专利名称:偏振分光合光器及其制造方法
技术领域:
本发明涉及一种光学器件,尤其涉及一种用于对偏振光进行分光或合光的偏振分光合光器以及这种偏振分光合光器的制造方法。
背景技术:
随着网络通讯的发展,光纤网络的数据传送速度越来越快,对光纤网络的容量要求也越来越高。现有光纤网络传输系统大量使用保偏器件,如偏振光分束合束器(PMBC)以及偏振耦合器(PMTC)等,用于对偏振光进行分光、合光以及分能量等。在传统1·的掺铒光纤放大器或拉曼放大器系统中,由于对泵浦光源的消光比(ER)要求不高,一般达到18分贝就可以满足工作要求。但随着40GB或更高容量的光纤传输系统的发展,对保偏器件的消光比有更高的要求。参见图1,现有的一种偏振分光合光器具有一个双折射晶体10,双折射晶体10的入射面11外设有两个单光纤准直器13、15,单光纤准直器13、15内分别安装有保偏光纤14、16。在双折射晶体10的出射面12外侧设有一个单光纤准直器17,单光纤准直器17内安装有单模光纤18。本所指的单模光纤可以是保偏单模光纤,也可以是非保偏单模光纤,图I中的单模光纤18为保偏光纤。从保偏光纤14出射的光束Lll偏振态固定,垂直于纸面方向,而从保偏光纤16出射的光束L12偏振态也固定,平行于纸面方向,因此,光束Lll与光束L12为偏振态互相垂直的两束光束。光束Lll与光束L12从入射面11入射到双折射晶体10后,分别形成光束L13、L14,且偏振态不发生变化。最后,光束L13、L14从出射面12出射,并合光形成光束L15,光束L15入射到单光纤准直器17内的保偏光纤18中,从而实现对光束的合光。当然,根据光传播的可逆原理,图I所示的偏振分光合光器还可以作为偏振分光器件使用。作为偏振分光器件使用时,光束从保偏光纤18出射,并经过双折射晶体10分光,分光后的两束光束并平行地从双折射晶体10出射,最后分别入射到保偏光纤14、16中。然而,光束经过双折射晶体10后分成的两束光束之间的距离与光束在双折射晶体10内经过的路程成正比,且单光纤准直器13、15为圆筒状,且直径较大,若为确保从双折射晶体10出射的光束能够准确且平行地入射到保偏光纤14、16内,需要将双折射晶体10的长度设置得很长,这样将造成偏振分光合光器的体积很大,且生产成本很高。参见图2,现有另一种偏振分光合光器设有一个偏振分光棱镜20,偏振分光棱镜20内设有分光膜21,在入射面22外设有单光纤准直器25,单光纤准直器25内安装有保偏光纤26。在偏振分光棱镜20的一个出射面23外设有单光纤准直器27,单光纤准直器27内安装有保偏光纤28,偏振分光棱镜20的另一个出射面24外设有单光纤准直器29,单光纤准直器29内安装有保偏光纤30。从保偏光纤26出射的光束L21及从保偏光纤28出射的光束L22入射到分光膜21后,合光形成一束光束L23,由于光束L21与光束L22的偏振态相互垂直,因此合光形成的光束L23内包含两个相互垂直的偏振态,光束L23入射到保偏光纤30内。
由于该偏振分光合光器的三个单光纤准直器25、27、29分别位于偏振分光棱镜20的三个方向外,也会导致偏振分光合光器的体积较大。因此,公告号为CN2482108Y的中国实用新型专利公开了名为“一种新型偏振合束器”的发明创造,该偏振合束器的结构如图3所示。偏振合束器具有渥拉斯顿棱镜31、双光纤准直器33以及一个单光纤准直器34,双光纤准直器33内安装有两根平行的保偏光纤,而单光纤准直器34内安装有一根单模光纤,渥拉斯顿棱镜由两片晶轴互相的晶体做成的楔角片组成,用于对光束进行分光或合光。双光纤准直器33内传输的两束光束L31、L32的偏振态相互垂直,且两束光束L31、L32在渥拉斯顿棱镜两晶体粘接面32上合光形成光束L33,光束L33经单光纤准直器34内的单模光纤出射。虽然上述的偏振合光器体积较小,但双光纤准直器在实际应用中对消光比的调节非常不理想。参见图4与图5,保偏光纤36是横截面呈圆形的单模光纤,保偏光纤36的中 部为纤芯37,在纤芯37的两侧分别设有通孔38、39,在通孔38、39内分别填充有不同的透光材料。两个通孔38、39的圆心连接线经过横截面的圆心,且该连线为保偏光纤36的快轴,即Y轴,与快轴垂直的为保偏光纤36的慢轴,即X轴。