有亲水性和相应的疏水性嵌段。由于独特的结构,两性聚合物的不同嵌段与非极性或极性溶剂或液体的相互作用非常不同。为了避免不利的相互作用,分子通常在溶液中形成自组织的结构。因此,两性物质作为工业表面活性剂已经使用了很长时间。两性物质的重要应用是作为乳化剂和用于乳化的稳定剂。作为乳化剂,两性物质的疏水端溶解在疏水性化合物中,而亲水端伸出到水相。嵌段共聚物也用于制药中。自组织的结构可包围疏水性药物,这样可以增加它们在水中的溶解度。因为水溶液中的胶束可以溶解疏水性化合物,所以两性物质也可用于从水相中萃取有机分子。因此,可以避免使用有机溶剂。在本发明中,两性聚合物的应用领域被拓展到纤维材料,特别是天然纤维基纤维材料如纸和纸板,更特别是用作标签或贴纸的背层的剥离纸。因此,本发明提供在水中的水溶性、胶体或胶束形式的两性嵌段共聚物,该共聚物能够借助它们的纤维涂布能力、尤其是以纳米水平涂布的能力、更尤其是两性聚合物的自组织(self-organization)能力影响纤维材料的剥离性质和粘附性质。聚合物作为高度稀释的水溶液、乳液或分散体铺展到纸表面上,由此聚合物可以较小的浓度均匀地施涂,在干燥过程中除去水。在图1和2中显示了两性聚合物如何在纤维材料如纸的表面上组织的原理。更具体地说,依据本发明的方法的主要独特之处在权利要求1的特征部分进行了陈述。通过本发明可以获得显著的优点。因此,使用纳米技术方法,非常小浓度的两性聚合物就可以影响粘附能力、毛细管吸附和剥离能力。由于两性特征,嵌段共聚物在纤维材料的表面或其成分如单独的纤维或填料颗粒上可能形成取向,因此,聚合物的疏水嵌段可以由表面朝外取向,限制水和溶剂基液体或粘性流体的渗入。同时,聚合物的水溶性嵌段将聚合物固定在纤维表面上。接着,通过结合附图的详细说明更仔细地检验本发明。图1和图2示意性地表示了嵌段共聚物在纸表面上的行为,图3表示两性聚合物四种可能的结构形式。两性聚合物是共聚物,其结构上可以是直链嵌段共聚物、接枝共聚物或星状共聚物。可能的结构形式示于图3中。由聚合物嵌段的不同极性得到两性性质。在狭义上,两性共聚物中的一些嵌段是亲水和水溶性的,另一些嵌段是疏水和不溶于水的。依据本发明,类似的聚合物结构是水溶性聚合物被疏水性分子改性的结构,作为由此引出的技术的例子,人们可提及改性的聚环氧乙烷(PEO),其链端使用疏水嵌段通过正十八碳烯琥珀酸酐(OSA)分子连接。两性聚合物的制备和它们的特征描述在以下公开出版物中美国专利公开6.887.962、6.538.091和6,624,262;Vicek等,Polymer46(2005),ss.4991-5000;Sugiyama等,Polymer44(2003),ss,4157-4164;Dworak等,ReactiveandFunctionalPolymers42(1999),ss.31-36;Chognot等,JournalofColloidandInterfaceScience268(2003),ss.441-447禾卩Kurian等,JournalofPolymerScience:PartA:PolymerChemistry38(2000),ss.3200-3209,等等。制备直链两性嵌段结构的有利方法是例如通过縮合反应合成大分子单体(macromonomer),通过形成氨基甲酸酯,利用硅酮化学如借助氢化硅烷化反应或利用活性自由基聚合(livingradicalpolymerization),等等。