专利名称:液晶面板用基板和液晶面板的制作方法
技术领域:
本发明涉及液晶面板和反射型液晶面板,特别是涉及利用在半导体基板或绝缘基板上形成的开关元件来开关象素电极的有源矩阵型液晶面板中适用的技术。还涉及使用它的电子装置及投影式显示装置。
背景技术:
迄今,作为投影式显示装置的光阀中使用的反射型有源矩阵液晶面板,已达到实用化程度的是在玻璃基板上形成采用非晶硅的薄膜晶体管(TFT)阵列的结构的液晶面板。
上述使用TFT的有源矩阵液晶面板是透射型的液晶面板,由透明导电膜形成象素电极。在透射型的液晶面板中,设在各象素上的TFT这样的开关元件的形成区不是透射区,所以数值孔径当然很低,存在数值孔径随着面板的分辨率XGA、S-VGA的增大而减小的致命的缺点。
因此,作为尺寸比透射型有源矩阵液晶面板小的液晶面板,可以考虑利用在半导体基板或绝缘基板上形成的晶体管来开关构成反射电极的象素电极这样的反射型有源矩阵液晶面板。
迄今,在这样的反射型液晶面板中,在形成反射电极的基板上设置作为保护膜的钝化膜的必要性不大,所以多半将其省略。因此,本发明者研究了将钝化膜设在反射型液晶面板用基板上的情况。
通常在半导体装置中,多半使用利用减压CVD法等形成的氮化硅膜作为钝化膜。可是,在现有技术的情况下,利用CVD法形成的钝化膜的厚度要避免产生10%左右的偏差是困难的。然而,在反射型液晶面板中,反射率随着钝化膜厚度的偏差的变化而发生很大的变化,液晶的折射率也随之变化,这是不适宜的。
发明内容
本发明的目的在于提供一种具有即使反射率的偏差大,也不会使液晶的折射率变化的钝化膜的可靠性高的反射型液晶面板用的基板及液晶面板。
本发明的另一目的在于提供一种可靠性高且图象质量好的反射型液晶面板及使用它的电子装置和投影式显示装置。
为了达到上述目的,本发明的液晶面板用基板是这样构成的,即在基板上呈矩阵状地形成反射电极,同时对应于各反射电极形成各晶体管,通过上述晶体管将电压加在上述反射电极上,其特征在于在上述反射电极上形成钝化膜,上述钝化膜的厚度是这样选择的,即当上述反射电极对入射光波长的反射率的特性变化时,以能将反射率的变化限定在约1%以内,膜厚的偏差对上述反射电极的反射率的影响小。
另外,由于该钝化膜是由氧化硅膜形成的,所以能抑制反射电极的反射率随光的波长变化而发生较大变化的现象。
另外,作为反射型液晶面板用基板的钝化膜是使用膜厚为500~2000埃的氧化硅膜。氧化硅膜作为保护膜的功能比氮化硅膜多少差一些,但由于膜厚的偏差对象素电极的反射率的影响比氮化硅膜小,同时特别是膜厚为500~2000埃的氧化硅膜的反射率与波长的依赖性小,所以通过使用作为钝化膜的氧化硅膜,能减小反射率的变化。
再者,对应于入射光的波长,将钝化膜的厚度分别设定在适当的范围。更具体地说,在反射蓝色光的象素电极中,使成为钝化膜的氧化硅膜的厚度为900~1200埃,在反射绿色光的象素电极中,为1200~1600埃,在反射红色光的象素电极中,为1300~1900埃。如果将成为钝化膜的氧化硅膜的厚度设定在上述范围内,则能将对各色的反射率的偏差抑制在1%以下,能提高液晶面板的可靠性,同时能提高将这样的反射型液晶面板作为光阀使用的投影式显示装置中的图象质量。
再者,成为钝化膜的氧化硅膜的厚度可以用与在它上面形成的取向膜的厚度之间的关系来设定。另外,这时取向膜的合适的厚度为300~1400埃,最好为800~1400埃。通过将取向膜的厚度设定在上述范围内,能有效地防止液晶折射率的变化。
另外,在同一基板上呈矩阵状配置了象素电极的象素区和在其外侧形成移位寄存器或控制电路等外围电路的反射型液晶面板中,也可以在象素区的上方形成由氧化硅膜构成的钝化膜,而在上述外围电路的上方形成由氮化硅膜构成的钝化膜。由于外围电路与它上面的钝化膜的厚度和反射率无关,所以通过使用氮化硅膜,能更可靠地保护外围电路,提高可靠性。
再者,将在反射电极上设钝化膜代之以由氧化硅膜构成的钝化膜,或者与由氧化硅膜构成的钝化膜并用,也可以在反射电极和它下面的金属层之间的层间绝缘膜上设氮化硅膜。由此来提高耐湿性,能防止象素开关用MOSFET和保持电容被水等腐蚀。
另外,在由氧化硅膜构成的钝化膜上设有形成了氮化硅膜的重叠保护结构,用它盖在从层间绝缘膜和金属层的重叠体的端部直至其侧壁上,上述层间绝缘膜是开关象素的晶体管及构成将所希望的电压及信号供给该晶体管的布线区的层间绝缘膜。因此,提高了容易进水的液晶面板端部的防水性能,同时它成为增强构件,能提高耐久性。
再者,将采用了上述液晶面板用基板的液晶面板作为投影式显示装置的光阀用,备有将光源的光分成3原色光的色分离装置;对由该色分离装置分离的红色光进行调制的第1上述反射型液晶面板;对由该色分离装置分离的绿色光进行调制的第2上述反射型液晶面板;以及对由该色分离装置分离的蓝色光进行调制的第3上述反射型液晶面板,形成上述第1反射型液晶面板的钝化膜的氧化硅膜的厚度在1300~1900埃的范围内,形成上述第2反射型液晶面板的钝化膜的氧化硅膜的厚度在1200~1600埃的范围内,形成上述第3反射型液晶面板的钝化膜的氧化硅膜的厚度在900~1200埃的范围内,所以对各色光进行调制的每个光阀具有与所调制的色光的波长对应的钝化膜厚度,降低了反射率的偏差,合成光的偏差也减小了。因此,能防止投影式显示装置的每一制品中投影光的彩色显示的配色不同的现象。
图1(a)、(b)是表示应用了本发明的反射型液晶面板的反射电极侧基板上的象素区的第1实施例的剖面图。
图2是表示应用了本发明的反射型液晶面板的反射电极侧基板上的外围电路的结构之一例的剖面图。
图3是应用了本发明的反射型液晶面板的反射电极侧基板上的象素区的第1实施例的平面布局图。
图4是表示应用了本发明的反射型液晶面板的反射电极侧基板的端部结构之一例的剖面图。
图5是表示应用了本发明的反射型液晶面板的反射电极侧基板的另一实施例的剖面图。
图6是表示实施例的液晶面板的反射电极侧基板上的布局结构例的平面图。
图7是表示应用了实施例的液晶面板的基板的反射型液晶面板之一例的剖面图。
图8是表示应用了本发明的反射型液晶面板的象素电极开关用FET的栅驱动波形及数据线驱动波形例的波形图。
图9是作为将实施例的液晶面板用作光阀的投影式显示装置之一例的投影电视机的简略结构图。
