专利名称:反射结构和图像显示装置的制作方法
技术领域:
本发明涉及包括基底和形成在所述基底上的反射装置的反射结构。
本发明进一步涉及包括具有在多个起伏表面(undulating surfaces)方向上排列的多个起伏表面的第二基底的反射结构,所述起伏表面在各个位置具有凹槽(recesses)和凸起(projections),和形成在所述第二基底上的反射装置。
本发明进一步涉及一种包括该种反射结构的图像显示装置。
背景技术:
近年来,需要例如移动电话等移动装置显示高清晰度的图像。因此,能显示高清晰度图像的移动装置已经迅速推广开来。然而,如果要在这样的移动装置的屏幕上观察显示的图像,观察屏幕的使用者可以从视觉上分辨出屏幕上的所谓的色彩(在下文中,提到的仅仅是色彩)。当移动装置在户外使用时,这些色彩将是明显的。既然当使用者观察屏幕上显示的图像时色彩已经成为一种妨碍,必然要消除或减弱色彩。
发明内容
本发明的目的是提供一种反射器,其达到了色彩(coloring)的消除或减弱,以及提供应用该种反射器的图像显示装置。
为了达到上述目的的依照本发明的反射结构包括基底,以及在所述基底上形成的反射装置,其中所述基底包括了支持部件,其被提供有具有不同高度部分的第一基本表面以及具有不同高度部分的第二基本表面;形成在所述支持部分上的具有第一凹槽或凸起的第一起伏部分,以及形成在所述支持部件上的具有与所述第一凹槽或凸起相关的第二凹槽或凸起的第二起伏部分,其中所述第一及第二基本表面以第一基本表面间距沿第一方向被设置,其中所述的第一及第二起伏部分以第一起伏部分间距沿所述第一方向被设置,并且其中所述第一基本表面间距与所述第一起伏部分间距中的较大间距为较小的间距的非整数倍。使用这样的结构,色彩将被消除或减弱。
在本发明的反射结构中,所述第一起伏部分可以与所述第二起伏部分连续。
在本发明的反射结构中,所述第一基本表面间距可以与第一像素间距相等。
在本发明的反射结构中,所述反射装置可以包括第一及第二反射器,所述第一及第二反射器以所述第一像素间距沿所述第一方向被设置。
在本发明的反射结构中,所述支持部件可以包括第一传导线、第二传导线、从所述第一传导线提供给所述多个第一反射器中的第一反射器数据的第一驱动元件、以及从所述第二传导线提供给所述多个第一反射器中的第二反射器数据的第二驱动元件,其中所述第一及第二传导线能够以所述第一像素间距沿所述第一方向被设置,并且其中所述第一及第二驱动元件能够以所述第一像素间距沿所述第一方向被设置。
在本发明的反射结构中,所述支持部件可以包括具有不同高度部分的第三基本表面,其中所述基底可以包括第三起伏部分,该第三起伏部分形成在所述支持部件上,并具有与所述第一凹槽或凸起相关的第三凹槽或凸起,其中所述第一及第三基本表面可以第二基本表面间距沿第二方向被设置,其中所述第一及第三起伏部分可以第二起伏部分间距沿第二方向被设置,以及其中所述第二基本表面间距与所述第二起伏部分间距中的更大的间距可以是更小间距的非整数倍。
在本发明的反射结构中,所述第一起伏部分可以与所述第三起伏部分连续。
在本发明的反射结构中,所述第二基本表面间距可以与第二像素间距相等。
在本发明的反射结构中,所述支持部件可以包括第三传导线、第四传导线、以及通过所述第三传导线控制的第三驱动元件,其中所述第一驱动元件通过所述第四传导线控制,其中所述第三及第四传导线以所述第二像素间距沿所述第二方向被设置,并且其中所述第一及第三驱动元件以所述第二像素间距沿所述第二方向被设置。
在本发明的反射结构中,所述反射装置可以包括与所述第三驱动元件相对应的第三反射器,所述第一及第三反射器以所述第二像素间距沿第二方向被设置。
在本发明的反射结构中,所述第一及第二方向可以分别为行方向和列方向。
在本发明的反射结构中,所述反射装置可以包括沿所述第一方向延伸的反射线。
在本发明的另一个反射结构中,反射结构可以包括基底、以及形成在所述基底上的反射装置,其中所述基底可以包括支持部件,其设有具有不同高度部分的第一基本表面、具有不同高度部分的第二基本表面、以及具有不同高度部分的第三基本表面、形成在所述支持部件上的第一起伏部分、形成在所述支持部件上的第二起伏部分、以及形成在所述支持部件上的第三起伏部分,其中所述第一及第二基本表面可以多个基本表面间距中的第一基本表面间距沿第一基本表面方向被设置,所述第一基本表面间距是所述多个基本表面间距的最小间距,其中所述第一及第三基本表面可以所述多个基本表面间距中的第二基本表面间距沿第二基本表面方向被设置,所述第二基本表面间距与所述第一基本表面间距相等或是仅次于所述第一基本表面间距的最小的间距,其中所述第一及第二起伏部分可以多个起伏部分间距中的第一起伏部分间距沿第一起伏部分方向被设置,所述第一起伏部分间距是所述多个起伏部分间距中的最小间距,其中所述第一及第三起伏部分可以所述多个起伏部分间距中的第二起伏部分间距沿第二起伏部分方向被设置,所述第二起伏部分间距与所述第一起伏部分间距相等或是仅次于所述第一起伏部分间距的最小的间距,以及其中所述第一及第二起伏部分方向中的至少一个可以不同于所述第一及第二基本表面的方向。使用了这样的结构,色彩才能被消除或减弱。
在本发明的这种另一个反射结构中,所述第一至第三起伏部分可以是连续的。
在本发明的这种另一个反射结构中,所述第一基本表面间距可以与第一像素间距相等。
在本发明的这种另一个反射结构中,所述反射装置可以包括第一及第二反射器,所述第一及第二反射器以所述第一像素间距沿所述第一基本表面方向被设置。
在本发明的这种另一个反射结构中,所述支持部件可以包括第一传导线、第二传导线、从所述第一传导线提供给所述第一反射器数据的第一驱动元件、以及从所述第二传导线提供给所述第二反射器数据的第二驱动元件,其中所述第一及第二传导线可以所述第一像素间距沿所述第一基本方向被设置,以及其中所述第一及第二驱动元件可以所述第一像素间距沿所述第一基本方向被设置。
在本发明的这种另一个反射结构中,其中所述支持部件可以包括第三传导线、第四传导线、以及通过所述第三传导线控制的第三驱动元件,其中所述第一驱动元件可以通过所述第四传导线所控制,其中所述第三及第四传导线可以所述第二像素间距沿所述第二方向被设置,以及其中所述第一及第三驱动元件可以所述第二相距间距沿所述第二方向被设置。
在本发明的这种另一个反射结构中,所述反射装置可以包括相对应于第三驱动元件的第三反射器,所述第一及第三反射器以所述第二像素间距沿所述第二方向被设置。
在本发明的这种另一个反射结构中,所述反射装置可以包括沿所述第一基本表面方向延伸的反射线。
依据本发明的图像显示装置包括如上所述的反射结构。
图1示出了具有反射电极E的反射电极基板1的透视图,其为依据本发明反射结构的第一实施例;图2为如图1所示的区域F的放大平面图;图3示出了在其上子像素区域分别形成了单个TFT的基板的一部分的平面图;图4为沿图3中子像素区域Ar1中的线IV-IV的横截面图;图5为在其上形成了具有起伏表面的有机膜8的基板的平面图;图6示出了如图5所示的每个起伏部分18至128在xy平面上的凸起与凹槽的分布图;图7示出了具有接触孔CH的起伏部分在xy平面上的凸起与凹槽的分布图的一个例子;图8为在包括以起伏部分间距Tx’及Ty’设置的起伏部分的有机膜80形成后的基板的平面图,起伏部分间距Tx’为像素间距Sx的整数倍,起伏部分间距Ty’为像素间距Sy的整数倍;图9为如图8所示的有机膜80的矩形起伏部分81的放大详图;图10为位于图8的矩形起伏部分81中的子像素区域Ar1一侧的6个凸起81a至81f的横截面的示意图;图11为包括了在如图8所示的矩形起伏部分81中的2个凸起81a与81b以及矩形起伏部分83中的2个凸起83a与83b的横截面视图,凸起83a与83b分别与凸起81a与81b相关;图12为其上形成了反射电极Er1,Eg1,Eb1……的基板的平面图;图13为包括了如图12所示的反射电极Er1的凸起p(81a)与反射电极Eb1的凸起p(83a)的局部横截面视图;图14为用光照射传统基板100的举例;图15为如图14所示的区域F的放大视图;图16为观察者HE分辨出的传统基板100上的颜色分布(color profile)的模拟结果;图17为如图14所示的区域F的放大视图;图18为观察者HE分辨出的基板上的颜色分布的模拟结果;图19为如图14所示的区域F的放大视图;图20为观察者HE分辨出的基板上的颜色分布的模拟结果;图21展示了叠加的颜色分布Cx、Cy与Cxy;图22为图5中从y方向上观看的6个起伏部分28、38、58、68、88与98的6个相关凸起28a、38a、58a、68a、88a、及98a的横截面示意图;图23为如图1所示的区域F的放大视图;图24为如图23所示的从y方向观看的6个凸起p(28a)至p(98a)的横截面示意图;图25为观察者HE在反射电极基板1上分辨得到的颜色的概念性举例;图26为第二实施例的反射电极基板的平面图,其中只有起伏部分间距Tx与像素间距Sx之间的关系为非整数倍;图27为如图26所示的从y方向观看的被设置在x方向上的凸起p(18a)、p(38a)与p(58a)的横截面的示意图;