直到最近,由乙烯基单体组成的嵌段共聚物的工业制造都是昂贵、困难和限制在非常有限的单体种类中。传统上,这种嵌段共聚物根据活性阴离子和阳离子聚合机理通过依次向反应混合物中加入单体来制备。该方法的缺点是极低的反应温度和生长的阳离子链对极性基团的敏感性。已经开发了一种新的方法即活性自由基聚合方法用于制备乙烯基单体嵌段共聚物。该反应可以在室温下在活性自由基聚合中进行,该方法不象传统的活性聚合方法那样对极性基团敏感。本发明有利的是可以使用均一的均聚物或共聚物或者两性嵌段共聚物材料,该材料以水性基液体、乳液、胶状混合物或分散体的形式施涂在基材表面上,尤其是将聚合物溶解或分散在水中。嵌段共聚物在结构上可以是二嵌段或三嵌段共聚物。如上所述,嵌段共聚物通常既含有水溶性(亲水性)嵌段又含有水不溶性(疏水性)嵌段。两性物质的亲水性嵌段可以是任何水溶性聚合物,其中疏水性嵌段可以通过反应连接。可提及的亲水性嵌段的例子是聚环氧乙烷、乙烯基吡咯烷酮、甲基丙烯酸羟乙酯、聚乙烯醇和聚丙烯酸,可提及的疏水性嵌段的例子是正十八碳烯基琥珀酸酐、苯乙烯、甲基丙烯酸甲酯、乙酸乙烯酯、聚硅氧垸或硅化合物和聚烯烃或对它们来说典型的单体单元的共聚物。另外,在此所述的聚合物混合物可以依据本发明施涂。通常,人们想要制备直链嵌段结构,因而聚环氧乙垸用作亲水性嵌段。PEO中的反应性基团仅仅是在链端的羟基,因此容易由PEO制得直链嵌段共聚物。其它可用于两性物质的亲水嵌段是聚(4-乙烯基吡咯烷酮)、聚甲基丙烯酸和聚丙烯酸等,但是这些聚合物必须通过链转移剂改性为反应性物质,或者通过活性自由基机理制备嵌段结构。在所述的聚合物结构中可以使用聚环氧烷替代聚环氧乙垸或与聚环氧乙垸一起使用。在一个有利的应用中,例如,聚环氧乙垸用作亲水性嵌段,十八碳烯基琥珀酸酐用作水不溶性嵌段,它们通过十八碳烯基琥珀酸酐与PEO链端的羟基反应而相互连接。此外,作为依据本发明的有利的两性嵌段共聚物,可提及的形式如下<formula>formulaseeoriginaldocumentpage10</formula>由聚硅氧烷和聚环氧烷形成的二嵌段或三嵌段共聚物,其中各嵌段通过氢化硅垸化反应相互连接,聚硅氧烷单元的比例优选为40%-1%,聚烯基(polyalkenyl)单元的比例优选为60%-99%,Rl和R2相同或者是低级烷基或苯基,而该低级烷基或苯基可以被取代或未被取代。较佳的是,该嵌段共聚物由聚(二甲基硅氧烷)(PMDS)和聚环氧乙烷组成。此外,R1和R2还可以部分或完全地是聚氧化烯(polyalkenyloxide)类型。这种由聚硅氧烷和聚氧化烯制备的嵌段结构的共聚物以及它们的制备方法的描述例如见以下公开出版物中Haeslin&Eicke,Macromol.Chem.185(1984)2625-2645sekSJukarainenH.,Clarson,S.,Sepp础J.,AnInvestigationoftheSurfacePropertiesandPhaseBehaviourofPDMS-b-PEOMulti-blockcopolymers,干廿于SiliconeandSiliconeModifiedMaterials,ACSSymp.Ser.,Am.Chem.Soc.USA1999,以及Licentiate'sThesis,H.Jukarainen,UniversityofTechnology,2000。