图10是表示在由铝层构成的反射电极对入射方向各波长的反射率中由氧化硅膜的膜厚引起怎样的变化的研究结果的曲线图。
图11是表示在由铝层构成的反射电极的反射率在入射光各波长中因氧化硅膜的膜厚引起怎样的变化的研究结果的曲线图。
图12是在以蓝色为中心的波长范围内按各适当的波长绘制的改变氧化硅膜的厚度时的反射率的曲线图。
图13是在以绿色为中心的波长范围内按各适当的波长绘制的改变氧化硅膜的厚度时的反射率的曲线图。
图14是在以红色为中心的波长范围内按各适当的波长绘制的改变氧化硅膜的厚度时的反射率的曲线图。
图15(a)、(b)、(c)是分别表示采用了本发明的反射型液晶面板的电子装置例的外观图。
图16是表示应用了本发明的反射型液晶面板的反射电极侧基板的另一实施例的剖面图。
图17是表示应用了本发明的反射型液晶面板的反射电极侧基板的另一实施例的剖面图。
具体实施例方式
以下,根据
本发明的优选实施例。
(采用了半导体基板的液晶面板用基板的说明)图1及图3表示应用了本发明的反射型液晶面板的反射电极侧基板的第1实施例。在图1及图3中示出了呈矩阵状配置的象素中的一象素部分的剖面图和平面布局图。图1(a)表示沿图3中的I-I线的剖面图。图1(b)同样表示沿图3中的II-II线的剖面图。另外,图6表示本发明的反射型液晶面板的反射电极侧基板全体的平面布局图。
在图1中,1是单晶硅P型半导体基板(也可以是N型半导体基板(N--)),2是在该半导体基板1的表面上形成的比半导体基板中的杂质浓度高的P型阱区,3是在半导体基板1的表面上形成的元件分离用场氧化膜(所谓的LOCOS)。上述的阱区2不特别限定,但形成象素区的通用阱区,它是将象素配置成例如768×1024这样的矩阵状而成的。该阱区2如图6所示,它是与形成元件的部分的阱区分开形成的,该元件构成在象素呈矩阵状配置的象素区2的外围部分配置的数据线驱动电路21或栅线驱动电路22、输入电路23、定时控制电路24等外围电路。上述场氧化膜3通过有选择地进行热氧化,形成5000~7000埃的厚度。
在上述场氧化膜3上对每一象素形成2个开口部,在一个开口部的内侧中央通过由热氧化形成的栅氧化膜(绝缘膜)4b,形成由多晶硅或金属硅化物等构成的栅极4a,在该栅极4a两侧的基板表面上形成由杂质浓度高的N型杂质导入层(以下称掺杂层)构成的源、漏区5a、5b,由此构成MOSFET。栅极4a沿扫描线方向(象素行方向)延伸,构成栅线4。
另外,在形成在上述场效氧化膜3上的另一个开口部的内侧的基板表面上,形成P型掺杂区8,同时在该P型掺杂区8的表面上通过由热氧化形成的绝缘膜9b,形成由多晶硅或金属硅化物构成的电极9a,在该电极9a和上述P型掺杂区8之间(中间夹着绝缘膜9b)构成保持加在象素上的电压的保持电容。上述电极9a可以在与构成上述MOSFET的栅极4a的多晶硅或金属硅化物层的同一工序中形成,另外,电极9a下面的绝缘膜9b可以与构成栅绝缘膜4b的绝缘膜在同一工序中形成。
上述绝缘膜4b、9b通过热氧化在上述开口部的内侧半导体基板表面上形成400~800埃的厚度。上述电极4a、9a是这样构成的,即形成厚度为1000~2000埃的多晶硅层后,在它上面再形成厚度为1000~3000埃的Mo或W这样的高熔点金属的硅化物层。源、漏区5a、5b是将上述栅极4a作为掩模,在其两侧的基板表面上用离子注入法注入N型杂质而自行调整形成的。另外,栅极4a的正下方的阱区构成MOSFET的沟道区5c。
另外,上述P型掺杂区8可通过例如专用的离子注入和热处理进行的掺杂处理形成,也可以在形成栅极之前用离子注入法形成。就是说,在形成绝缘膜4b、9b之后,注入与阱导电类型相同的杂质,阱的表面形成低电阻化作为比阱的杂质浓度高的区域8。上述阱区2的好的杂质浓度为1×1017/cm3以下,最好为1×1016~5×1016/cm3。源、漏区5a、5b的表面杂质浓度最好为1×1020~3×1020/cm3,P型掺杂区8的表面杂质浓度最好为1×1018~5×1019/cm3,但从构成保持电容的绝缘膜的可靠性及耐压的观点来看,1×1018~1×1019/cm3特别好。
从上述电极4a及9a上形成第1层间绝缘膜6一直盖到场氧化膜3上,在该绝缘膜6上设有由以铝为主体的金属层构成的数据线7(参照图3)及从该数据线伸出形成的源极7a及辅助耦合布线10。源极7a通过在绝缘膜6上形成的接触孔6a与源区5a进行导电性连接,另外,辅助耦合布线10的一端通过在绝缘膜6上形成的接触孔6ba与漏区5b进行导电性连接,另一端通过在绝缘膜6上形成的接触孔6c与电极9a进行导电性连接。
上述绝缘膜6是例如淀积1000埃左右的HTO膜(用高温CVD法形成的氧化硅膜)后,再淀积厚度为8000~10000埃的BPSG膜(包含硼及磷的硅酸盐玻璃膜)形成的。构成源极7a(数据线7)及辅助耦合布线10的金属层从下层开始例如呈Ti/TiN/Al/TiN的4层结构。各层厚度分别是下层的Ti为100~600埃,TiN为1000埃左右,Al为4000~10000埃,上层的TiN为300~600埃。
从上述源极7a及辅助耦合布线10上形成第2层间绝缘膜11一直盖到层间绝缘膜6上,在该第2层间绝缘膜11上形成由以铝为主体的第2层金属层12构成的遮光膜。如后文所述,构成该遮光膜的第2层金属层12在象素区的外围形成的驱动电路等外围电路中,是作为构成元件间连接用的布线的金属层形成的。因此,由于只形成该遮光膜12,所以不需要增加工序,能简化工艺。另外,在与上述辅助耦合布线10对应的位置,形成供将后文所述的象素电极和MOSFET导电性地连接起来的柱状连接栓15穿过用的开口部12a,除此以外,上述遮光膜12将象素区20全部覆盖。即,在图3所示的平面图中,带符号12a的矩形框表示上述开口部,该开口部12a的外侧全部是遮光膜12。因此,从图1上方(液晶层侧)入射的光几乎全部被遮断,使光通过象素开关用MOSFET的沟道区5c及阱区2,能防止流过光漏电流。
上述第2层间绝缘膜11是这样形成的,即以例如TEOS(四乙基正色硅酸盐)为材料,淀积3000~6000埃左右的用等离子体CVD法形成的氧化硅膜(以下称TEOS膜)后,再淀积SOG膜(自旋扩散玻璃膜),用内刻蚀法将其削薄后,再在它上面淀积厚度为2000~5000埃左右的第2TEOS膜。构成该遮光膜的第2层金属层12可以与上述第1层金属层7(7a)、10同样结构,例如从下层开始呈Ti/TiN/Al/TiN的4层结构。各层厚度分别是最下层的Ti为100~600埃,其上面的TiN为1000埃左右,Al为4000~10000埃,最上层的TiN为300~600埃。