当传播在保偏光纤36内光束的偏振态与快轴或慢轴平行时,光束的偏振态将保持恒定,不会发生改变。并且,当入射到保偏光纤36的线性偏振光束偏振态与快轴垂直或平行时,光束的消光比最高,随着光束偏振态与快轴形成的夹角增大,消光比逐渐减小,因此通过旋转安装有保偏光纤的单光纤准直器能够调节偏振分光合光器的消光比。然而,双光纤准直器难以像单光纤准直器一样容易实现对消光比的调节,因此上述的偏振合束器在生产过程中,需要消耗大量的时间在调节器件的消光比上,大大增加了偏振合束器的生产难度,也增加其生产成本。此外,由于保偏光纤36是由光纤自身有应力才能维持保偏的性能,但双光纤准直器33内的胶与保偏光纤36的膨胀系数不同,在高低温下胶会对保偏光纤36产生应力,在双光纤准直器33的双线毛细管内胶的分布对保偏光纤36来说不是圆对称的分布的,因此应力也不是圆对称的。非圆对称应力损害保偏光纤36的保偏性能,因此双光纤准直器33的消光比难以做得很高。对于入射到双折射晶体的线性偏振光,当偏振光的偏振态与双折射晶体的光轴之间形成一定角度时,偏振光将在双折射晶体内分解成两束光束,且两束光束的能量与该角度有关,如图6所。迎着光的传输方向看,假设一束线性偏振光以偏振态与双折射晶体的光轴在传输面上成一定角度e入射到双折射晶体,且该入射光束的能量为P,该光束入射到双折射晶体后分解成寻常光O光及非寻常光e光,两束光束的能量分布为Po及Pe。根据双折射晶体的分光原理可以得知P0 = sin2 0 *P (式 I) Pe = cos2 0 *P(式 2)因此,调节入射到双折射晶体的光束的偏振态与双折射晶体的光轴之间的角度0,能够调节分光后的两束光束的能量
发明内容
本发明的主要目的是提供一种体积小且生产成本低、方便调节消光比的偏振分光合光器。本发明的另一目的是提供一种低成本地制造体积小、调节消光比方便的偏振分光合光器的方法。为了实现上述的主要目的,本发明提供的偏振分光合光器包括安装有第一保偏光纤的第一单光纤准直器、安装有第二保偏光纤的第二单光纤准直器以及安装有单模光纤的第三单光纤准直器,并设有一 个分光合光器件,第三单光纤准直器位于分光合光器件的第一光传输面外,其中,第一单光纤准直器和/或第二单光纤准直器与分光合光器件的第二光传输面之间设有光方向变换器件,光方向变换器件设有至少一个反射面。由上述方案可见,由于第一单光纤准直器及第二单光纤准直器中的至少一个与第二光传输面之间设有光方向变换器件,光方向变换器件能够改变光束的传播方向。若分光合光器件为双折射晶体,光方向变换器件能够将从双折射晶体平行出射或入射的两束光束之间的距离增大,减少双折射晶体的长度,进而减少偏振分光合光器的体积,也降低生产成本。若分光合光器件为偏振分光棱镜,则光方向变换器件能改变至少一束出射光束或入射光束的方向,所有的单光纤准直器的轴线均可以平行设置,从而减小偏振分光合光器的体积。并且,由于偏振分光合光器使用三个独立的单光纤准直器,能够方便地对每一个单光纤准直器进行旋转,从而可以独立地调节每一个单光纤准直器内光纤传输光束的消光t匕,偏振分光合光器的消光比可以做的很高,满足现代光纤传输系统的要求。一个优选的方案是,安装到第三单光纤准直器内的单模光纤为第三保偏光纤。这样,偏振分光合光器的所有单模光纤均为保偏光纤,有利于对传输的光束的偏振态的保持,也有利于偏振分光合光器作为偏振稱合器使用。进一步的方案是,分光合光器件为双折射晶体,第一单光纤准直器及第二单光纤准直器位于双折射晶体的第一侧外,第三单光纤准直器位于双折射晶体的第二侧外,双折射晶体的第一侧与第二侧相对设置,且光方向变换器件为斜方棱镜,斜方棱镜的第一反射面与第二光传输面之间形成的夹角为45°,斜方棱镜的第二反射面与第一单光纤准直器的轴线和/或第二单光纤准直器的轴线之间形成的夹角为45°。由此可见,从双折射晶体出射或入射的两束平行的光束中,至少一束经过斜方棱镜,经过斜方棱镜的光束传播方向不变但发生平行位移,这样可以满足两个单光纤准直器体积较大的要求,且不需要使用长度较长的双折射晶体,减小偏振分光合光器的体积。