两性聚合物的水溶解度或它们在水相中形成胶束的趋势取决于嵌段的类型和长度。在用十八碳烯基琥珀酐或十八碳烯基琥珀酸酐改性的聚环氧乙垸的情况中,例如可以通过聚乙烯的摩尔质量(molarmass)来调节水溶解度水平。聚环氧乙烷嵌段越长,则两性聚合物在水中的溶解性越好。在聚环氧乙烷和聚二甲基硅氧烷的情况中,嵌段长度的选择和物质的相互比例对于共聚物是溶于水中、在水中形成胶束还是不溶于水中但是能是其中配分都非常重要。嵌段的比例可以在很宽的范围内变化。通常,两性嵌段共聚物中疏水性组分的比例是1-85重量%,优选是5-40重量%,相应的亲水性组分的比例是15-99重量%,优选是60-95重量%。聚合物的摩尔质量通常为500-500000克/摩尔,优选为1000-50000克/摩尔。通过使用依据本发明的两性嵌段共聚物,纸的表面不一定需要象传统涂布技术一样进行填充,聚合物可以均匀地施涂在纤维的表面上,它们至少部分地防止液体或粘性流体或糊剂渗入到纤维材料如纸中。纤维材料成分例如在纤维的表面上,聚合物能够形成均匀的或部分均匀的层。实际上,依据本发明令人惊奇的是,观察到表面上的某些粗糙度是作为外部物质(例如胶粘物质)的剥离力的调节参数有利的特征。通过辊涂、幕式涂布或喷涂或通过某些其它相应的方法,通常如上所述将聚合物作为水分散体或液体施涂到基材的表面上。表面的聚合物的量较少,不会阻塞纸的表面。两性聚合物的用量通常少于3克/米2,但是通常在基材的表面上,可以施涂约0.001-10克/米2,优选约0.005-5克/米2,更优选约0.01-3克/米2的聚合物或两性嵌段共聚物。通过之前所述的方法,根据应用的需要,通过砑光进一步处理纸或纸板。还依据本发明,用自组织的两性聚合物纳米涂布已经预涂布的纤维材料,以改变表面的排斥性,随后对表面胶粘的纸进行处理,通过在其表面上施涂被十八碳烯基琥珀酐改性的聚环氧乙垸或者聚环氧乙烷和聚硅氧烷的嵌段或支化共聚物的薄层来提高其表面性质。依据本发明的一种应用形式是在剥离纸的制备中,使用两性嵌段共聚物、优选聚二甲基硅氧垸的嵌段或与聚环氧乙垸的接枝共聚物作为混合组分,而表面胶粘物含有聚乙烯醇,优选占总聚合物质量的0.01-20重量%,以提高剥离性质。但是,根据本发明的令人惊奇的新方法,在此情况中,同样利用了两性聚合物有可能在表面上发生自组织的趋势。但是,依据本发明的处理能够使用不需要进行任何其它处理(除了可能的砑光)的纸。砑光可以作为在线砑光或脱线砑光进行,例如通过使用在线软砑光机或脱线超砑光机进行。待处理的纸的平方质量(squaremass)可以为50-450克/米2。通常纸的背纸的平方质量为30-250克/米2,优选为30-80克/米2,纸板为90-400克/米2。依据本发明的聚合物组合物每单位面积的用量可以非常少。在本发明的一个优选实施方式中,通过使用两性聚合物,在纤维材料成分表面如纤维或填料表面上形成自组织的至少部分或全部是单分子聚合物的纳米涂层。根据标签的剥离纸的性质要求,可以通过聚合物材料改变纸的粘附性质。使用依据本发明的聚合物,在纤维基材的情况中,令人惊奇地观察到表面的粗糙度在调节外部物质粘附在表面上(例如胶粘物质粘附在纤维材料表面上)的作用方面非常突出,特别是当目标是调节胶粘标签从剥离纸上脱离的剥离力的时候。