图28为如图26所示的从dxy’方向观看的凸起对p(18a)与p(18c)以及凸起对p(48a)与p(48c)的横截面的示意图;图29为第三实施例的反射电极基板1的一部分的平面图,其通过不同于第一及第二实施例的方法来消除或减弱色彩;以及图30示出了示意性代表传统基板100的第一及第二直线起伏部分91与92(参见图8)的横截面形状的轮廓图以及示意性代表了传统基板100的矩形起伏部分的横截面形状的轮廓图。
具体实施例方式
图1示出了具有反射电极E的反射电极基板1的透视图,其为依据本发明反射结构的第一实施例。反射电极基板1可以作为基板用于例如液晶显示装置的图像显示装置中。
这种反射电极基板1包括了多个以矩阵阵列设置的反射电极E以及用于连接到外部电路的终端部分TG。
图2为如图1所示的区域F的放大平面图。
反射电极基板1包括了在其表面具有凸起和凹槽的有机层8。反射电极Er…形成在有机层8上。由于有机层8具有凹槽与凸起,反射电极也相应地具有凸起与凹槽。在图2中,用于显示红色图像的反射电极Er1,用于显示绿色图像的反射电极Eg1,用于显示蓝色图像的反射电极Eb1等被以像素间距Sx设置在x方向上(行方向)以像素间距Sy被设置在y方向上(列方向)。已经注意到有机层8上的凸起与凹槽的图案是独立于子像素区域设计的。在这个实施例中,通过独立于子像素区域设计有机层8上的凸起与凹槽的图案,如下所述,我们可以轻易地通过这样一种方式设计有机层8的凸起与凹槽的图案以便当观察者观看反射电极基板1时很难分辨出色彩。制造反射电极基板1的方法将如下进行描述。
第一,为了制造反射电极基板1,在玻璃基板上各自的一个子像素区域中形成每个TFF。
图3示出了在其上各自的一个子像素区域内形成了每个TFT的基板的一部分的平面图;在图3中,被以像素间距Sx设置在x方向上以及被以像素间距Sy设置在y方向上的子像素区域Ar1、Ag1、Ab1…被链线所环绕。TFT形成在每个子像素区域中。这种TFT通过在玻璃基板上形成栅电极2、栅极线3、半导体层4、源电极5、源极线6、漏电极7及其它而制得。栅极线3被以像素间距Sy设置在y方向上以及源极线6被以像素间距Sx设置在x方向上。TFT被以像素间距Sx设置在x方向上以及被以像素间距Sy设置在y方向上。
图4为图3子像素区域Ar1沿线IV-IV的横截面图;由于源极线6已经在玻璃基板50上形成,在源极线6已经形成后的基板表面包括了表面Sf。表面Sf具有在z方向不同高度的部分K1与K2(在下文中,表面Sf被称作“基本表面”Sf)。在图4中,示出了由源极线6形成的部分K1,但是也要注意到,在z方向上不同高度的部分由栅极线3与TFT形成。此外,在该实施例中没有形成Cs线,但是假定Cs线已经形成,高度不同的部分将通过Cs线形成。如图3所示,在这个实施例中,可以注意到,导致了基本表面Sf具有这些部分K1和K2的TFT、栅极线3、源极线6或其他,被以像素间距Sx设置在x方向上以及被以像素间距Sy设置在y方向上。因此,注意到如图4所示的具有部分K1与K2的基本表面Sf不仅在子像素区域Ar1还在其他子像素区域形成,因此如图4所示的基本表面Sf被以像素间距Sx设置在x方向上以及被以像素间距Sy设置在y方向上。
为了形成在其表面上都具有凸起及凹槽的反射电极,在如图3所示的每个子像素区域中形成TFT后以及形成反射电极之前,形成具有起伏表面的有机膜(参见图5)。
图5为在其上形成了具有起伏表面的有机膜8的基板的一部分的平面图。
有机层8具有每个用于连接后来形成的各个反射电极与TFT的各个漏极的接触孔CH。此外,有机层8包括多个起伏部分,每个起伏部分具有凸起与凹槽。在图5中,作为起伏部分的代表,12个起伏部分18至128被示处,每个部分18至128都用实线围绕。该有机层8可以,例如,作为单层膜或作为多个凸起部件与覆盖凸起部件的平面薄膜(planarization film)的联合体而形成。
图6示出了如图5所示的每个起伏部分18至128在xy平面上的凸起与凹槽的分布图。
如图6所示的白色多边形与凸起相对应,以及夹在白色多边形之间的区域与凹槽相对应。凸起被随机设置在起伏部分中,并且凹槽扩张以至编入凸起之间。有机膜8的每个起伏部分基本上具有如图6所示分布的凸起与凹槽,但注意到,如果在起伏部分需要接触孔CH时,接触孔CH将如图6所示被加入到凸起与凹槽的图案中。例如,由于被设置在x方向上的4个起伏部分38、68、98与128不需要接触孔CH(参见图5),部分38、68、98与128具有如图6所示的同样的凸起与凹槽的分布,但是由于其他8个起伏部分18、28、48、58、78、88、108与118需要接触孔CH,接触孔CH就如图6所示被加入到了凸起与凹槽的图案中。例如,图7示出了起伏部分18的凸起与凹槽的分布。不同于图6,图7包含了对应于两个子像素区域Ar1与Ag1的漏极的两个接触孔CH。然而,也注意到除了加入接触孔CH之外,图7的凸起与凹槽的分布在xy平面上是与图6上的分布相同的。此外,起伏部分的凸起与凹槽的图案并不被上述的图案所限制并且可以是其中例如图6所示的凸起与凹槽被倒置的图案。起伏部分基本上为如图6及7所示的矩形形状,但是也可以具有不同的形状(例如,基本为六边形的形状)。
具有这种凸起与凹槽图案的起伏部分18至12g如图5所示以矩阵阵列形式设置。起伏部分18至128被以起伏部分间距Tx设置在x方向上并且以起伏部分间距Ty设置在y方向上,因此是被以起伏部分间距Ts设置在相对于x与y方向倾斜的ds方向上。起伏部分间距Tx与Ty分别不同于像素间距Sx与Sy。起伏部分间距Tx比像素间距Sx更大,以及起伏部分间距Ty比像素间距Sy更小。注意到起伏部分间距Tx被定义为不等于像素间距Sx的整数倍,并且起伏部分间距Ty被如下定义,像素间距Sy不等于间距Ty的整数倍。在第一实施例中,Tx被定义为Tx=(17/8)Sx以及Ty被定义为Ty=(17/23)Sy,但是,注意到Tx与Ty并不被这些值所限制。在形成具有如上所描述的起伏部分的有机膜8后,反射电极Er1、Eg1、Eb1…将如图2所示地形成。由于反射电极Er1、Eg1、Eb1…形成在具有起伏部分的有机膜8上,反射电极也具有了与有机膜8的凸起与凹槽的图案相对应的凸起与凹槽的图案。
如上所述,有机膜8的起伏部分间距Tx与像素间距Sx的关系不是整数倍的而是非整数倍的,并且有机膜8的起伏部分间距Ty与像素间距Sy的关系不是整数倍的而是非整数倍的。起伏部分间距与像素间距间的非整数倍的关系使得有效地减弱在反射电极基板1上可辨认的色彩成为可能。在下文中,这个理由将通过比较具有以像素间距整数倍设置的起伏部分的有机膜进行描述。
图8为在包括以起伏部分间距Tx’及Ty’设置的起伏部分的有机膜80形成后的基板的平面图,起伏部分间距Tx’为像素间距Sx的整数倍,起伏部分间距Ty’为像素间距Sy的整数倍。
有机膜80包括成直角的起伏部分、第一直线的起伏部分以及第二直线的起伏部分。图8代表性地展示了8个矩形起伏部分81至88,以及在8个矩形起伏部分81至88之间的连续的第一与第二直线起伏部分91与92,第一直线起伏部分91沿着x方向延伸以及第二直线起伏部分92沿着y方向延伸。矩形起伏部分81至88被以两倍于像素间距Sx的起伏部分间距Tx′(=2Sx)设置在x方向上,以及被以等于像素间距Sy的起伏部分间距Ty′(=Sy)设置在y方向上。因此,第一直线起伏部分91被以起伏部分间距Tx′(=2Sx)设置在x方向上,并且被以起伏部分间距Ty′(=Sy)设置在y方向上。第二直线起伏部分92同上。此外,图8中未说明的区域包括与如图8所示的起伏部分具有相同凸起与凹槽图案的起伏部分。
图9为如图8所示的有机膜80的矩形起伏部分81的放大详图。