在该实施例中,在上述遮光膜12上形成第3层间绝缘膜13,如图3所示,在该第3层间绝缘膜13上形成大致与1象素对应的作为矩形反射电极的象素电极14。然后,对应于在上述遮光膜12上设的开口部12a,位于其内侧开设贯通上述第3层间绝缘膜13及第2层间绝缘膜11的接触孔16,在该接触孔16内填充用来导电性地连接上述辅助耦合布线10和上述象素电极14的由钨等高熔点金属构成的柱状连接栓15。另外,在上述象素电极14上全面地形成钝化膜17。
构成液晶面板时,再在该反射电极侧基板上形成取向膜,与该基板相对地以规定的间隔、在内表面上配置相对(公用)电极,与在其上面形成了取向膜的对置基板相对,同时在该间隙中封入液晶,构成液晶面板。
虽然不特别限定,但用CVD法将构成连接栓15的钨等粘附后,用CMP(化学机械研磨)法,削平钨和第3层间绝缘膜13,使其平坦后,用例如低温溅射法形成厚度为300~5000埃的铝层,通过形成图形而形成每边长约为15~20μm的正方形的象素电极14。另外,作为上述连接栓15的形成方法,还有利用CMP法使第3层间绝缘膜13平坦化,然后开设接触孔,将钨粘附在其中。作为上述钝化膜17,在象素区部采用厚度为500~2000埃的氧化硅膜,在基板的周边区域、密封部分及刻痕部分采用厚度为2000~10000埃的氮化硅膜。另外,所谓密封部分,是指将构成液晶面板的一对基板有间隙地粘接固定用的密封材料的形成区。另外,所谓刻痕部分,是指在半导体薄板上形成多个本发明的反射型液晶面板用基板,沿刻痕线将其切割分离成各个半导体芯片时所沿着的刻痕区的部分(即液晶面板用基板的端部)。
另外,由于使用氧化硅膜作为覆盖象素区部分的钝化膜,所以能抑制反射率随膜厚的偏差而产生大的变化或反射率随光的波长的不同而产生大的变化的现象。
另一方面,覆盖基板的周边区域、特别是封入了液晶的区域外侧(密封部的外侧)区域的钝化膜17,由于使用从基板的耐水性等的观点看比用氧化硅膜作为保护膜更好的氮化硅膜,采用该氮化硅膜的单层结构或在氧化硅膜上形成氮化硅膜的两层结构的保护膜,所以更能提高可靠性。即,水等虽然容易从与外部空气接触的基板周边区域、特别是刻痕部分进入,但该部分被氮化硅膜构成的保护膜覆盖着,所以能提高可靠性和耐久性。
另外,在钝化膜17上构成液晶面板时,在全部表面上形成由聚酰亚胺构成的取向膜,进行摩擦处理。
再者,上述钝化膜17的厚度可根据入射光的波长设定在各个适当的范围内。具体地说,成为钝化膜的氧化硅膜的厚度,在反射蓝色光的象素电极中为900~1200埃,在反射绿色光的象素电极中为1200~1600埃,在反射红色光的象素电极中为1300~1900埃。通过将成为钝化膜的氧化硅膜的厚度设定在上述范围内,能将由铝层构成的反射电极对各色反射率的偏差抑制在1%以下。以下说明其理由。
在图10及图11中,示出了由铝层构成的反射电极对各波长的反射率怎样随氧化硅膜的厚度变化的研究结果。在图10中,符号◆表示膜厚为500埃时的反射率,符号□表示膜厚为1000埃时的反射率,符号▲表示膜厚为1500埃时的反射率,符号×表示膜厚为2000埃时的反射率。另外,在图11中,符号◆表示膜厚为1000埃时的反射率,符号□表示膜厚为2000埃时的反射率,符号▲表示膜厚为4000埃时的反射率,符号×表示膜厚为8000埃时的反射率。
参照图11可知,在膜厚为4000埃的情况下,当波长在450~550nm之间变化时,反射率从0.89到0.86约降低3%,当波长在700~800nm之间变化时,反射率从0.85到0.77约降低8%。另外,在膜厚为8000埃的情况下,当波长在500~600nm之间变化时,反射率从0.89到0.86约降低3%,当波长在650~750nm之间变化时,反射率从0.86到0.80约降低6%。与此不同,当膜厚为500埃、1000埃、1500埃、2000埃时,反射率未发现这样的急剧变化。根据上述理由可知,氧化硅膜厚度的有效范围为500~2000埃。
因此可知,在构成反射型液晶面板的情况下,作为在反射电极上形成的钝化膜,如果能获得500~2000埃范围的膜厚,就能构成反射率对波长的依赖性小的反射型液晶面板。
再者,由图10及图11可知,如果从局部波长范围来看,存在反射率随氧化硅膜厚度的变化而变化小的范围。另外,本发明者考虑到对应于入射后反射的不同色光来说,是否存在氧化硅膜的最佳厚度范围,对此进行了详细研究。将其结果示于图12~图14。其中,图12是以蓝色为中心在其附近的420~520nm的波长范围内,按各适当的波长绘制的改变氧化硅膜的厚度时的反射率的曲线,图13是以绿色为中心在其附近的500~600nm的波长范围内,同样按各适当的波长绘制的反射率的曲线,图14是以红色为中心在其附近的560~660nm的波长范围内,同样按各适当的波长绘制的反射率的曲线。
参照图12可知,在膜厚为800埃的情况下,波长在440~500nm之间变化时,反射率从0.896到0.882约下降1.1%。另外,在膜厚为1300埃的情况下,波长在420~470nm之间变化时,反射率从0.887到0.893约变化0.6%,同时波长为420~450nm之间的反射率比其它膜厚时低很多。与此不同,膜厚为900埃或1000埃、1100埃、1200埃时,没有发现反射率这样急剧变化,同时能获得足够大小的反射率的值。
另外,参照图13可知,在膜厚为1100埃的情况下,波长在550~600nm之间变化时,反射率从0.882到0.866约下降1.6%。另外,在膜厚为1700埃的情况下,波长在500~530nm之间的反射率比其它膜厚时低很多。与此不同,膜厚为1250埃或1400埃、1550埃时,没有发现反射率这样急剧变化,同时能获得足够大小的反射率的值。
另外,参照图14可知,在膜厚为1200埃的情况下,波长在560~660nm之间变化时,反射率从0.882到0.848约下降3.4%。另外,在膜厚为2000埃的情况下,波长在560~610nm之间的反射率比其它膜厚时低很多。与此不同,膜厚为1400埃或1600埃、1800埃时,没有发现反射率这样急剧变化,同时能获得足够大小的反射率的值。