可以通过调节用依据本发明的聚合物处理的纤维材料的表面不平整度即表面粗糙度,从而在宽广的范围内调节胶粘标签的剥离力。已经发现,通过分别调节两种参数,聚合物的天然排斥水平和表面的粗糙水平,可以在非常宽的范围内调节剥离力。聚合物的天然粘附性和表面的粗糙度的有利组合是依据本发明的。对于聚合物的天然排斥性,指聚合物组合物的选择性,其中聚硅氧烷通常表示排斥性最高的边界点。例如,可以根据水的接触角或表面能值描述表面的排斥性。对于表面的粗糙度,指例如原子力显微镜显示的表面的不平整性,通常为0.1-50微米,例如在纸材的实施方式中,通常为l-5微米。表面越平整,表面粗糙度的值越小,得到更大的剥离力值。相反,已经观察到,在表面粗糙度较大(优选大于5微米)时,即使是依据本发明的用聚乙烯醇涂布的纤维材料(优选是纸)也表现出极低的胶粘物质的剥离力值。在其它文献中通常将这种行为称为"乐特斯(Lotus)"效应,目前显示为由依据本发明的组合物和方法提供在纤维材料的表面上,例如在纸的表面上。依据本发明的纤维材料是任何纤维基材,但是适宜是天然纤维物质或纤维素基纤维材料,例如纤维素物质、纸、纸板、由再循环纤维制备的纸、织物、纤维织物、其它天然纤维物质,例如亚麻纤维物质、由合成纤维得到的板或织物、或由提及的物质得到的三维物体,除了纤维材料外,还可以存在其它组分如填料。可提及的填料是矿物质,例如碳酸钙和高岭土。本发明特别适宜于处理纸和纸板路径和薄片。产物纤维可以是首次使用的纤维或再循环的纤维。特别有利地,原纸是未处理的,但是也可以对表面胶粘的纸幅或纸片进行改性。还已经观察到,在依据本发明的组合物和方法中,有时在涂布后对材料进行目标温度和/或压力处理是有利的,例如砑光。该项处理可以影响表面粗糙或平整的程度以及聚合物组分铺展到纤维表面上的程度,进而在使用两性聚合物时促进自组织作用。如果聚合物组合物是以在水中的乳液或分散体开始的状况,则在除去水后可能剩余的聚合物颗粒可以更好地铺展在纤维表面上,从而促进纤维结构的排斥性。本发明的完全特别的优点是可以制备用作标签背纸的剥离片,而不需要单独的硅相(silicoziningphase)用于连接。然后,还可以依据本发明提供一种剥离纸,该剥离纸可以再循环,而不存在硅阻碍再循环的情况,并且该剥离纸也可以由再循环的纤维制备。以下非排他性应用实施例描述了本发明实施例1制备PEO-b-OSA-共聚物将聚环氧乙垸(20克;2毫摩尔)和正十八碳烯基琥珀酐(5.3克;15.1毫摩尔)放入实验室瓶中,在该瓶中通入氮气流。将混合物在13(TC加热6小时。将产物混合物溶解在水中,用等量的二氯甲垸萃取四次。收集二氯甲垸相,在旋转蒸发仪中真空下除去溶剂。通过将蒸发残留物再次溶解在二氯甲烷中,然后用乙醚沉淀来回收产物聚合物。通过过滤从溶液中分离产物。最后,在室温下在真空下干燥产物8小时。实施例2制备PEO-b-OSA-共聚物将聚环氧乙烷(20克;3.33毫摩尔)和正十八碳烯基琥珀酐(3.5克;9.98毫摩尔)放入实验室瓶中,在该瓶中通入氮气流。将混合物在13(TC加热6小时。将产物混合物溶解在水中,用等量的二氯甲烷萃取四次。收集二氯甲烷相,在旋转蒸发仪中真空下除去溶剂。通过将蒸发残留物再次溶解在二氯甲垸中,然后用乙醚沉淀来回收产物聚合物。通过过滤从溶液中分离产物。最后,在室温下在真空下干燥产物8小时。