矩形起伏部分81形成在基本上整个的两个子像素区域上。矩形起伏部分81包括了多个随机设置的凸起81a、81b、…、81z以及交织在多个凸起81a、81b、…、81z之间的凹槽811。在图9中,凸起81a、81b、…、81z通过白色多边形展示以及凹槽811通过阴影展示。矩形起伏部分81包括两个接触孔CH。其它矩形起伏部分82至88也包括如图9同样的凸起与凹槽的图案。矩形起伏部分包括了如上述图9所示的凸起与凹槽的图案,但是应注意的是,在图8中,从容易理解附图的观点,在每个矩形起伏部分中只示处一些凸起。
不同于图5所示的矩形起伏部分,由于起伏部分间距Tx’为像素间距Sx的整数倍以及起伏部分间距Ty’为像素间距Sy的整数倍,图8所示的每个矩形起伏部分包括两个接触孔CH。
此外,沿x方向延伸的第一直线起伏部分91具有相同的凸起与凹槽的图案,以及沿着y方向延伸的第二直线起伏部分92具有相同的凸起与凹槽的图案。
图10为位于图8的矩形起伏部分81内的在子像素区域Ar1一侧的6个凸起81a至81f的横截面示意图。
由于矩形起伏部分81形成在具有高度不同的部分K1与K2的基本表面Sf(参见图4)上,矩形起伏部分81的凸起在z方向上的高度不同。矩形起伏部分81的凸起越接近部分K1,其在z方向上的高度越高。以及离部分K1距离越远的凸起,其在z方向上的高度越低。因此,如果将图10所示的6个凸起81a至81f彼此间进行比较,沿z方向以凸起81a、81b与81c的顺序,6个凸起81a至81f变得越来越低,而沿z方向以以凸起81d、81e与81f的顺序却变得越来越高。图10中,矩形起伏部分81覆盖了高度不同的部分K1与K2。这些高度不同的部分同样也通过例如栅极线的存在而形成,因此越接近栅极线的矩形起伏部分81的凸起在z方向的高度也越高。注意到,矩形起伏部分81的凸起根据其在xy表面上凸起的位置而在z方向上的高度不同(参见图8)。
此外,注意到,图9所示的矩形起伏部分81至88具有共同的凸起与凹槽的图案,因而,如果矩形起伏部分81至88的图案在xy表面上是叠加的,将出现叠加的凸起。例如,矩形起伏部分81的凸起81a叠加在其他矩形起伏部分83的凸起83a上。在下文中,这种叠加的凸起被定义为彼此相关的凸起(在下文中被称作“联合(associating)凸起”),用同样的字母标记这些联合凸起。例如,矩形起伏部分81与83的凸起81a与83a都被字母‘a’所标记,因此为联合凸起。此外,由于不仅矩形起伏部分81并且其他矩形起伏部分都如图4所示的形成在同一基本表面上,联合凸起在z方向上具有同样的高度。在图11中也有示出。
图11为包括了在如图8中所示的矩形起伏部分81的2个凸起81a与81b以及矩形起伏部分83的2个凸起83a与83b的横截面视图,凸起83a与83b每个分别与凸起81a与81b中的一个相关。
由于矩形起伏部分81的凸起81a与矩形起伏部分83的凸起83a相关,这些凸起81a与83a在z方向上具有同样的高度。类似的,由于矩形起伏部分81的凸起81b与矩形起伏部分83的凸起83b相关,这些凸起81b与83b在z方向上具有同样的高度。如果在矩形起伏部分81中的这些凸起81a与81b之间的高度差用#H表示,在矩形凸起部分83中的凸起83a与83b的高度差也可以用#H表示。因此,在矩形起伏部分83中的凸起的z方向上的高度分布是基本与在矩形起伏部分81中的凸起的高度分布是相同的。因此在矩形起伏部分83中的凹槽的z方向上的高度分布是基本与在矩形起伏部分81中的凹槽的高度分布相同的。类似的,在其他矩形起伏部分中的凸起与凹槽的z方向的高度分布是基本上与在矩形起伏部分81中的凸起与凹槽的高度分布相同的。
在有机膜80形成后,该有机膜具有具有该种相同的凸起与凹槽的图案的矩形起伏部分,将形成反射电极(参见图12)。
图12为其上形成了反射电极Er1、Eg1、Eb1…的基板的平面图。在图12中,省略了源极线及其它。
两个反射电极形成在一个矩形起伏部分上。由于8个矩形起伏部分81至88在图12中进行了说明,16个反射电极Er1、Eg1、Eb1…也进行了说明。反射电极Er1、Eg1、Eb1…依照矩形起伏部分81至88的形状而形成,以便反射电极Er1、Eg1、Eb1…同样具有相对应于矩形起伏部分81至88的凸起与凹槽的图案。矩形起伏部分81至88具有同样的凸起与凹槽的图案,并且两个反射电极形成在一个矩形起伏部分上,因此,出现了反射电极的两种类型的凸起与凹槽的图案。在图12中,反射电极的两种类型的凸起与凹槽的图案交替出现在x方向上。此外,在图12中,只有反射电极的一些凸起被举例说明。特别地,将举例说明下述的(A)、(B)与(C)。
(A)反射电极的8个凸起p(81a)至p(88a)被举例说明。8个凸起p(81a)至p(88a)中的每个都如图8所示形成在矩形起伏部分81至88上的8个联合凸起81a至88a的每一个上。
(B)反射电极的8个凸起p(81h)至p(88h)被举例说明。8个凸起p(81h)至p(88h)中的每个都如图8所示形成在矩形起伏部分81至88上的8个联合凸起81h至88h的每一个上。
(C)反射电极的8个凸起p(81i)至p(88i)被举例说明。8个凸起p(81i)至p(88i)中的每个都如图8所示形成在矩形起伏部分81至88上的8个联合凸起81i至88i的每一个上。
例如,只有两个凸起p(81a)与p(81h)在反射电极Er1中被举例说明以及只有一个凸起p(81i)在反射电极Eg1中被举例说明。注意到在参考符号中代表了反射电极的凸起的括号之间的字符作为区分的字符使用。区分的字符指出反射电极的凸起形成在哪个矩形起伏部分上以及形成在哪个矩形起伏部分的凸起上。例如,如果反射电极的凸起形成在矩形起伏部分81的凸起81a上,正被讨论的这个反射电极的凸起将被标记为‘(81a)’,如果反射电极的凸起形成在矩形起伏部分83的凸起83a上,正被讨论的这个反射电极的凸起将被标记为‘(83a)’。其他凸起与上同。
图13为包括了如图12所示的反射电极Er1的凸起p(81a)与反射电极Eb1的凸起p(83a)的局部横截面视图。
反射电极Er1与Eb1的凸起p(81a)与p(83a)分别形成在矩形起伏部分81与83的凸起81a与83a上。矩形起伏部分81与83的凸起81a与83a使用同样的字符‘a’进行标记,因而其为联合凸起,因此凸起81a与83a在z方向上具有同样的高度,如图11的说明中所描述的。反射电极Er1与Eb1具有基本相同的膜厚,因此反射电极Eb1的凸起p(83a)在z方向上具有与反射电极Er1的凸起p(81a)相同的高度。其他反射电极的凸起p(82a)、p(84a)、p(85a)、p(86a)、p(87a)与p(88a)同样在z方向上具有与反射电极Er1的凸起p(81a)相同的高度,但这点并未展示在图13中。上面的描述是对反射电极的凸起p(81a)至p(88a)给出的,但同样的描述也可以对反射电极的其他凸起给出。在图12中,8个凸起p(81a)至p(88a)在z方向上具有相同的高度,8个凸起p(81h)至p(88h)在z方向上具有相同的高度,并且8个凸起p(81i)至p(88i)在z方向上具有相同的高度。
如上所述,反射电极(参见图12)形成在包括矩形起伏部分81至88的反射膜80上(参见图8),因此反射电极基板(成为‘传统基板’)被制得。下一步,我们将讨论通过用光照射传统基板在传统基板上可分辨的色彩。
图14为用光照射传统基板100的举例。注意如图14所示用于连接到外部电路的终端部分在传统基板100中被省略。
光源LS以及观察者HE出现在虚拟的平面SI上,该平面穿过传统基板100的中心并且与传统基板100垂直。光源LS朝着传统基板100发射光。由于传统基板100的每个反射电极都包括多个凸起,从光源LS发出的光被反射电极中的多个凸起所反射并且反射光互相干涉地到达观察者HE。为了更容易地讨论从反射电极的凸起反射的光的干涉,这种光的干涉被如下所述的分成3种情况(1),(2)与(3)进行详细解释。
(1)由沿x方向的按照预定间隔设置的凸起反射的光的干涉。
为了达到解释这种干涉的目的,我们设想反射电极在图14的区域F中。
图15为如图14所示的区域F的放大视图。