由图12~图14可知,由于在反射蓝色光的象素电极中,将成为钝化膜的氧化硅膜的厚度设定为900~1200埃的范围,在反射绿色光的象素电极中,设定为1200~1600埃的范围,在反射红色光的象素电极中,设定为1300~1900埃的范围,所以能将对各色的反射率的偏差抑制在1%以下,同时能获得足够大小的反射率的值。
另外,图12~图14所示的各曲线表示在钝化膜上形成厚度为1100埃的由聚酰亚胺构成的取向膜时的反射率。如果取向膜的厚度不同,则氧化硅膜的最佳厚度范围与上述范围有些不同。另外,从使液晶的折射率变化小的观点来看,取向膜的厚度范围最好这样设定,即,由于取向膜的厚度低于300埃时,便没有定向能力,如果比1400埃厚时,聚酰亚胺就会吸收低波长和高波长的光,作为等效电路中的与液晶电容串联连接的电容分量,不能忽视聚酰亚胺,取向膜的厚度范围最好设定在300~1400埃的范围内。但是如果取向膜薄就要担心定向能力降低,所以取向膜的厚度范围最好设定在800~1400埃的范围。
如果取向膜的厚度在上述范围内,且如果各色液晶面板的氧化硅膜的厚度分别设定在上述范围,就能将反射电极的反射率的偏差抑制在1%以下。
因此,在用一个液晶面板进行彩色显示的情况下,能对应于每一象素的颜色,使反射电极上的钝化膜的颜色不同。即,在与该反射侧基板相对的对置基板的内表面上,对应于象素电极形成RGB彩色滤光片,通过该薄膜的色光被象素电极反射,在这样的结构中,如果使反射通过了红(R)的彩色滤光片的红色光的象素电极上形成的钝化膜的厚度在1300~1900埃的范围,使反射通过了绿(G)的彩色滤光片的绿色光的象素电极上形成的钝化膜的厚度在1200~1600埃的范围,使反射通过了蓝(B)的彩色滤光片的蓝色光的象素电极上形成的钝化膜的厚度在900~1200埃的范围,则能构成反射率高的单片反射型液晶面板。另外,该液晶面板还能用作单片式投影型显示装置的光阀。再者,即使不用彩色滤光片,也能换成使入射到各象素电极上的光成为色光的装置(例如分色镜),构成色光。
再者,如后文所述的投影型显示装置所示,即使在分别具有反射红色光的液晶面板、反射绿色光的液晶面板、反射蓝色光的液晶面板的情况下,也能使用本发明的液晶面板。这时,在调制红色光的光阀的液晶面板中,可将成为钝化膜的氧化硅膜的厚度设定在1300~1900埃的范围,同样在调制绿色光的光阀的液晶面板中,将成为钝化膜的氧化硅膜的厚度设定在1200~1600埃的范围,在调制蓝色光的光阀的液晶面板中,将成为钝化膜的氧化硅膜的厚度设定在900~1200埃的范围。
图3是图1所示的反射侧的液晶面板用基板的平面布局图。如该图所示,在该实施例中,数据线7和栅线4互相交叉形成。由于栅线4兼作栅极4a,所以图3中用阴影线H表示的地方的栅线4部分成为栅极4a,在它下面的基板表面上设有象素开关用MOSFET的沟道区5c。在上述沟道区5c两侧(图3中的上下侧)的基板表面上形成源、漏区5a、5b。另外,与数据线连接的源极7a从沿图3的纵向延伸的数据线7突出形成,并通过接触孔6b与MOSFET的源区5a连接。
另外,构成保持电容的一侧端子的P型掺杂区8连接着沿与栅线4平行的方向(象素行的方向)邻接的象素的P型掺杂区形成。而且,通过接触孔71连接着设在象素区外侧的电源线路70,被施加例如0V(接地电位)这样的规定电压Vss。该规定电压Vss可以是配置在对置基板上的公用电极的电位或其附近的电位,或是供给数据线的图象信号的振幅中心电位或其附近的电位,或是公用电极电位和图象信号的振幅中心电位的中间电位中的任意一种电位。
在象素区的外侧,通过使P型掺杂区8与公用电压Vss连接,使保持电容的一侧电极的电位稳定,使在象素的非选择期间(MOSFET非导通时)保持电容所保持的保持电位稳定,能降低在1帧期间加在象素电极上的电位的变化。另外,由于将P型掺杂区8设在MOSFET附近,同时也使P型阱的电位固定,所以能使MOSFET的基板电位稳定,能防止由背栅效应产生的阈值电压的变化。
虽然未图示,但上述电源线路70也可以作为将规定电压Vss作为阱电位供给设在象素区外侧的外围电路的P型阱区(与象素区的阱区分离)的线路用。上述电源线路70由与上述数据线7相同的第1层金属层构成。
象素电极14分别呈矩形,所谓邻接的象素电极14是这样构成的,即例如相距1μm彼此接近设置,以便尽量减小从象素电极间的间隙漏的光量。另外,在图中,象素电极的中心和接触孔16的中心有偏移,但最好是使两个中心大体一致或重合。其理由是因为接触孔16的周围在具有遮光功能的第2层金属层12上的12a处设有开口,所以如果在象素电极14的端部附近有开口12a,则从象素电极的间隙入射的光便在第2层金属层12和象素电极14的背面之间进行漫反射而到达开口12a,从该开口入射到下面的基板侧而漏光。因此,最好通过使象素电极的中心和接触孔16的中心大体一致或重合,使得从邻接的象素电极的间隙入射的光从各象素电极端部到达接触孔的距离大致均等,能使光不易到达有可能使光入射到基板侧的接触孔。
另外,在上述实施例中,说明了使象素开关用MOSFET为N沟道型的,而使成为保持电容的一侧电极的半导体区8成为P型掺杂层的情况,但也可以使阱区2为N型,使象素开关用MOSFET为P沟道型,而使成为保持电容的一侧电极的半导体区成为N型掺杂层。这时,最好将与加在N型阱区上的同样的规定电位VDD加在成为保持电容的一侧电极的N型掺杂层上。另外,该规定电位VDD是加在N型阱区上的电位,所以最好是电源电压高压侧的电位。即,如果加在象素开关用MOSFET的源、漏上的图象信号的电压为5V,最好使该规定电位VDD也为5V。
再者,由于与将15V这样大的电压加在象素开关用MOSFET的栅极4a上不同,而用5V这样小的电压驱动外围电路的移位寄存器等逻辑电路等(外围电路的一部分,例如用15V驱动将扫描信号供给栅线的电路等),所以可以考虑这样的技术,即将构成用5V工作的外围电路的FET的栅绝缘膜形成得比象素开关用FET的栅绝缘膜薄(将栅绝缘膜的制造工序作为另外的工序,另外,通过刻蚀等形成外围电路的FET的栅绝缘膜表面),提高外围电路的FET的响应特性,提高外围电路(特别是要求高速扫描的数据线一侧驱动电路的移位寄存器)的工作速度。在采用了这样的技术的情况下,根据栅绝缘膜的耐压情况,可以使构成外围电路的FET的栅绝缘膜的厚度为象素开关用FET的栅绝缘膜厚度的约三分之一~五分之一(例如80~200埃)。