另一个优选的方案是,分光合光器件为偏振分光棱镜,第一单光纤准直器及第二单光纤准直器位于偏振分光棱镜的第一侧外,第三单光纤准直器位于偏振分光棱镜的第二侦lJ夕卜,偏振分光棱镜的第一侧与偏振分光棱镜的第二侧相对设置,且光方向变换器件为三角棱镜,三角棱镜的反射面与第一单光纤准直器的轴线和/或第二单光纤准直器的轴线之间形成的夹角为45°。可见,通过三角棱镜将从偏振分光棱镜的出射或入射的光束进行反射,确保三个单光纤准直器能够轴线平行地设置,减少偏振分光合光器的体积。为了实现上述的另一目的,本发明提供的偏振分光合光器的制造方法包括将安装有第一保偏光纤的第一单光纤准直器以及安装有第二保偏光纤的第二单光纤准直器布置在基板上,并在基板上放置一个分光合光器件,将安装有单模光纤的第三单光纤准直器放置在分光合光器件的第一光传输面外,并且,在第一单光纤准直器和/或第二单光纤准直器与分光合光器件的第二光传输面之间设置光方向变换器件,光方向变换器件设有至少一个反射面,且该反射面与第一单光纤准直器的轴线和/或第二单光纤准直器的轴线之间形成的夹角为45°,最后绕安装有出射光纤的单光纤准直器的轴线旋转单光纤准直器,调节偏振分光合光器的消光比。由上述方案可见,制造偏振分光合光器时,在第一单光纤准直器及第二单光纤准直器中的至少一个与第二光传输面之间设置光方向变换器件,能够改变至少一束光束的传播方向,可以使两束平行的光束之间的距离增大,或者将原本相互垂直的光束变为平行地传播,从而可以减少双折射晶体的长度,或者使所有的单光纤准直器的轴线平行设置,减少偏振分光合光器的体积,也降低其生产成本。此外,由于偏振分光合光器不使用双光纤准直器,无需消耗大量的时间对双光纤准直器进行调节以满足消光比要求,生产工艺简单。同时,由于使用三个独立的单光纤准直器,每一个单光纤准直器均可以独立地旋转,从而灵活方便地调节偏振分光合光器的消光比。
图I是现有一种偏振分光合光器的结构不意图。图2是现有另一种偏振分光合光器的结构不意图。图3是现有第三种偏振分光合光器的结构示意图。图4是保偏光纤的结构示意图。图5是保偏光纤的横截面不意图。图6是光经过双折射晶体时光分量能量分配的示意图。图7是本发明偏振分光合光器第一实施例的结构原理图。图8是本发明偏振分光合光器第一实施例用作偏振合光器时的光路图。 图9是本发明偏振分光合光器第二实施例的结构原理图。图10是本发明偏振分光合光器第三实施例的结构原理图。图11是本发明偏振分光合光器第四实施例的结构原理图。图12是本发明偏振分光合光器第五实施例的结构原理图。图13是本发明偏振分光合光器第六实施例的结构原理图。以下结合附图及实施例对本发明作进一步说明。
具体实施例方式本发明的偏振分光合光器用于对偏振光进行分光或合光,既可以作为偏振光分束合束器使用,又可以作为偏振耦合器使用。第一实施例参见图7,本实施例的偏振分光合光器具有作为分光合光器件的双折射晶体40,双折射晶体40具有一个入射面41,并设有与入射面41相对且平行的出射面42,在入射面41外设有单光纤准直器51,单光纤准直器51内安装有单模光纤52。本实施例中,单模光纤52为普通的单模光纤,并非保偏光纤。在双折射晶体40的出射面42外设有两个单光纤准直器53、55,单光纤准直器53、55内分别安装有保偏光纤54、56。从图7可见,三个单光纤准直器51、53、55的轴线相互平行,且单光纤准直器51位于双折射晶体40的一侧外,而单光纤准直器53、55位于双折射晶体40的另一侧外。在出射面42与单光纤准直器55之间设有一个斜方棱镜43,斜方棱镜43作为本实施例的光方向变换器件,其具有两个反射面44、45以及两个透光面46、47。反射面44与反射面45相互平行,且与出射面42之间形成45°的夹角,反射面45与单光纤准直器55的轴线之间也形成45°的夹角。透光面46、47分别连接在两个反射面44、45之间,且与出射面42平行。