在图15中,反射电极的8个凸起p(81a)至p(88a)被具体举例说明。8个凸起p(81a)至p(88a)中的每个都形成在如图8所示的矩形起伏部分81至88的8个联合凸起81a至88a的对应的一个上。此外,8个反射光L81a至L88a同样被举例说明,这些反射光由8个凸起p(81a)至p(88a)反射,然后朝向观察者HE传播。反射电极的凸起p(81a)至p(88a)被周期性地以起伏部分间距Tx′(=2Sx)设置在x方向上以及被以起伏部分间距Ty′(=Sy)设置在y方向上。现在,我们将讨论从以起伏部分间距Tx’设置在x方向上的两个凸起反射的光的干涉。例如,我们讨论,图15中,反射光L81a与L83a的干涉、反射光L82a与L84a的干涉、反射光L83a与L85a的干涉、反射光L84a与L86a的干涉、反射光L85a与L87a的干涉以及反射光L86a与L88a的干涉。由于如图15举例的这些凸起出现在整个传统基板100(参见图14)中,我们将讨论跨越整个传统基板100的反射光的这些干涉。跨越整个传统基板100的反射光的这些干涉使得观察者HE如下所述地辨认颜色分布。
图16为观察者HE分辨出的传统基板100上的颜色分布的模拟效果。
观察者HE辨认的颜色分布Cx包括垂直条纹的图案,其中每个在y方向上延伸的条纹形状的颜色Cm-p至Cm+p被设置在x方向上。观察者HE分辨出在y方向上延伸的各个条纹形状区域Ym-p至Ym+p(如图14所示)中的每个颜色Cm-p至Cm+p。例如,观察者HE分辨出在区域Ym中的颜色Cm以及在区域Ym+p中的颜色Cm+p。颜色Cm基本是白色的,并且与颜色Cm具有同样距离的颜色是同样的颜色的。例如,颜色Cm-x与颜色Cm+x是一样的颜色以及颜色Cm-1与颜色Cm+1的颜色是一样的。此外,其他不同于颜色Cm的颜色以这样一种方式随着与颜色Cm的距离增加而改变以便重复较长波长的颜色到较短波长的颜色。
(2)由在y方向上以预定间隔放置的凸起反射的光的干涉。
为了达到解释该干涉的目的,我们再次设想反射电极在图14中的区域F内。
图17为如图14所示的区域F的放大视图;在图17中,除了反射电极的8个凸起p(81a)至p(88a)之外,反射电极的8个凸起p(81h)至p(88h)被详细说明。8个凸起p(81h)至p(88h)中的每个都形成在如图8所示的矩形起伏部分81至88的8个联合凸起81h至88h的相应的一个上。此外,除了8个反射光L81a至L88a外,8个反射光L81h至L88h同样被举例说明,这些光是从8个凸起p(81h)至p(88h)反射然后朝着观察者HE传播的。与反射电极的凸起p(81a)至p(88a)类似,反射电极的凸起p(81h)至p(88h)被周期性地以起伏部分间距Tx′(=2Sx)设置在x方向上以及以起伏部分间距Ty′(=Sy)设置在y方向上。反射电极的凸起p(81h)至p(88h)中的每个都位于与相应的一个凸起p(81a)至p(88a)在y方向上距离Dy的位置上。现在我们将讨论从以距离Dy设置在y方向上的两个凸起反射的光的干涉。例如,我们讨论,在图17中反射光L81a与L81h的干涉、反射光L82a与L82h的干涉、反射光L83a与L83h的干涉、…以及反射光L87a与L87h的干涉。由于图17中举例说明的这些凸起出现在跨越整个传统基板100上(参见图14),我们将讨论跨越整个传统基板100的这些反射光的干涉。这些跨越整个传统基板100的反射光的干涉使得观察者HE可以如下所述的辨认颜色分布。
图18为观察者HE辨认出的基板上的颜色分布的模拟效果。
观察者HE分辨出包括了水平条纹图案的颜色分布Cy,其中每个均在x方向上延伸的条纹形状的颜色Cm-q至Cm+q被设置在y方向上。观察者HE分辨出在x方向上延伸的各个条纹形状区域Xm-q至Xm+q(如图14所示)中的每个颜色Cm-q至Cm+q。例如,观察者HE分辨出在区域Xm中的颜色Cm以及分辨出在区域Xm+q中的颜色Cm+q。与如图16所示的颜色Cm类似,通过观察者HE分辨出的在区域Xm中的颜色Cm基本是白色的。距颜色Cm相同距离的颜色是同样的颜色。例如,颜色Cm-x与颜色Cm+x是同样的颜色以及颜色Cm-1与颜色Cm+1是同样的颜色。此外,不同于颜色Cm的其他颜色以这样一种方式随着与颜色Cm的距离增加而改变以便重复较长波长的颜色到较短波长的颜色。
(3)在相对于x与y方向相对倾斜的方向上以预定间隔设置的凸起反射的光的干涉。
为了达到解释这种干涉的目的,我们再次设想反射电极在图14中的区域F内。
图19为如图14所示的区域F的放大视图。
在图19中,除了反射电极的8个凸起p(81a)至p(88a)之外,反射电极的8个凸起p(81i)至p(88i)被举例说明。8个凸起p(81i)至p(88i)中的每一个都形成在如图8所示的矩形起伏部分81至88的联合凸起81i至88i的每一个上。此外,除了8个反射光L81a至L88a外,8个反射光L81i至L88i同样被举例说明,这些光是从8个凸起p(81i)至p(88i)反射然后朝着观察者HE传播的。与反射电极的凸起p(81a)至p(88a)类似,反射电极的凸起p(81i)至p(88i)被周期性地以起伏部分间距Tx′(=2Sx)设置在x方向上以及以起伏部分间距Ty′(=Sy)设置在y方向上。凸起p(81i)至p(88i)中的每个都位于与各个凸起p(81a)至p(88a)在dxy方向的一定距离Dxy的位置上。dxy的方向不同于x与y的方向。现在我们将讨论从以距离Dxy设置在dxy方向上的的两个凸起反射的光的干涉。例如,我们讨论,在图19中,反射光L81a与L81i的干涉,反射光L82a与L82i的干涉,反射光L83a与L83i的干涉,…,以及反射光L87a与L87i的干涉。由于图19中举例说明的这些凸起出现在跨越整个传统基板100上(参见图14),我们将讨论跨越整个传统基板100的这些反射光的干涉。这些跨越整个传统基板100的反射光的干涉使得观察者HE可以如下所述的分辨颜色分布。
图20为观察者HE分辨出的基板上的颜色分布的模拟结果。
观察者HE分辨出包括倾斜条纹的图案的颜色分布Cxy,其中每个均在与dxy方向垂直的dxy’方向上延伸的倾斜条纹颜色Cm-r至Cm+r被设置在dxy方向上。观察者HE分辨出在dxy′方向上延伸的各个条纹形状区域XYm-r至XYm+r(如图14所示)中的每个颜色Cm-r至Cm+r。例如,观察者HE分辨出在区域XYm中的颜色Cm以及分辨出在区域XYm+r中的颜色Cm+r。与如图16及18所示的颜色Cm类似,通过观察者HE分辨出的在区域XYm中的颜色Cm基本是白色的。距颜色Cm相同距离的颜色是同样的颜色。例如,颜色Cm-x与颜色Cm+x是同样的颜色以及颜色Cm-1与颜色Cm+1是同样的颜色。此外,不同于颜色Cm的其他颜色以这样一种方式随着与颜色Cm的距离增加而改变以便重复较长波长的颜色到较短波长的颜色。
在上文的描述的解释中,颜色分布Cx、Cy与Cxy是独立表示的,但是事实上观察者HE分辨出叠加的具有分布Cx、Cy与Cxy的颜色分布Cx、Cy与Cxy。由于这个理由,我们将讨论叠加的颜色分布Cx、Cy与Cxy。
图21展示了叠加的颜色分布Cx、Cy与Cxy。
在这个附图中,在颜色分布Cx、Cy与Cxy中的同样的颜色Cm-x与Cm+x通过阴影进行展示。颜色分布Cx、Cy与Cxy中的每个都包括了颜色Cm-x与Cm+x,因此,如果颜色分布Cx、Cy与Cxy中的颜色Cm-x与Cm+x是叠加的,颜色Cm-x(Cm+x)将在叠加部分被加强。图21展示了只有颜色分布Cx、Cy与Cxy是叠加的状况,但是由于存在图15,17及19所示的之外的其他凸起,也可获得颜色分布Cx、Cy与Cxy外的其他颜色分布。因此被认为是,如果通过来自凸起的反射光获得的所有颜色分布都是叠加的,颜色Cm-x(Cm+x)的加强部分将跨越整个传统基板100出现并且观察者HE可以分辨出加强的颜色Cm-x(Cm+x)。类似的,观察者HE可能分辨出其他加强的颜色(例如,Cm+1与Cm-1)。因此被认为当它观看传统基板100时,观察者HE可以分辨出颜色。
上述的解释给出了通过来自反射电极的凸起的反射光的干涉出现的颜色分布,但是类似的解释也通过来自反射电极的凹槽的反射光的干涉出现的颜色分布来给出。
从上述的考虑可以得出,认为是到观察者HE由于具有如图16、18及20所示的此类条纹图案的颜色分布Cx、Cy与Cxy的叠加来分辨色彩。因此,消除或减弱色彩的一个方法可以是避免具有如图16、18及20所示的此类条纹模式的颜色分布的出现。因此,我们再次讨论图14至20来考虑具有如图16,18及20所示的此类条纹图案的颜色分布Cx、Cy与Cxy出现的原因。