同时,第1实施例中的驱动波形变成图8所示的样子。图中,VG是加在象素开关用MOSFET的栅极上的扫描信号,周期tH1是使象素的MOSFET导通的选择周期(扫描周期),除此以外的周期是使象素的MOSFET不导通的非选择周期。另外,Vd是加在数据线上的图象信号的最大振幅,Vc是图象信号的中心电位,LC-COM是在与反射电极侧基板相对的对置基板上形成的对置(公用)电极上所加的公用电位。
加在保持电容的电极之间的电压大小由图8所示的加在数据线上的图象信号电压Vd和加在P型半导体区8上的0V这样的规定电压Vss之差决定。可是,本来应加在保持电容上的电位差为图象信号电压Vd与图象信号的中心电位Vc之差即约5V(在图6中的液晶面板的对置基板35上设置的对置(公用)电极33上所加的公用电位LC-COM比Vc相差ΔV,但实际上加在象素电极上的电压相差ΔV后变为Vd-ΔV)就足够了。因此,在第1实施例中,使构成保持电容的一侧端子的掺杂区8与阱的极性相反(P型阱时为N型),在象素区的周边部分可以连接Vc或LC-COM附近的电位,也可以是与阱电位(例如P型阱为Vss)不同的电位。因此,可以不用象素开关用FET的栅绝缘膜,而与构成外围电路的FET的栅绝缘膜同时形成构成保持电容的一侧电极9a的多晶硅或金属硅化物层正下方的绝缘膜9b,与上述实施例相比,能使保持电容的绝缘膜厚度为前者的三分之一~五分之一,因此使电容值成为3~5倍。
图1(b)是表示本发明的一实施例的象素区的周边部分的剖面(沿图3中的II-II线)的剖面图。示出了使沿象素区的扫描方向(象素行方向)延伸的掺杂区8与规定电位(Vss)连接的部分的结构。80是用形成外围电路的MOSFET的源、漏区的同一工序形成的P型接触区,是对在栅极形成前形成的掺杂区8在栅极形成后用离子注入法注入同一导电类型的杂质而形成的。接触区80通过接触孔71与布线70连接,被施加恒定电压Vss。另外,在该接触区80上也用由第3层金属层构成的遮光膜14’遮光。
其次,图2表示在象素区的外侧构成驱动电路等的外围电路的CMOS电路元件的实施例的剖面图。在图2中带有与图1中相同符号的地方,表示用同一工序形成的金属层、绝缘膜及半导体区。
在图2中,4a、4a’分别是构成驱动电路等外围电路(CMOS电路)的N沟道MOSFET、P沟道MOSFET的栅极,5a(5b)、5a’(5b’)分别是构成该源(漏)区的N型掺杂区、P型掺杂区,5c、5c’分别是沟道区。将恒定电压Vss供给构成图1中的保持电容的一侧电极的P型掺杂区8的接触区80,是用构成上述P沟道MOSFET的源(漏)区的P型掺杂区5a’(5b’)的同一工序形成的。27a、27c由第1层金属层构成,是连接电源电压(0V、5V或15V任意一种)的源极,27b是由第1层金属层构成的漏极。32a是由第2层金属层构成的布线层,作为连接构成外围电路的元件之间的布线使用。32b也是由第2层金属层构成的电源布线层,但还具有作为遮光膜的功能。遮光膜32b也可以连接Vc或LC-COM或电源电压0V等一定的电压中的任意一种,还可以是不定的电位。14’是第3层金属层,在外围电路部分,该第3层金属层作为遮光膜使用,用来防止光通过构成外围电路的半导体区而发生载流子,使得半导体区的电位不稳定而造成外围电路误工作。就是说,外围电路也用第2层和第3层金属层进行遮光。
如上所述,外围电路部分的钝化膜17可以用比构成象素区的钝化膜的氧化硅膜作为保护膜还要好的氮化硅膜构成,也可以用作为在氧化硅膜上形成氮化硅膜的两层结构的保护膜构成。另外,虽然没有特别限制,但构成该实施例的外围电路的MOSFET的源、漏区也可以用自行调整技术形成。再者,任意的MOSFET的源、漏区既可呈LDD(微量掺杂漏极)结构,也可呈DDD(双倍掺杂漏极)结构。另外,考虑到用大电压驱动象素开关用FET,必须防止泄漏电流,可以进行补偿(在栅极和源、漏区之间保持一定距离的结构)。
图4表示作为反射电极(象素电极)侧基板的端部结构的最佳实施例。在图4中,带有与图1、图2中的相同符号的地方,表示用同一工序形成的层及半导体区。
如图4所示,层间绝缘膜和金属层的重叠体的端部及其侧壁被构成在覆盖象素区及外围电路的由氧化硅膜构成的钝化膜17上形成了氮化硅膜18后的重叠保护结构如上所述,该端部是在硅片上形成多个本发明的基板后,沿刻痕线将其切割分离成各基板(半导体芯片)时的各基板的端部。就是说,图4中右侧的台阶部分的下侧台阶部分是刻痕区。
因此,由于基板端部的上部和侧壁部分用氮化硅膜作为保护膜,所以水等难以从端部进入,能提高耐久性,同时增强了端部,所以能提高合格率。另外,在该实施例中,将封住液晶用的密封材料36设在完全平坦的上述重叠保护结构部上。因此,与有无层间绝缘膜或金属层而产生的厚度偏差无关,能使与对置基板的间隔一定。另外,如果采用上述结构,则由于能用单层氧化硅膜形成构成象素电极的反射电极上的保护膜,所以能降低反射率的下降和反射率随波长的不同而对波长的依赖性。
如图4所示,在该实施例中,第3层金属层14’是与外围电路区的遮光膜或象素的反射电极用的14相同的层,通过第2层及第1层金属层12’、7’连接着在半导体基板1的表面上掺杂杂质形成的布线层19,被固定于基板电位。当然也可以用使第2层金属层12’或第1层金属层7’延伸到密封材料36的下面的固定电位用的层代替第3层金属层14’。因此,在液晶面板用基板的形成过程中、液晶面板的形成过程中或液晶面板形成后都可能进行静电等方面的处理。另外通过该布线层19连接图中未示出的焊接区,也可施加规定的电压或信号。
图5表示本发明的另一实施例。图5与图1一样,也是沿图3所示平面布局图中的I-I线的剖面图。在图5中,带有与图1、图2中相同符号的地方,表示用与这些图所示实施例相同的工序形成的层及半导体区。该实施例是在上述反射电极14和它下面的作为遮光层12的金属层之间形成由上述的TEOS膜(包括一部分刻蚀后残存的SOG膜)构成的层间绝缘膜13a,除此之外,在它下面形成了氮化硅膜13b。反之,也可以在TEOS膜13a的上面形成氮化硅膜13b。通过采用这样增加氮化硅膜的结构,水等不容易进入,能提高耐湿性能。