实施例3制备PEO-b-OSA-共聚物将聚环氧乙烷(20克;5毫摩尔)和正十八碳烯基琥珀酐(7.9克;22.54毫摩尔)放入实验室瓶中,在该瓶中通入氮气流。将混合物在13(TC加热6小时。将产物混合物溶解在水中,用等量的二氯甲烷萃取四次。收集二氯甲烷相,在旋转蒸发仪中真空下除去溶剂。通过将蒸发残留物再次溶解在二氯甲垸中,然后用乙醚沉淀来回收产物聚合物。通过过滤从溶液中分离产物。最后,在室温下在真空下干燥产物8小时。实施例4制备PEO-b-OSA-共聚物将聚环氧乙烷(20克;10毫摩尔)和正十八碳烯基琥珀酐(15.7克;44.79毫摩尔)放入实验室瓶中,在该瓶中通入氮气流。将混合物在130'C加热6小时。将产物混合物溶解在水中,用等量的二氯甲垸萃取四次。收集二氯甲垸相,在旋转蒸发仪中真空下除去溶剂。通过将蒸发残留物再次溶解在二氯甲垸中,然后用乙醚沉淀来回收产物聚合物。通过过滤从溶液中分离产物。最后,在室温下在真空下干燥产物8小时。实施例5制备单官能PEO大分子引发剂(macroinitiator)将聚环氧乙烷单甲醚(20克;4毫摩尔)和丙炔氯(propynylchloride)(l.l克;12毫摩尔)溶解在二氯甲烷中制得溶液。将反应容器放入冰浴中,在其中通入氮气流。向反应容器中加入聚环氧乙烷溶液,在1小时内向反应容器中滴加丙炔氯。然后,在室温下移动反应容器,在18小时内使反应混合物的温度达到平衡。最后,向反应混合物中滴加溶解在二氯甲垸中的三乙胺,直到混合物变为碱性。过滤溶液,在真空下除去一半的溶剂,通过冷乙醚沉淀大分子引发剂。通过过滤回收大分子引发剂,在真空下干燥过夜。实施例6制备二官能PEO大分子引发剂将聚环氧乙烷单甲醚(20克;2毫摩尔)和丙炔氯(1.1克;12毫摩尔)溶解在二氯甲烷中制得溶液。将反应容器放入冰浴中,在其中通入氮气流。向反应容器中加入聚环氧乙烷溶液,在l小时内向反应容器中滴加丙炔氯。然后,在室温下移动反应容器,在18小时内使反应混合物的温度达到平衡。最后,向反应混合物中滴加溶解在二氯甲垸中的三乙胺,直到混合物变为碱性。过滤溶液,在真空下除去一半的溶剂,通过冷乙醚沉淀大分子引发剂。通过过滤回收大分子引发剂,在真空下干燥过夜。实施例7制备聚环氧乙垸和聚二甲基硅氧烷的嵌段共聚物;PEO封端的三嵌段共聚物称取50克摩尔质量为10000克/摩尔的脱水a-乙烯基醚聚环氧乙烷(PEO),放入三颈瓶中。另夕卜,称取1.88克Mn-750克/摩尔的a,co-二(氢化二甲基甲硅垸基(dimethylsilylhydride))聚二甲基硅氧烷(PDMSDIH),放入同一容器中,加入30重量%的经过蒸馏的干燥甲苯。用磁力搅拌器以200rpm的转速搅拌反应溶液,使干燥氧气流通过溶液,以避免催化剂失活。将反应溶液加热至50'C,然后通过隔膜向溶液中加入催化剂(Pt(O)二乙烯基四甲基硅氧垸络合物)。根据原料的量计算的铂的量为30111。然后,通过红外监控聚合反应,直到反应完成,表现为观察到在2130(:111-1处的峰消失。这大约花费4小时。在聚合反应完成后,通过在l小时内升温至65t:且降压至5巴而将甲苯从溶液中蒸馏出来。实施例8PDMS-PEO-PDMS—三嵌段共聚物称取40克摩尔质量为10000克/摩尔的脱水a-乙烯基醚聚环氧乙烷(PEO),放入三颈瓶中。