如图16所示的颜色分布Cx通过如图15所示的反射光的干涉而出现。如图18所示的颜色分布Cy通过如图17所示的反射光的干涉而出现。如图20所示的颜色分布Cxy通过如图19所示的反射光的干涉而出现。因此,我们将讨论如图15、17及19所示的反射光的干涉。
第一,参照图15。在图15中,8个反射光L81a至L88a被依次举例说明,因此,我们可以讨论来自以起伏部分间距Tx′设置在x方向上的凸起的反射光的干涉。现在,我们讨论设置在x方向上的8个反射光L81a至L88a中的4个反射光L81a、L83a、L85a与L87a。4个反射光L81a、L83a、L85a与L87a彼此间光程长度不同,反射光81a与83a之间的光程差#Lx1,反射光83a与85a之间的光程差#Lx2,以及反射光85a与87a之间的光程差#Lx3彼此间是不同的。#Lx1、#Lx2与#Lx3的值按照这个顺序变大。因此,光程差是变化的,这些光程差是来自设置在x方向上的一对两个凸起的两个反射光之间的光程差。上述的解释给予涉及4个反射光L81a、L83a、L85a与L87a的光程差,但是类似的解释也被给予涉及剩下的4个反射光L82a、L84a、L86a与L88a的光程差。然而,注意到来自一对设置在x方向上凸起的反射光之间的光程差,即使这对凸起在y方向(与x方向垂直)上偏离了也保持不变。例如,在图15中,虽然一对凸起对p(82a)与p(84a)在y方向上存在于与一对凸起对p(81a)与p(83a)的位置相对不同的位置,反射光L82a与L84a之间的光程差(#Lx1)与反射光L81a与L83a之间的光程差(#Lx1)是相同的。类似的,反射光L84a与L86a之间的光程差(#Lx2)与反射光L83a与L85a之间的光程差(#Lx2)是相同的,以及反射光L86a与L88a之间的光程差(#Lx3)与反射光L85a与L87a之间的光程差(#Lx3)是相同的。因此,注意到,即使凸起对在y方向上偏离,反射光之间的光程差是保持不变的。从以上的解释可知,导致相同光程差的凸起对被设置在y方向上并且导致不同光程差的凸起对被设置在不同于y方向的方向上(例如x方向)是可以理解的。由于由干涉光导致的颜色依赖于光程差,由于相同光程差观察者HE可以分辨y方向上的相同颜色并且由于不同的光程差可以分辨不同于y方向上(例如x方向)的不同颜色,因此认为观察者HE可以分辨如图16所示的垂直条纹的颜色分布Cx。此外,注意到,如果某一凸起对与其他凸起对出现在x方向上的不同位置,但是出现在传统基板100(参见图14)的区域Ym-p至Ym+p中的同一区域(例如,在图15中某一凸起对为凸起p(81a)与(83a)对,以及其他凸起对为凸起p(83a)与p(85a)对),来自某一凸起对的反射光之间的光程差与来自其他凸起对的反射光之间的光程差只有轻微的不同。如果光程差只有轻微的不同(例如#Lx1与#Lx2),得到的颜色将是相似的,因此,观察者HE通常不能分辨出颜色的区别而认为是基本相同的颜色。因此,注意到观察者HE分辨出的颜色Cm-p至Cm+p的每一个的宽度Wc(参见图16)为比两个凸起间的距离2Sx(两倍于像素间距Sx)更宽的宽度。
接下来,参见图17。在图17中,8个反射光L81a至L88a以及8个反射光L81h至L88h被举例说明,以便我们可以讨论来自以距离为Dy设置在y方向上的两个凸起的反射光的干涉。现在,我们讨论4个设置y方向上的反射光L81h、L81a、L82h与L82a。反射光81a与81h之间的光程差(#Ly1)与反射光82a与82h之间的光程差(#Ly2)不同。因此,光程差是变化的,这些光程差是来自设置在y方向上的凸起的反射光之间的光程差。涉及设置在y方向上的其他反射光的光程差可以类似于涉及4个反射光L81h、L81a、L82h与L82a的光程差进行解释。然而,注意到,来自设置在y方向上的一个凸起对的反射光之间的光程差即使该凸起对在x方向(垂直于y方向)上偏离也保持不变。例如,在图17中,虽然凸起对p(83a)与p(83h)在x方向上出现在相对不同于凸起对p(81a)与p(81h)的位置,反射光L83a与L83h之间的光程差(#Ly1)与反射光L81a与L81h之间的光程差(#Ly1)是相同的。类似的,反射光L85a与L85h之间的光程差(#Ly1)以及反射光L87a与L87h之间的光程差(#Ly1)与反射光L81a与L81h之间的光程差(#Ly1)是相同的。另一方面,虽然凸起对p(84a)与p(84h)在x方向出现在与凸起对p(82a)与p(82h)相对不同的位置,反射光L84a与L84h之间的光程差(#Ly2)与反射光L82a与L82h之间的光程差(#Ly2)是相同的。类似的,反射光L86a与L86h间的光程差以及反射光L88a与L88h间的光程差与反射光L82a与L82h之间的光程差是相同的。因此,注意到即使凸起对偏离了x方向,反射光之间的光程差仍能保持不变。从以上的解释可知,导致相同光程差的凸起对被设置在了x方向上以及导致不同光程差的凸起对被设置在了不同于x方向的方向上(例如y方向)是可以理解的。由于由干涉光导致的颜色依赖于光程差,由于相同的光程差观察者HE可以分辨x方向上相同的颜色并且由于不同的光程差分辨出不同于x方向上(例如y方向)的不同的颜色,因此认为观察者HE可以分辨如图18所示的具有水平条纹的颜色分布Cy。此外,注意到,如果某一凸起对与其他凸起对出现在y方向上的不同位置,但是出现在传统基板100(参见图14)的区域Xm-q至Xm+q中的同一区域(例如,在图17中某一凸起对为凸起对p(81a)与(81h),以及其他凸起对为凸起对p(82a)与p(82h)),来自某一凸起对的反射光之间的光程差与来自其他凸起对的反射光之间的光程差只有轻微的不同。如果光程差只有轻微的不同(例如#Ly1与#Ly2),得到的颜色将是相似的,因此,观察者HE通常不能分辨出颜色的区别而认为是基本相同的颜色。因此,注意到观察者HE分辨出的颜色Cm-q至Cm+q的每一种的宽度Wc(参见图18)为比两凸起间的距离Dy更宽的宽度。
接下来,参见图19。在图19中,8个反射光L81a至L88a以及8个反射光L81i至L88i被举例说明,因此我们可以讨论来自以距离Dxy设置在dxy方向上的凸起的反射光的干涉。现在,我们讨论反射光L81a与L81i,以及反射光L83a与L83i。反射光81a与81i之间的光程差#Lxy1与反射光83a与83i之间的光程差#Lxy2不同。然而,注意到即使凸起对偏离了dxy’方向(垂直于dxy方向),来自设置在dxy方向上的凸起对的反射光之间的光程差了仍保持不变。例如,在图19中,虽然凸起对p(86a)与p(86i)在dxy’方向上出现在与凸起对p(81a)与p(81i)的位置相对不同的位置,反射光L86a与L86I之间的光程差(#Lxy1)与反射光L81a与L81I之间的光程差(#Lxy1)是相同的。类似的,虽然凸起对p(88a)与p(88i)在dxy’方向上出现在与凸起对p(83a)与p(83i)的位置相对不同的位置,反射光L88a与L88I之间的光程差(#Lxy2)与反射光L83a与L83i之间的光程差(#Lxy2)是相同的。因此,注意到即使凸起对在dxy’方向上偏离了,反射光间的光程差仍能保持不变。从以上的解释可知,导致相同光程差的凸起对被设置在dxy’方向上并且导致不同光程差的凸起对被设置在了不同于dxy’方向的方向上(例如dxy方向)是可以理解的。由于由干涉光导致的颜色依赖于光程差,由于相同的光程差观察者HE可以分辨dxy’方向上相同的颜色并且由于不同的光程差分辨不同于dxy’方向上(例如dxy方向)的不同的颜色,因此认为观察者HE可以分辨如图20所示的具有倾斜条纹的颜色分布Cxy。此外,注意到,如果某一凸起对与其他凸起对出现在dxy方向上的不同位置,但是出现在传统基板100(参见图14)的区域XYm-r至XYm+r中的同一区域(例如,在图19中某一凸起对为凸起对p(82a)与p(82i),以及其他凸起对为凸起对p(83a)与p(83i)),来自某一凸起对的反射光之间的光程差与来自其他凸起对的反射光之间的光程差只有轻微的不同。如果光程差只有轻微的不同(例如#Lxy1与#Lxy2),得到的颜色将是相似的,因此,观察者HE通常不能分辨出颜色的区别而认为是基本相同的颜色。因此,注意到观察者HE分辨出的颜色Cm-r至Cm+r的每个的宽度Wc(参见图20)为比两凸起间的距离Dxy更宽的宽度。