另外,反射电极上的钝化膜的厚度与图1所示实施例的情况相同。
图16表示本发明的另一实施例。图16与图1一样,也是沿图3所示平面布局图中的I-I线的剖面图。在图16中,带有与图1、图2中相同符号的地方,表示用与这些图的实施例相同的工序形成的层及半导体区。该实施例是在上述反射电极14和它下面的作为遮光层12的金属层之间形成由上述的TEOS膜(包括一部分刻蚀后残存的SOG膜)构成的层间绝缘膜13a,除此之外,在它上面形成了氮化硅膜13b。这时还可以用CMP法等使氮化硅膜13b平坦化。这样形成了氮化硅膜后,由于氮化硅部分的开口比图5中的实施例的开口少,所以水等更不容易进入,能提高耐湿性能。同时在反射电极14及其邻近的反射电极之间由保护绝缘膜17和氮化硅膜13b构成。由于氮化硅膜的折射率为1.9~2.2,比保护绝缘膜17使用的氧化硅膜的折射率1.4~1.6高,所以光从液晶侧入射到保护绝缘膜17时,由于折射率的不同而在与氮化硅膜13b的界面上反射。因此,射入层间膜的光减少,所以能防止光通过半导体区时发生载流子而使半导体区的电位不稳定。
另外,在本实施例中,也可以用CMP法等使由TEOS膜构成的层间绝缘膜13a平坦化后形成氮化硅膜13b。一般来说,为了消除局部台阶,需要用例如CMP法等淀积相当于局部台阶的厚度、例如8000~12000埃的膜。另外,在一般情况下,用于13b的氮化硅膜随着膜厚的增加,对于下部膜来说,要出现强应力。在本实施例中,通过用CMP法等研磨层间绝缘膜13a,进行平坦化,再在它上面形成氮化硅膜13b,减小氮化硅膜13b采用CMP法等时淀积的厚度,能缓和氮化硅膜13b的应力。另外,这时由于在反射电极14及其邻近的反射电极之间也构成保护绝缘膜17和氮化硅膜13b,所以射入层间膜的光减少,故能防止光通过半导体区时发生载流子而使半导体区的电位不稳定。另外,在本实施例中,最好使氮化硅膜13b的厚度例如为2000~5000埃。这是因为在2000埃以上时能提高氮化硅膜13b的耐湿性能,而在5000埃以下时,减小了接触孔16的刻蚀深度,容易刻蚀,同时通过减小氮化硅膜13b的厚度,能缓和对下部膜产生的应力。
另外,反射电极上的钝化膜的厚度与图1所示实施例的情况相同。
图6表示应用了上述实施例的液晶面板(反射电极侧的基板)的总体平面布局结构。
如图6所示,在该实施例中,设有遮光膜25,用来防止光入射到在基板的周边部分设置的外围电路上。外围电路设在呈矩阵状配置了上述象素电极的象素区20的周边上,其中包括将与图象数据对应的图象信号供给上述数据线7的数据线驱动电路21或按顺序扫描栅线4的栅线驱动电路22;通过焊接区26取入从外部输入的图象数据的输入电路23;控制这些电路的定时控制电路24等电路,这些电路是将用象素电极开关用MOSFET的同一工序或不同工序形成的MOSFET作为有源元件或开关元件,并将其与电阻和电容等负载元件组合而成的。
在该实施例中,上述遮光膜25由用与图1所示的象素电极14的同一工序形成的第3层金属层构成,被施加电源电压或图象信号的中心电位Vc或公用电位LC-COM等规定的电位。通过将规定的电位加在遮光膜25上,与电位浮动或其它电位的情况相比,能减少反射。26是为了供给电源电压而使用的焊接区或形成端子的焊接区。
图7表示应用了上述液晶面板基板31的反射型液晶面板的剖面结构。如图7所示,由玻璃或陶瓷等构成的支撑基板32用粘接剂粘接在上述液晶面板基板31的背面。与此同时,在其表面一侧以适当的间隔配置入射侧的玻璃基板35,该玻璃基板35具有由施加了公用电位LC-COM的透明导电膜(ITO)构成的对置电极(也称公用电极)33,在周围用密封材料36封闭的间隙内填充了众所周知的TN(Twisted Nematic)型液晶或在不加电压状态下液晶分子大致垂直取向的SH(Super Homeotropic)型液晶37等,构成液晶面板30。另外,这样设定密封材料的设置位置,即,从外部输入信号,使焊接区26位于上述密封材料36的外侧。
外围电路上的遮光膜25与对置电极33相对构成其间夹有液晶37。而且,如果将LC公用电位加在遮光膜25上,则LC公用电位便加在对置电极33上了,所以直流电压不加在介于其间的液晶上。因此,如果是TN型液晶,则液晶分子经常扭转大致90°,如果是SH型液晶,则液晶分子经常保持垂直取向的状态。
在该实施例中,因为由玻璃或陶瓷等构成的支撑基板32用粘接剂粘接在由半导体基板构成的上述液晶面板基板31的背面,所以其强度显著地增大。其结果是如果将支撑基板32粘接在液晶面板基板31上之后,进行与对置基板的贴合,则具有使液晶层沿全部面板的间隙均匀的优点。
(使用绝缘基板的液晶面板用基板的说明)在以上说明中,说明了使用半导体基板的反射型液晶面板用基板的结构及使用它的液晶面板,而以下将说明使用绝缘基板的反射型液晶面板用基板的结构。
图17是表示反射型液晶面板用基板上的象素结构的剖面图。该图与图1一样,也是沿图3所示平面布局图中的I-I线的剖面图。在本实施例中,使用TFT作为象素开关用的晶体管。在图17中,带有与图1、图2中相同符号的地方,表示与这些图具有同一功能的层及半导体区。1是石英或无碱性的玻璃基板,在该绝缘基板上形成单晶或多晶或非晶硅膜(5a、5b、5c、8形成层),在该硅膜上形成由通过热氧化形成的氧化硅膜和用CVD法淀积的氮化硅的双层结构构成的绝缘膜4b、9b。另外,在形成绝缘膜4b的上层氮化硅膜之前,用N型杂质对硅膜的5a、5b和8区进行掺杂,形成TFT的源区5a、漏区5b和保持电容的电极区8。另外,在绝缘膜4b上形成构成TFT的栅极4a和保持电容的另一电极9a的多晶硅或金属硅化物等布线层。如上所述,形成由栅极4a、栅绝缘膜4b、沟道5c、源5a、漏5b构成的TFT和由电极8、9和绝缘膜9b构成的保持电容。
另外,在布线层4a、9a上形成由氮化硅或氧化硅形成的第1层间绝缘膜6,在该绝缘膜6上形成的接触孔连接着源区5a的源极7a由铝层构成的第1金属层形成。再在第1金属层上形成由氮化硅膜或由氧化硅膜和氮化硅膜的双层结构形成的第2层间绝缘膜13。该第2层间绝缘膜13用CMP法平坦化后,在它上面对每一象素形成成为由铝构成的反射电极的象素电极。另外,硅膜电极区8和象素电极14通过接触孔16进行导电性连接。该连接是用与图1同样的方法,将由钨等高熔点金属构成的连接栓15埋入来实现的。