另外,称取5.74克Mn=750克/摩尔的a,co-二(氢化二甲基甲硅垸基)聚二甲基硅氧垸(PDMSDIH),放入同一容器中,加入30重量%的经过蒸馏的干燥甲苯。因为氢化二甲基甲硅垸基的量在反应中是过量的,所以在终产物的两端都得到二甲基甲硅垸基。用磁力搅拌器以200rpm的转速搅拌反应溶液,使干燥氧气流通过溶液,以避免催化剂失活。将反应溶液加热至50'C,然后通过隔膜向溶液中加入催化剂(Pt(O)二乙烯基四甲基硅氧烷络合物)。根据原料的量计算的铂的量为30ppm。然后,通过红外监控聚合反应,直到反应完成,表现为观察到在2130cm'1处的峰消失。这大约花费4小时。在聚合反应完成后,通过在l小时内升温至65"C且降压至5巴而将甲苯从溶液中蒸馏出来。实施例9制备具有PVA的排斥性纤维材料将5重量X的聚乙烯醇(Mw30000克/mol)溶解在水中,作为稀水溶液。通过空气加压喷涂设备对未涂布的高级纸进行喷涂。将纸样品在4(TC的加热箱中干燥2小时。测量纸中聚合物的量,观察到的结果为0.9克/米2。观察到制备的纸粘附到胶粘标签上的粘附力比未涂布的高级纸的对比测试结果低得多,后者中一部分的纸结构脱层,粘到胶粘标签上。在涂布的纸的情况中,在剥离后没有观察到纤维粘附到胶粘表面上。实施例10使用十八碳烯基琥珀酐改性的PEO制备排斥性纤维材料将3重量%的用十八碳烯基琥珀酐改性的PEO溶解在水中。按照实施例9相同的方法将一系列喷涂涂料施涂到未涂布的高级纸上,但是涂料溶液的量不同。干燥的高级纸中聚合物的量估计为0.2,0.5和1.0克/米2。与未涂布的高级纸的标签剥离测试相比,在所有这些样品中检测到的胶粘标签的剥离力都明显较低。实施例11用两性嵌段聚合物涂布的纸由干燥的两性嵌段共聚物制备1...5重量%的水溶液、乳液或胶状混合物或分散体。在涂布之前和涂布8小时后对涂布的纸片进行称重。在空气压力下将水溶液喷涂到纸片的表面。通过溶液体积调节涂料的量。将湿的纸片转移到烘箱中,在120'C干燥5分钟。根据未涂布的和涂布的纸片的重量和涂布的面积确定涂料的量。实施例12使用PEO-PDMS-嵌段共聚物制备排斥性纤维材料依据7和8,使用含有5重量%聚合物的稀水溶液制备PEO-PDMS-嵌段共聚物。根据实施例9描述的技术,将这些混合物施涂到髙级纸的表面上。使样品干燥,进行胶粘标签的剥离力测试。检测到的胶粘标签的剥离力明显低于供比较的未涂布的纸。不同于未处理的比较样品的表面,没有木质纤维从处理过的样品的表面脱离到粘合剂涂布的表面上。实施例13使用亲水改性的接枝结构的PDMS制备排斥性纤维材料依据下表制备改性的PDMS级别的5重量%和10重量%的稀水溶液<table>complextableseeoriginaldocumentpage17</column></row><table>依据实施例9的描述将这些溶液施涂到未涂布的高级纸上。干燥样品,称重,得到聚合物的量为0.3和0.6克/摩尔。进行描述胶粘标签剥离力的测试,观察到该剥离力比对比样品低得多。实施例14具有大表面粗糙度的剥离纸依据实施例9进行涂层试验,但是纤维材料是不平整度为10微米的纸板。在粘合标签的剥离测试中观察到剥离力特别低,没有来自剥离纸的物质残留在胶粘表面上。实施例15聚硅氧烷和极性改性的PVA的混合物制备10重量X的聚乙烯醇(PVA)的水溶液。在该溶液中,可溶解20%的依据实施例12的ABCRDBP-732聚合物,该聚合物是用聚环氧乙烷接枝的PDMS,并且是水溶性和两性的。