从以上的考虑可以看出,认为是导致出现如图16,18及20所示具有条纹的每个颜色分布Cx、Cy和Cxy的原因是在传统基板100的每个区域重复出现的两个凸起的对,这里两个凸起被设置在预定的方向上。因此,如果这些凸起对不再重复出现,色彩可以被消除或减弱。为了使这些凸起对不在重复出现,设计反射电极的凸起与凹槽的图案使之彼此间不相同的方法是可用的。既然反射电极可以在其凸起与凹槽的图案上不同,该方法可以防止这些两个凸起的对的重复出现,因此将不出现如图21所示的色彩。然而,该方法需要设计不同图案的反射电极上的凸起与凹槽以使得彼此不同,因此,反射电极的凸起与凹槽的图案的设计随着反射电极数目的增多而变得困难。在例如QVGA类型的移动电话情况下,配置了240×3×320个反射电极。这意味着要为如此大数目的反射电极设计凸起与凹槽的不同图案,因此这种方法并不是实际可行的方法。
因此,为了不设计数目如此大的凸起与凹槽的图案而能轻易地消除或减弱色彩,发明人提出了以关于图5所描述的方式形成有机膜8。能够通过形成如图5所示的有机膜8来消除或减弱色彩的原因将在下文中进行描述。
在图5中,将说明有机膜8的12个起伏部分18至128中的联合凸起18a至128a。由于如图5所示的每个起伏部分都包括如图6所示的凸起与凹槽的基本图案,起伏部分的凸起与凹槽的图案除了存在或不存在接触孔CH在xy表面上均是相同的。然而,由于起伏部分Tx与像素间距Sx之间的关系,以及起伏部分Ty与像素间距Sy之间的关系都不是整数倍的,注意甚至联合凸起在子像素区域中的位置也是不同的。例如,在子像素区域Ar1中的凸起28a位于子像素区域Ar1的左角,但是,在子像素区域Ag3中的凸起88a将位于子像素区域Ag3的右角。如上所述,甚至联合凸起在子像素区域中的位置是不同的,并且因此如图22所示其在z方向上的高度也是不同的。
图22为图5中在y方向上观看的6个起伏部分28、38、58、68、88与98的6个联合凸起28a、38a、58a、68a、88a及98a的横截面示意图。
如图22所示,6个凸起28a、38a、58a、68a、88a及98a为联合凸起,但是他们在z方向上的高度不同。因此,在高度差上也有变化,这些高度差是在x方向上彼此相邻的两个凸起之间的高度的差值。例如,凸起28a与58a之间的高度差#H1要比凸起58a与88a的高度差#H3更小些,凸起38a与68a之间的高度差#H2要比凸起68a与98a的高度差#H4更小些。图22只展示了6个联合凸起,但是在z方向上的高度不同的联合凸起出现在反射电极传统基板1的各处(参见图1)。这与传统基板100形成对照,传统基板的联合凸起在z方向上均具有相同的高度(参见图11)。在第一实施例中,我们将留意如图22所示的在什么地方甚至是联合凸起28a、38a、58a、68a、88a及98a的高度是不同的。在形成具有根据高度不同的联合凸起的有机膜8后,反射电极(参见图2)形成在有机膜8上,并因此制得反射电极基板1。来自反射电极基板1的反射光的干涉将如下进行讨论。
图23为如图1所示的区域F的放大视图。
在图23中,反射电极的6个联合凸起p(28a)、p(38a)、p(58a)、p(68a)、p(88a)及p(98a)将特别地被举例说明。6个凸起p(28a)、p(38a)、p(58a)、p(68a)、p(88a)及p(98a)中的每一个都形成在如图22所示的起伏部分的6个联合凸起28a、38a、58a、68a、88a及98a的每一个上。
图24为如图23所示的从y方向观看的6个凸起p(28a)至p(98a)的横截面示意图。
由于如参照图22所述的矩形起伏部分的联合凸起的高度是变化的,因此反射电极的凸起p(28a)至p(98a)在z方向上的高度也相应的变化。结果,在高度差上也是变化的,这些高度差均为在x方向上彼此相邻的两个凸起之间的高度的差值。例如,凸起p(28a)与p(58a)之间的高度差#H1要比凸起p(58a)与p(88a)之间的高度差#H3更小些,以及凸起p(38a)与p(68a)之间的高度差#H2要比凸起p(68a)与p(98a)之间的高度差#H4更小些。因此,如果凸起对在x方向上的位置不同,高度差将相应地变化。现在,也注意到,如果凸起对在y方向上的的位置不同,也将出现高度差的这些变化。例如,凸起p(28a)与p(58a)之间的高度差#H1要比凸起p(38a)与p(68a)之间的高度差#H2更小些,以及凸起p(58a)与p(88a)之间的高度差#H3要比凸起p(68a)与p(98a)间的高度差#H4更小些。在整个基板上都出现这种高度差的变化。这种高度差的变化使得光程差变化。例如,反射光L28a与L58a之间的光程差#Lx1不同于反射光L38a与L68a之间的光程差#Lx2,以及反射光L58a与L88a之间的光程差#Lx3也不同于反射光L68a与L98a之间的光程差#Lx4。因此,在图23中,不同于图15,没有导致同样光程差的凸起对出现在y方向上,因此,没有出现如图16所示的垂直的条纹。在图23的情况下,观察者HE可以在基板上分辨出如下所述的颜色。
图25为观察者HE在反射电极基板1上分辨出的颜色的概念性举例。
在图25中,出现在反射电极基板1的区域F中的颜色被放大了。如放大了的图所示,依赖于光程差的各种颜色C1、C2、…、Cz出现在在由起伏部分间距Tx与Ty定义的区域F的子区域内的格子图案中。现在,注意到,如有关图24所描述的,高度差的变化导致了光程差的变化。结果,各种彩色分散地出现在区域F内。因此,不同于图16,图25举例说明了各种颜色出现在由起伏部分间距Tx与Ty定义的子区域内并且没有相同的颜色出现在预定的方向上。当各种颜色分散地出现在此类小的子区域内时,观察者HE不能够分辨颜色间的不同于是把这些在区域F内的各种颜色认为是一种混合的颜色。此类各种颜色分散地出现在除区域F分其它区域内,因此观察者HE将除区域F的其他区域内的各种颜色认为是混合的颜色。因此认为观察者HE不能分辨跨越整个反射电极基板1上的颜色,或者观察者HE能分辨跨越整个反射电极基板1上的减弱了的色彩。
虽然图23至25都解释了由周期性出现的两个凸起(这两个凸起被设置在x方向上)的对导致的反射光的干涉,类似的解释仍然会用于解释由周期性出现的两个凸起(这两个凸起被设置在其他方向上)的对导致的反射光的干涉中,因此认为各种颜色如图25所示的被设置在格子的图案中并且因此消除或减弱了色彩。因此,可以认为跨越整个基板消除或减弱了由观察者HE分辨的色彩。
在第一实施例中起伏部分间距Tx大于像素间距Sx,但是相反地像素间距Sx可以大于起伏部分间距Tx。在这种情况下,色彩可以同样的通过定义起伏部分间距Tx来消除或减弱,定义的方法是像素间距Sx变成起伏部分间距Tx的非整数倍。此外,在第一实施例中,起伏部分间距Ty小于像素间距Sy,但是起伏部分间距Ty可以大于像素间距Sy。在这种情况下,色彩同样可以通过定义起伏部分间距Ty为像素间距Sy的非整数倍来被消除或减弱。
在第一实施例中,由于起伏部分间距Tx被定义为八分之十七(17/8)倍的像素间距Sx,设置在起伏部分的x方向上的联合凸起在17Sx(像素间距Sx的17倍)的间隔上具有同样的高度。因此,在第一实施例中,具有相同高度的凸起设置在x方向上17Sx(像素间距Sx的17倍)的间隔处。从更有效地减弱色彩的观点出发,更适宜的是具有相同高度的凸起之间的距离要大至一定范围,例如近似1mm。Sx的值可以为例如80mm,于是17Sx等于1.36mm(17Sx=1.36mm)。在这种情况下,设置在x方向上的具有相同高度的凸起的间隔为1.36mm,这点在色彩的减弱中体现了充分的效果。另一方面,由于起伏部分间距Ty被定义为二十四分之十九(19/24)倍的像素间距Sy,设置在y方向上的联合凸起在19Sy(19倍像素间距Sy)的间隔上具有同样的高度。因此,在第一实施例中,具有相同高度的凸起设置在y方向上19Sy(像素间距Sy的19倍)的间隔处。Sy的值可以为例如240mm,于是19Sy等于4.56mm(19Sy=4.56mm)。在这种情况下,设置在y方向上的具有相同高度的凸起的间隔为4.56mm,这点在色彩的减弱中体现了充分的效果。注意到,如果色彩可以被消除或减弱,具有同样高度的凸起设置的间隔可能小于1mm。