如上所述,由于在绝缘基板上形成的TFT及在保持电容的上方形成反射电极,所以象素电极区变大,另外,由于保持电容也与图3所示的平面布局图一样,能在反射电极的下面用大面积形成,所以即使是高精细(象素小的)面板,也能获得大的数值孔径(反射率),而且能充分地保持加在各象素上的电压,驱动稳定。
另外,与以上的实施例一样,在反射电极14上形成由氧化硅膜构成的钝化膜17。该钝化膜17的厚度与以上的实施例一样,能获得反射率随入射光的波长变化小的反射型液晶面板用基板。另外,液晶面板用基板的总体结构及液晶面板的结构与图6及图7相同。
另外,在图17中,虽然未配置象图1那样的层间绝缘膜11和遮光层12,但为了防止从邻接的象素电极14的间隙入射的光造成的TFT的漏光现象,也可以与图1等同样地配置这些层。另外,如果假定光会从基板的下方入射,那么还可以在硅膜5a、5b、8的下方再配置遮光层。另外,图中的栅极是位于沟道上方的顶栅式的,但也可以先形成栅极,再通过栅绝缘膜配置成为沟道的硅膜,构成底栅式。再者,外围电路区与图4相同,由于形成氮化硅膜或氧化硅膜和氮化硅膜的双层结构,所以能提高耐湿性能。
(使用本发明的反射型液晶面板的电子装置的说明)图9是使用本发明的液晶面板的电子装置之一例,是将本发明的反射型液晶面板作为光阀用的投影机(投影式显示装置)的主要部分的简略结构的平面图。该图9是沿通过光学元件130的中心的XZ平面的剖面图。本例的投影机由以下部分构成沿系统光轴L配置的光源部110(111是灯,112是反射镜);积分透镜120;由偏振光变换元件130简单构成的偏振光照明装置100;用S偏振光束反射面201反射从偏振光照明装置100出射的S偏振光束的偏振光束分离器200;分离从偏振光束分离器200的S偏振光反射面201反射的光中的蓝色光(B)分量的分色镜412;对被分离的蓝色光(B)进行蓝色光调制的反射型液晶光阀300B;反射并分离蓝色光被分离后的光束中的红色光(R)分量的分色镜413;对被分离的红色光(R)进行调制的反射型液晶光阀300R;对透过分色镜413的剩余的绿色光(G)进行调制的反射型液晶光阀300G;以及用分色镜412、413及偏振光束分离器200对由3个反射型液晶光阀300R、300G、300B调制过的光进行合成,并将该合成光投影到屏幕600上的由投影透镜构成的投影光学系统500。上述3个反射型液晶光阀300R、300G、300B中分别使用了上述的液晶面板。
从光源部110射出的随机偏振光束由积分透镜120分割成多条中间光束后,由在光入射侧有第2积分透镜的偏振光变换元件130变换成偏振方向基本一致的一种偏振光束(S偏振光束),然后到达偏振光束分离器200。从偏振光变换元件130射出的偏振光束被偏振光束分离器200的S偏振光反射面201反射,被反射的光束中的蓝色光束(B)在分色镜412的蓝色光反射层上反射后,由反射型液晶光阀300B进行调制。另外,透过分色镜411的蓝色光反射层的光束中的红色光束(R)在分色镜413的红色光反射层上反射后,由反射型液晶光阀300R进行调制。
另一方面,透过分色镜413的红色光反射层的绿色光束(G)由反射型液晶光阀300G进行调制。这样一来,由各反射型液晶光阀300R、300G、300B调制过的色光用分色镜412、413及偏振光束分离器200进行合成,再由投影光学系统500对该合成后的光进行投影。
另外,构成反射型液晶光阀300R、300G、300B的反射型液晶面板采用TN型液晶(在不加电压时,液晶分子的长轴取向大致平行于面板基板的液晶)或SH型液晶(在不加电压时,液晶分子的长轴取向大致垂直于面板基板的液晶)。
在采用TN型液晶的情况下,在加在被夹在象素的反射电极和与其相对的基板的公用电极之间的液晶层上的电压为液晶的阈值电压以下的象素(OFF象素)上,入射的色光由液晶层将其变成椭圆偏振光,被反射电极反射后,通过液晶层,作为近似于与入射的色光的偏振光轴大致偏移90度的偏振光轴分量的多椭圆偏振光状态的光被反射并出射。另一方面,在液晶层上施加了电压的象素(ON象素)上,入射的色光直接到达反射电极,被反射后,以与入射时同样的偏振光轴被反射并出射。随着加在反射电极上的电压的不同,TN型液晶分子的排列角度发生变化,所以反射光的偏振光轴相对于入射光的角度随着通过象素的晶体管加在反射电极上的电压而变化。
另外,在采用SH型液晶的情况下,在加在液晶层上的电压为液晶的阈值电压以下的象素(OFF象素)上,入射的色光直接到达反射电极,被反射后,以与入射时同样的偏振光轴被反射并出射。另一方面,在液晶层上施加了电压的象素(ON象素)上,入射的色光由液晶层将其变成椭圆偏振光,被反射电极反射后,通过液晶层,作为偏振光轴相对于入射光的偏振光轴大致偏移90度的偏振光轴分量的多椭圆偏振光被反射并出射。与TN型液晶的情况一样,SH型液晶分子的排列角度随着加在反射电极上的电压而变化,所以反射光的偏振光轴相对于入射光的角度随着通过象素的晶体管加在反射电极上的电压而变化。
此外,在采用SH液晶时在液晶层所加电压为液晶的阈值电压以下的象素(OFF象素)中,入射的色光直接到达反射电极并被反射,以与入射时同一偏振光轴直接反射、出射。另一方面,在液晶层上施加了电压的象素(ON象素)中,入射的色光在液晶层变成椭圆偏振光并被反射电极反射,通过液晶层,作为偏振光轴相对于入射光的偏振光轴大致偏移90°的偏振光轴分量的多个椭圆偏振光,进行反射、出射。与TN型液晶相同,由于SH型液晶的液晶分子的排列角度随加在反射电极上的电压而变化,所以,反射光的偏振光轴相对于入射光的角度随通过象素的晶体管加到反射电极上的电压是可以变化的。
从这些液晶面板的象素上反射的色光中,S偏振光分量不透过反射S偏振光的偏振光束分离器200,另一方面,P偏振光分量透过。由透过该偏振光束分离器200的光形成图象。因此,在将TN型液晶用于液晶面板中时,OFF象素的反射光到达投影光学系统500,ON象素的反射光不到达透镜,所以被投影的图象呈正常的白色显示,在采用SH液晶的情况下,OFF象素的反射光不到达投影光学系统,ON象素的反射光到达投影光学系统500,所以呈正常的黑色显示。
反射型液晶面板与透射型有源矩阵型液晶面板相比,能取得大的象素电极,所以能获得高反射率,能以高反差投影高精细的图象,同时能使投影机小型化。