由该水溶液得到高级纸的涂层,聚合物量为2克/米2。将纸干燥。与无硅组分的类似涂布的PVA涂布的高级纸相比,清楚地观察到粘附力下降。权利要求1.基本上基于纤维素的外部物质排斥性剥离纸组合物,其特征在于,在该材料组分的表面上铺展了少量聚合物,该聚合物是A)水溶性、形成胶体或胶束、或水分散的聚合物、或聚合物的混合物;或B)两性直链、支链或星状嵌段或接枝共聚物,其中存在亲水性嵌段(a)和疏水性嵌段(b)。2.如权利要求1所述的组合物,其特征在于,水溶性、形成胶体或胶束、或水分散的均一聚合物(A)有利的是聚环氧乙烷、聚乙烯醇、聚乙烯吡咯垸酮、聚(甲基丙烯酸羟乙酯)、水溶性多糖、聚丙烯酰胺、聚乙酸乙烯酯、基于乳酸的生物聚合物、或由其单体单元组成的共聚物、或它们的混合物,不排除其它类似物。3.如权利要求1所述的组合物,其特征在于,两性聚合物(B)的亲水性嵌段(a)有利的是聚环氧乙垸、聚乙烯醇、聚乙酸乙烯酯、聚乙烯吡咯烷酮、聚(甲基丙烯酸羟乙酯)、水溶性多糖、聚丙烯酰胺、或由其单体单元组成的共聚物、或这些聚合物的混合物,不排除其它类似的水溶性聚合物或它们的组合。4.如权利要求1所述的组合物,其特征在于,两性聚合物(B)的疏水性嵌段(b)是分子或聚合物链的一类疏水部分,有利的是烃链如石蜡、聚烯烃、脂肪酸、或聚硅氧垸、由十八碳烯基琥珀酐、聚苯乙烯、或聚甲基丙烯酸甲酯产生的嵌段以及其它疏水嵌段,不排除性质类似的聚合或低聚的均聚物或共聚物嵌段结构或疏水性分子嵌段。5.如权利要求1所述的组合物,其特征在于,两性嵌段共聚物(B)的疏水性嵌段(b)的形式如下薩<formula>formulaseeoriginaldocumentpage2</formula>聚硅氧烷,其中Rl和R2是相同或不同的低级烷基或苯基,所述低级烷基或苯基可以被取代或未被取代。6.如权利要求1所述的组合物,其特征在于,两性嵌段共聚物的形式如下<formula>formulaseeoriginaldocumentpage3</formula>二嵌段或三嵌段共聚物,由聚硅氧烷和聚环氧烷组成,其中聚硅氧垸的比例适宜是40%-1%,聚环氧烷的比例适宜为60%-99。%,其中R1和R2是相同或不同的低级烷基或苯基,所述低级烷基或苯基可以被取代或未被取代,该聚合物适合由聚(二甲基硅氧垸)和聚环氧乙烷组成,此外,R1和R2部分或完全地是聚环氧烷类型。7.如权利要求2所述的组合物,其特征在于,所述聚合物涂层通过以下处理得到用辊涂、喷涂、幕涂或其它类似的方法将水溶性、在水中形成胶体或胶束、或水分散的聚合物、或其与水的混合物施涂或浸渍到纤维基材料上,然后除去水。8.如权利要求1所述的组合物,其特征在于,聚合物主要位于纤维成分或纤维材料的表面上,或者均匀地铺展在纤维材料的结构部件如纤维或填料的表面上,作为薄层或者作为胶束或分散的颗粒遍布整个材料。9.如权利要求1所述的组合物,其特征在于,在纸的制备中,纤维材料组合物中聚合物组分(A)或(B)的用量为0.005-10克/米2,适宜为0.3-1克/米2。10.如以上权利要求所述的组合物,其特征在于,两性聚合物(B)已在纤维材料成分的表面上形成了自组织的纳米涂层,例如适宜在纤维或填料的表面上形成自组织的纳米涂层。11.