在第一实施例中,为了消除或减弱色彩,我们注意到了设置子像素区域的x与y方向,然后我们形成了有机膜8,其具有以起伏部分间距Tx设置在x方向上的起伏部分和以起伏部分间距Ty设置在y方向上的起伏部分。另一方面,由于子像素区域还被设置在x与y方向之外的其他方向上(例如,在设置子像素区域Ar2与Ab1的方向上,或设置子像素区域Ar2与Ab3的方向上),因此我们也应该留意这些其它方向,并且我们也应该形成有机膜,该有机膜具有以预定的起伏部分间距设置在其他方向上的起伏部分。然而,为了更有效地减弱色彩,更适宜的形成具有以起伏部分间距Tx设置在x方向上和以起伏部分间距Ty设置在y方向上的起伏部分的有机膜8。
在第一实施例中,起伏部分间距Tx与像素间距Sx之间的关系,以及起伏部分间距Ty与像素间距Sy之间的关系都是非整数倍的,但是即使这两种关系中只有一个是非整数倍的关系,色彩也能得到减弱。只有起伏部分间距Tx与像素间距Sx之间的关系为非整数倍的第二实施例将在下文中进行描述。
图26为第二具体实施例的反射电极基板的平面图,其中只有起伏部分间距Tx与像素间距Sx之间的关系为非整数倍的。
反射电极基板包括具有矩形起伏部分18至88的有机膜8。在有机膜8上形成反射电极Er1,Eg1,Eb1…。在图26中,反射电极的6个凸起p(18a)至p(68a)以及6个凸起p(18c)至p(68c)被特别的举例说明。6个凸起p(18a)至p(68a)中的每个都形成在6个矩形起伏部分18至68的6个联合凸起18a至68a的每一个上。剩下的6个凸起p(18c)至p(68c)中的每个都形成在6个矩形起伏部分18至68的6个联合凸起18c至68c的每一个上。
图27为如图26所示的从y方向观看的被设置在x方向上的凸起p(18a)、p(38a)与p(58a)的横截面的示意图。
由于起伏部分间距Tx与像素间距Sx之间的关系是非整数倍的,假如两个凸起的对在x方向上的位置是不同的,那么就有如图24所示的高度差的类似变化。例如,凸起p(18a)与p(38a)之间的高度差#H1要比凸起p(38a)与p(58a)的高度差#H2更大些。然而,不同于图23,图26举例说明了起伏部分间距Ty是与像素间距Sy相等的,因此注意到即使两个凸起的对在y方向偏离,高度差仍能保持相同。例如,凸起对p(28a)与p(48a)出现在y方向上与凸起对p(18a)与p(38a)的位置相对不同的位置上,以便凸起p(28a)与p(48a)之间的高度差也是#H1。因此,即使凸起对在y方向偏离,高度差仍能保持不变。因此认为,如果我们注意到以起伏部分间距Tx设置在x方向上的凸起,来自这些凸起的反射光的干涉将导致如图16所示的垂直的条纹(就是说,颜色相对于图25来说不能分散地设置)。然而,由于在图26中起伏部分间距Tx与像素间距Sx之间的关系是非整数倍的,高度差将是变化的,这里的高度差e是指设置在除y方向外其他方向上的两个凸起之间的高度的差值。为了解释这点,我们注意两个凸起p(18a)与p(18c)的对以及两个凸起p(48a)与p(48c)的对,这两个凸起被设置在了不同于y方向的dxy方向上。
图28为如图26所示的从dxy’方向观看的凸起对p(18a)与p(18c)以及凸起对p(48a)与p(48c)的横截面的示意图。
设置在dxy方向上的凸起p(18a)与p(18c)之间的高度差#H1要比设置在dxy方向上的凸起p(48a)与p(48c)之间的高度差#H2更小些。因此,如果我们注意设置在dxy方向上的凸起,来自这些凸起的反射光的干涉将导致如图25所示的分散设置的颜色。因此即使只有起伏部分间距Tx与像素间距Sx之间的关系为非整数倍的,相较于现有技术而言,色彩得到减弱也是可能的。
第一及第二具体实施例展示了通过设置起伏部分来消除或减弱色彩的方法,设置的方向是子像素区域被周期性设置的方向,设置的方式是使得像素间距与起伏部分间距之间的关系变成非整数倍,但是其他方法同样可以消除或减弱色彩。其他的方法将如下进行描述。
图29为第三具体实施例的反射电极基板1的一部分的平面图,其通过不同于第一及第二实施例的方法来消除或减弱色彩。
由于设置在xy表面内的子像素区域是二维的,子像素区域不仅仅被设置在x与y方向上,还被设置在例如d1至d7的方向上,因此子像素区域是被设置在多个方向上的。在第三实施例中,我们注意这些多个方向的其中两个方向,一个是其中子像素区域被以最小间距Sx设置的x方向,另一个是其中子像素区域被以仅次于间距Sx的最小间距Sy上设置的y方向。与子像素区域类似,起伏部分18至128被设置在多个方向上,我们注意起伏部分18至128的这些多个方向中的两个,一个是其中起伏部分18至128被以最小间距Tx上设置的x’方向,另一个是其中起伏部分18至128被以仅次于最小间距Tx的最小间距Ty设置的y’方向。在第三实施例中,有机膜8以这样一种方式形成,提及的起伏部分18至128的两个方向(x’与y’方向)不同于提及的子像素区域的两个方向(x与y方向)。该有机膜8同样使得起伏部分18至128的联合凸起的高度是不同的,以使得能够消除或减弱色彩。在第三实施例中,即使起伏部分间距Tx与像素间距Sx相同并且起伏部分间距Ty与像素间距Sy相同,起伏部分18至128的联合凸起的高度也是不同的。因此,在图29中,可以不考虑起伏部分间距与像素间距之间的关系是整数倍还是非整数倍而消除或减弱色彩。在第三实施例中,起伏部分倍设置的方向不同于像素倍设置的方向,并且此类不同的方向使得减少波纹(moire)成为可能。
此外,在图29中,有机膜8以这样的方式形成,起伏部分倍设置的x’与y’方向均不同于子像素区域倍设置的x与y方向。然而,即使有机膜8以x’与y’方向中只有一个不同于x与y方向的方式形成,减弱色彩仍是可能的。此外,图29举例说明了其中起伏部分间距Tx’是最小的以及起伏部分间距Ty’是仅次于间距Tx’的最小的例子,但是起伏部分间距Tx’与Ty’可以是相等的。在这种情况下,如果其中以相等的间距Tx’与Ty’设置有起伏部分的x’与y’方向中的一个或两个不同于x与y方向,减弱色彩仍是可能的。在这种情况下,如果x’与y’方向中的一个或两个不同于其中以相等的间距Sx与Sy设置有子像素区域的x与y方向,减弱色彩仍是可能的。
更进一步地,相比于使用第一,第二及第三实施例的反射电极基板的图像显示装置以及使用传统基板100的图像显示装置,前者具有对来自基板的反射光的更高的利用率。原因将在下文中描述。
传统基板100的有机膜80的凸起与凹槽的图案是按照以下给出的方式设计的。首先,为每一对两个相邻的子像素区域设计如图9中所示的矩形起伏部分的凸起与凹槽的图案,并且接着,设计第一及第二直线起伏部分91与92(参见图8)的凸起与凹槽的图案以便填充彼此相邻的矩形起伏部分之间的间隙。如果有机膜80以这些设计为基础形成,第一及第二直线起伏部分91与92的横截面形状将不同于矩形起伏部分的横截面形状(参见图30)。
图30示出了示意性表示传统基板100的第一及第二直线起伏部分91与92(参见图8)的横截面形状的轮廓以及示意性表示传统基板100的矩形起伏部分的横截面形状的轮廓。
在图30中,实线表示示意性表示第一及第二直线起伏部分91与92(参见图8)的横截面形状的轮廓,虚线表示示意性表示矩形起伏部分的横截面形状的轮廓。在矩形起伏部分的轮廓中,如虚线所示类似的起伏是重复出现的,但是在第一及第二直线起伏部分的轮廓中,平缓的及陡峭的起伏以混合状态出现。这种混合的平缓的及陡峭的起伏使得图像显示装置具有较低的光的使用效率。
另一方面,在第一至第三实施例的反射电极基板的情况下,有机膜8的凸起与凹槽的图案通过独立于子像素区域设计如图6所示的凸起与凹槽的图案然后紧密地平铺了这种设计的图案来设计。因此,可以通过防止这种如图30通过实线所示的混合的平缓的及陡峭的起伏的出现,因此使用了反射电极基板1的图像显示装置具有更高的光的使用效率的优势。
更进一步地,相比于使用了第一,第二及第三实施例的反射电极基板的图像显示装置以及使用传统基板100的图像显示装置,前者具有更高的对比度。原因将在下文中描述。
在使用传统基板100的图像显示装置的情况中,具有散射光功能的散射膜配置在传统基板100上,用来阻止色彩的发生。然而,散射膜导致了对比度的减弱。