如用图7所述,液晶面板的外围电路用遮光板覆盖、与在相对于对置电极的位置形成的对置电极一同被施加相同的电位(例如LC公用电位,但如果没有LC公用电位时,就变成了与象素部的对置电极不同的电位,所以这时变成与象素部的对置电极分离的外围对置电极。),所以加在介于两者之间的液晶上的电压大致为0V,液晶变成与OFF状态相同。因此,用TN型液晶面板能与正常的白色显示一致地使图象区的周边呈全白显示,用SH型液晶面板能与正常的黑色显示一致地使图象区的周边呈全黑显示。
由作为色分离装置的偏振光束分离器200将上述光源110的光分成3原色光,形成作为对被分离的红色光进行调制的第1反射型液晶面板的光阀300R的钝化膜的氧化硅膜的厚度设定在1300~1900埃的范围内,形成作为对绿色光进行调制的第2反射型液晶面板的光阀300G的钝化膜的氧化硅膜的厚度设定在1200~1600埃的范围内,形成作为对蓝色光进行调制的第3反射型液晶面板的光阀300B的钝化膜的氧化硅膜的厚度设定在900~1200埃的范围内,这样就能获得所希望的结果。
如果遵照上述实施例,则能充分地保持加在反射型液晶面板300R、300G、300B的各象素电极上的电压,同时由于象素电极的反射率非常高,所以能获得鲜明的图象。
图15是分别表示采用了本发明的反射型液晶面板的电子装置例的外观图。在这些电子装置中,不是作为与偏振光束分离器一起使用的光阀,而是作为直观式的反射型液晶面板使用,所以反射电极不需要呈完全的镜面状,为了扩大视场角,当然最好带有适当的凹凸,但除此以外的主要构件与光阀的情况基本相同。
图15(a)是表示便携式电话的斜视图。1000表示便携式电话本体,其中的1001是使用了本发明的反射型液晶面板的液晶显示部。图15(b)是表示手表式电子装置的示意图。1100是表示手表本体的斜视图。1101是使用了本发明的反射型液晶面板的液晶显示部。该液晶面板与现有的钟表显示部相比,具有高精细的象素,所以还能显示电视图象,能实现手表型的电视机。
图15(c)是表示文字处理机、个人计算机等便携式信息处理装置的示意图。1200表示信息处理装置,1202表示键盘等输入部,1206表示使用了本发明的反射型液晶面板的显示部,1204表示信息处理装置本体。各电子装置是用电池驱动的电子装置,所以如果使用不带光源灯的反射型液晶面板,则能延长电池寿命。另外,如本发明所示,由于能将外围电路装在液晶面板内,所以能大幅度减少零件个数,能更加轻量化和小型化。
另外,在以上的实施例中,作为液晶面板中的液晶,说明了TN型和各向同性取向的SH型,但换成其它类型的液晶当然也能实施。
如上所述,本发明由于在反射型液晶面板用基板上设有钝化膜,所以具有提高可靠性的效果。而且,作为钝化膜是使用膜厚为500~2000埃的氧化硅膜,所以膜厚的偏差对象素电极的反射率的影响小,同时特别是由于膜厚为500~2000埃的氧化硅膜的反射率对波长的依赖性小,所以具有能减小反射率变化的效果。
再者,由于根据入射光的波长,将作为钝化膜的氧化硅膜的厚度设定在各适当的范围内,例如,在反射蓝色光的象素电极上为900~1200埃,在反射绿色光的象素电极上为1200~1600埃,在反射红色光的象素电极上为1300~1900埃,所以能将对各色光的反射率的偏差抑制在1%以下,能提高液晶面板的可靠性,同时具有能提高将这样的反射型液晶面板作为光阀使用的投影式显示装置的图象质量的效果。
再者,根据与在它上面形成的取向膜的厚度之间的关系设定成为钝化膜的氧化硅膜的厚度,同时将取向膜的厚度设定在300~1400埃的范围,所以能有效地防止液晶折射率的变化。
另外,在同一基板上形成象素电极呈矩阵状配置的象素区和在其外侧形成移位寄存储器和控制电路等外围电路的反射型液晶面板中,由于在象素区的上方形成由氧化硅膜构成的钝化膜,在上述外围电路的上方形成由氮化硅膜构成的钝化膜,所以通过在周边使用氮化硅膜,能更可靠地保护外围电路,能提高可靠性。
再者,将在反射电极上设钝化膜代之以由氧化硅膜构成的钝化膜,或者与由氧化硅膜构成的钝化膜并用,且在反射电极和它下面的金属层之间的层间绝缘膜上设氮化硅膜,因此能提高耐湿性,能防止象素开关用MOSFET和保持电容被水等腐蚀。
另外,由于在由氧化硅膜构成的钝化膜上设有形成了氮化硅膜的重叠保护结构,用它盖在从象素区的周边区上形成的层间绝缘膜和对该周边区进行遮光的金属层的重叠体的端部直至其侧壁上,因此,提高了容易进水的液晶面板端部的防水性能,同时它成为增强构件,具有能提高耐久性的效果。
权利要求
1.一种液晶面板,通过在基板上配置反射电极呈矩阵形的液晶面板用基板和对置基板将液晶夹着,其特征在于具有在上述液晶面板用基板和上述对置基板之间配置的密封材料;和在上述液晶面板用基板的上述密封材料的配置区域上形成的重叠了氧化硅和氮化硅的钝化膜。
2.一种液晶面板用基板,设有在基板上反射电极以矩阵形配置而成的象素区域和该象素区域周边的周边区域,其特征在于在上述象素区域中,形成有覆盖上述反射电极的由氧化硅膜构成的第1钝化膜;在上述周边区域中,形成有重叠了层间绝缘膜和金属层的重叠体,在上述周边区域的端部,设有用于配置密封材料的密封部,在上述重叠体上与该密封部重叠地形成有第2钝化膜;上述第2钝化膜由氧化硅膜和在该氧化硅膜上重叠的氮化硅膜构成,上述氧化硅膜与上述第1钝化膜由同一层构成。
3.根据权利要求2所述的液晶面板用基板,其特征在于在上述周边区域设有与上述反射电极同一层的遮光层,在上述遮光层的下方设有层间绝缘膜,该层间绝缘膜具有氧化硅膜和氮化硅膜的重叠结构。
4.一种液晶面板,其特征在于在权利要求1或权利要求2所述的液晶面板用基板和对置基板之间,夹着液晶相对配置而构成。
全文摘要
一种液晶面板用基板,在基板上形成反射电极以矩阵形配置的象素区域,并在上述象素区域的周边的上述基板上设置周边电路而构成,其特征在于在上述反射电极上,由氧化硅形成第1钝化膜;和在覆盖上述周边电路而形成的叠层构造的侧面上,形成由氮化硅构成的第2钝化膜。
文档编号G02F1/133GK101093323SQ20071010266
公开日2007年12月26日 申请日期1997年10月21日 优先权日1996年10月22日
发明者安川昌宏 申请人:精工爱普生株式会社