如权利要求1所述的组合物,其特征在于,在纤维材料上、适宜在纸上形成排斥性、粘附能力调节性质或降低在纤维材料上浸渍的性质,其由以下物质组中的一个或多个组成胶粘物质、标签胶粘物、溶剂和溶液、脂肪或蜡。12.如权利要求1所述的组合物,其特征在于,纤维材料基本上是基于纤维素的,例如纸、纸板、纤维素板、纸或纸板、或由再循环的纤维、织物、天然纤维物质如亚麻纤维物质制成的物质、或由合成纤维制成的板或织物,例如纤维织物、或上述物质的三维卡普(kappale)形式,还可以有其它组分,例如填料。13.如权利要求1所述的组合物,其特征在于,当纤维材料、尤其是纸的表面含有尺寸范围为0.5-50微米、优选5-10微米的不平整或孔时,胶粘物质如标签、胶带、胶粘团块等从纤维材料上脱离的剥离力明显减小。14.一种制备外来物质排斥性剥离纸的方法,其特征是,在该材料成分的表面上铺展了少量聚合物,该聚合物包含A)水溶性、形成胶体或胶束、或水分散的均一的均聚物或共聚物或这些聚合物的混合物,不排除其它类似的水溶性聚合物或其组合物;或B)两性直链、支链或星状嵌段或接枝共聚物,其含有亲水性嵌段(a)和疏水性嵌段(b)。15.如权利要求14所述的方法,其特征在于,聚合物(A)或(B)作为稀水基溶液、乳液或分散体结合在纤维材料中,其中溶液中聚合物的浓度适宜为1-15重量%,在结合后除去水。16.如权利要求14所述的方法,其特征在于,通过以下处理提供聚合物涂层用辊涂、喷涂、幕涂或其它类似的方法将水溶性、在水中形成胶体或胶束、或水分散的聚合物或其与水的混合物施涂或浸渍到纤维基材料上,然后除去水。17.如权利要求14所述的方法,其特征在于,可以通过温度和/或热处理纤维材料,例如通过砑光,改变聚合物处理的纤维材料的结构和特征,提高聚合物在纤维表面的铺展,另外,促进两性聚合物的自组织。18.如权利要求14所述的方法,其特征在于,在纸的制备中,两性嵌段共聚物(B),特别是聚二甲基硅氧烷和聚环氧乙烷的嵌段共聚物用作含聚乙烯醇的表面胶粘混合组分,聚乙烯醇的比例适宜是聚合物物质的0.01-20重量%,以提高剥离性质。19.如权利要求14所述的方法,其特征在于,当纤维基材的表面含有0.5-50微米的不平整或孔结构时,可以减少胶粘材料如胶粘标签或胶带从聚合物处理的纤维材料上脱离的剥离力。20.如权利要求14所述的方法,其特征在于,用在产品背面的胶粘标签、含胶粘剂的薄片、胶带或胶粘团块和类似产品的剥离片可在无单独的硅化阶段的情况下制备。21.如权利要求1所述的纤维材料和如权利要求14所述的方法的应用,所述应用包括调节胶粘物质对不同表面的粘附性,提供纸、纸板、天然纤维基薄片、织物和其它类似基材或物体的表面排斥和物质浸渍的调节,尤其是用于制备剥离纸,例如用于标签和胶带的背纸。全文摘要本发明涉及可用于基于纤维的基材的表面处理新途径的一种组合物、一种方法和一种应用,其中纤维材料的表面性质可调节。该方法的基本原理是联合利用厚薄可控制的且可以自组织的聚合物材料与纤维基材形成纳米涂层。可提及的本发明的有利应用领域是调节纤维基材表面的粘附和浸渍。文档编号D21H25/14GK101341298SQ200680045316公开日2009年1月7日申请日期2006年11月27日优先权日2005年12月1日发明者J·V·塞帕拉申请人:芬欧汇川集团
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1