另一方面,在第一至第三具体实施例的反射电极基板的情况中,可以通过调整有机膜8的起伏部分间距或起伏部分的设置方向来消除或减弱色彩。因此,如果本发明中色彩被完全的消除,在反射电极基板1上提供散射膜则不是必需的,因此可以防止对比度的降低。另一方面,如果本发明中色彩不是完全地被消除并且可以轻微地分辨出,当你想要完全消除色彩时散射膜则是需要的。然而,由于第一至第三实施例中的反射电极基板1上的色彩在没有散射膜的情况下被减弱到一定程度,第一至第三实施例可以使用具有比传统基板100需要的散射膜更低散射能力的散射膜。因此,使用第一至第三实施例的反射电极基板1的图像显示装置可以实现比使用传统基板的图像显示装置的对比度的更小的减少。
在第一至第三实施例中的有机膜8的起伏部分是连续的,但是起伏部分可以是彼此分离的。
在第一至第三实施例中子像素被设置在条纹结构中,但是在本发明中子像素可以以条纹结构之外的其他结构被设置(例如δ设置)。在其他结构中,当起伏部分间距与像素间距之间的关系为非整数倍或起伏部分被设置的方向不同于子像素(反射电极)被设置的方向时,色彩可以得到消除或减弱。
第一至第三实施例描述了3个子像素组成1个像素的例子,但是本发明还可以被应用于由例如4个子像素组成1个像素的例子。在这种情况下,当起伏部分间距与像素间距之间的关系是非整数倍或者起伏部分被设置的方向不同于子像素(反射电极)被设置的方向时,色彩就可以被消除或减弱。
此外,第一至第三实施例中描述了用于显示彩色图像的反射电极基板,但是本发明还可以被应用于用于显示黑白图像的反射电极基板中。在用于显示单色图像的反射电极基板的情况中,一个反射电极形成在一个像素上,但是当起伏部分间距与像素间距之间的关系为非整数倍或起伏部分被设置的方向不同于子像素(反射电极)被设置的方向时,色彩就可以被消除或减弱。
在第一至第三实施例中,任意起伏部分都具有如图6所示的凸起与凹槽的图案(除了存在或不存在接触孔CH外)。因此,不需要跨越整个反射电极基板1设计不同的起伏部分的凸起与凹槽的图案,因此,这具有容易设计起伏部分的凸起与凹槽的图案的优势。
此外,在第一至第三实施例中的反射电极基板1中,每个子像素只具有反射光的反射功能并不具有透射光的透射功能,但是本发明还可以被应用到每个子像素都同时具有反射功能以及透射功能的情况中。
工业实用性依据本发明的第一至第三实施例可被应用于反射电极每个子像素区域被彼此分离的例子中,但本发明可以被运用于其中线形反射电极例如在x方向上延伸的例子。
权利要求
1.一种反射结构包括基底,和形成在所述基底上的反射装置,其中所述基底包括支持部件,提供有具有不同高度部分的第一基本表面以及具有不同高度部分的第二基本表面;形成在所述支持部件上的具有第一凹槽或凸起的第一起伏部分;和形成在所述支持部件上的具有与所述第一凹槽或凸起相关的第二凹槽或凸起的第二起伏部分,其中所述第一及第二基本表面以第一基本表面间距沿第一方向被设置,其中所述第一及第二起伏部分以第一起伏部分间距沿所述第一方向被设置,并且其中所述第一基本表面间距与所述第一起伏部分间距中的较大间距为较小间距的非整数倍。
2.如权利要求1所述的反射结构,其中所述第一起伏部分与所述第二起伏部分连续。
3.如权利要求1或2所述的反射结构,其中所述第一基本表面间距与第一像素间距相等。
4.如权利要求3所述的反射结构,其中所述反射装置包括第一和第二反射器,所述第一和第二反射器以所述第一像素间距沿所述第一方向被设置。
5.如权利要求4所述的反射结构,其中所述支持部件包括第一传导线;第二传导线;通过所述第一传导线提供给所述第一反射器数据的第一驱动元件;以及通过所述第二传导线提供给所述第二反射器数据的第二驱动元件,其中所述第一和第二传导线以所述第一像素间距沿所述第一方向被设置,并且其中所述第一和第二驱动元件以所述第一像素间距沿所述第一方向被设置。
6.如权利要求1至5中任何一项所述的反射结构,其中所述支持部件被提供有具有不同高度部分的第三基本表面,其中所述基底包括第三起伏部分,该第三起伏部分形成在所述支持部件上,具有与所述第一凹槽或凸起相关的第三凹槽或凸起,其中所述第一和第三基本表面以第二基本表面间距沿第二方向被设置,其中所述第一和第三起伏部分以第二起伏部分间距沿所述第二方向被设置,以及其中所述第二基本表面间距与所述第二起伏部分间距中的更大的间距是更小间距的非整数倍。
7.如权利要求6所述的反射结构,其中所述第一起伏部分与所述第三起伏部分连续。
8.如权利要求6或7所述的反射结构,其中所述第二基本表面间距与第二像素间距相等。
9.如权利要求8所述的反射结构,其中所述支持部件包括第三传导线;第四传导线;和通过所述第三传导线控制的第三驱动元件,其中所述第一驱动元件通过所述第四传导线控制,其中所述第三和第四传导线以所述第二像素间距沿所述第二方向被设置,以及其中所述第一和第三驱动元件以所述第二像素间距沿所述第二方向被设置。
10.如权利要求9所述的反射结构,其中所述反射装置包括与所述第三驱动元件相对应的第三反射器,所述第一和第三反射器以所述第二像素间距沿所述第二方向被设置。
11.如权利要求6至10中任何一项所述的反射结构,其中所述第一和第二方向分别为行方向和列方向。
12.如权利要求1至3中任何一项所述的反射结构,其中所述反射装置包括在所述第一方向上延伸的反射线。
13.一种反射结构,包括基底;和形成在所述基底上的反射装置,其中所述基底包括支持部件,提供有具有不同高度部分的第一基本表面,具有不同高度部分的第二基本表面,以及具有不同高度部分的第三基本表面;形成在所述支持部件上的第一起伏部分;形成在所述支持部件上的第二起伏部分;和形成在所述支持部件上的第三起伏部分,其中所述第一及第二基本表面以多个基本表面间距的第一基本表面间距沿第一基本表面方向被设置,所述第一基本表面间距是所述多个基本表面间距的最小间距,其中所述第一及第三基本表面以所述多个基本表面间距的第二基本表面间距沿第二基本表面方向被设置,所述第二基本表面间距与所述第一基本表面间距相等或是仅次于所述第一基本表面间距的最小的间距,其中所述第一和第二起伏部分以多个起伏部分间距中的第一起伏部分间距沿第一起伏部分方向被设置,所述第一起伏部分间距是所述多个起伏部分间距的最小间距,其中所述第一和第三起伏部分以所述多个起伏部分间距的第二起伏部分间距沿第二起伏部分方向被设置,所述第二基本起伏部分与所述第一起伏部分间距相等或是仅次于所述第一起伏部分间距的最小的间距,和其中所述第一和第二起伏部分方向中的至少一个方向不同于所述第一及第二基本表面的方向。
14.如权利要求13所述的反射结构,其中所述第一至第三起伏部分是延续的。
15.如权利要求13或14所述的反射结构,其中所述第一基本表面间距与第一像素间距相等。
16.如权利要求15所述的反射结构,其中所述反射装置包括第一和第二反射器,所述第一和第二反射器以所述第一像素间距沿所述第一基本表面方向被设置。
17.如权利要求16所述的反射结构,其中所述支持部件包括第一传导线;第二传导线;从所述第一传导线提供给所述第一反射器数据的第一驱动元件;和从所述第二传导线提供给所述第二反射器数据的第二驱动元件,其中所述第一和第二传导线以所述第一像素间距沿所述第一基本方向被设置,和其中所述第一和第二驱动元件以所述第一像素间距沿所述第一基本方向被设置。
18.如权利要求17所述的反射结构,其中所述支持部件包括第三传导线;第四传导线;和通过所述第三传导线控制的第三驱动元件,其中所述第一驱动元件通过所述第四传导线控制,其中所述第三和第四传导线以所述第二像素间距沿所述第二方向被设置,和其中所述第一和第三驱动元件以所述第二像素间距沿所述第二方向被设置。
19.如权利要求18所述的反射结构,其中所述反射装置包括相对应于所述第三驱动元件的第三反射器,所述第一和第三反射器以所述第二像素间距沿所述第二方向被设置。
20.如权利要求13至15中任何一项所述的反射结构,其中所述反射装置包括在所述第一基本表面方向延伸的反射线。
21.一种图像显示装置包括上述权利要求中任何一项所述的反射结构。
全文摘要
反射电极基板(1)包括具有多个第一基本表面(Sf)的支持部件,每个第一基本表面都具有高度不同的部分(K1,K2),在支持部件上形成以起伏部分间距(Tx)沿x方向设置的起伏部分(18至128)和多个反射电极(Er1,...,Eg6)。多个基本表面(Sf)以像素间距(Sx)设置在x方向上并且起伏部分间距(Tx)是像素间距(Sx)的非整数倍。
文档编号G02B5/02GK1902533SQ200480039790
公开日2007年1月24日 申请日期2004年12月24日 优先权日2004年1月5日
发明者住尚树 申请人:皇家飞利浦电子股份有限公司