本实施例中,反射面44、45上镀有高反膜,以提高光反射效率,在透光面46、47上镀有增透膜。光束L41从单模光纤52出射后,入射到双折射晶体40的入射面41,光束L41包含有偏振态相互垂直的光分量,双折射晶体40的光轴如图7所示。光束L41入射到双折射晶体40后,形成两束光束L42、L43,且两束光束L42、L43的偏振态相互垂直。光束L42的偏振态垂直于纸面,而光束L43的偏振态平行于纸面。光束L42经出射面42出射后形成光束L44,光束L44的偏振态与光束L42的偏振态相同,并入射到保偏光纤54内。光束L43从出射面42出射后,形成光束L45,光束L45平行于光束L44,且光束L45的偏振态与光束L43的偏振态相同。光束L45经斜方棱镜43的透光面46入射到反射面44上,并反射形成光束L46,光束L46经反射面45后形成光束L47,光束L47经透光面47出射后,入射到保偏光纤56中。由于斜方棱镜43的两个反射面44、45均与出射面42、单光纤准直器55的轴线形成45°的夹角,因此光束L47的传播方向与光束L44的传播方向平行。本实施例中,光束L44与光束L45之间的距离不需要太大,只要确保两束光束L44、L45的光斑相互不重叠即可。这样,双折射晶体40的长度不需要很长,减少偏振分光合光器的体积,也降低生产成本。由于光束L45将经过斜方棱镜43后形成光束L47,光束L47与光束L45相比,传播方向并未发生改变,仅是与光束L44的距离发生改变,即与光束L44之间的距离增大,这样能够确保光束L44入射到保偏光纤53中,也能确保光束L47入射到保偏光纤55中。制造偏振分光合光器时,首先在一块基板上布置单光纤准直器53、55,当然,单光纤准直器53、55内分别安装有保偏光纤54、56,同时在基板上放置双折射晶体40,使单光纤准直器53、55位于双折射晶体40的出射面42外侧。然后,在基板上布置安装有单模光纤52的单光纤准直器51,使单光纤准直器51位于双折射晶体40的入射面41外侧。接着,在出射面42与单光纤准直器55之间放置斜方棱镜43,当然,需要确保斜方棱镜43的反射面44、45与出射面42之间形成45°的夹角。布置上述器件后,需要对三个单光纤准直器51、53、55进行调节,首先需要调节单光纤准直器51、53、55的位置与角度,使单光纤准直器51、53、55的轴线垂直于入射面41,并且确保单光纤准直器53、55之间有足够的距离,能够分别接收光束L44、L47。当然,三个单光纤准直器51、53、55应该是能够沿自身轴线自由旋转的,由于单光纤准直器51、53、55均为圆筒状,因此可以单光纤准直器51、53、55放置在一个具有圆型转盘的托架上。然后,分别沿其自身的轴线旋转单光纤准直器53、55,调节其消光比。消光比的调节是确保入射到保偏光纤54、56内光束L44、L47的偏振态基本平行于保偏光纤54、56的快轴或慢轴。当然,实际应用时也可以根据实际需要,通过改变角度调节夹具的精度或参数测量仪器的准度来保证消光比满足要求,因为消光比取决于入射到保偏光纤的光束的偏振态与保偏光纤的快轴或慢轴之间的夹角大小。当然,将上述器件放置在基板上并调节单光纤准直器51、53、55后,可以将基板以及上述器件封装在一个密封的盒子内,形成完整的产品出售。上面描述了本实施例作为偏振分光器的使用,根据光路可逆原理,本实施例也可以作为偏振合光器使用。此时,双折射晶体40的入射面41与出射面42相互调换,且原先的入射光纤变为出射光纤,原先的出射光纤变为入射光纤。
参见图8,从保偏光纤55、56出射的两束光束L51、L52的偏振态相互垂直。光束L51直接入射到双折射晶体40中,而光束L52入射到斜方棱镜43的反射面45后形成光束L53,光束L53入射到反射面44后形成光束L54,光束L54与光束L51平行。光束L54也入射到双折射晶体40中,形成光束L 56。光束L55、L56在双折射晶体40内传播时,两束光束L55、L56之间的距离不断缩小,并沿着同一光路出射,即合光形成光束L57,光束L57入射到作为出射光纤的单模光纤52中。可见,双折射晶体40的入射面41、出射面42可以相互调换,因此入射面41、出射面42均为光传输面。由于本实施例使用斜方棱镜43将两束平行的光束的距离增大,双折射晶体40的长度不需要很长,也能实现入射到保偏光纤54、56的光束之间距离较大,减小偏振分光合光器的体积。此外,三个单光纤准直器51、53、55可以相互独立地绕自身轴线旋转,对消光比的调节十分灵活方便,能够提高偏振分光合光器的消光比。第二实施例参见图9,本实施例偏振分光合光器的结构与第一实施例基本相同,只是安装到单光纤准直器51内的不是普通单模光纤,而是保偏光纤60。从保偏光纤60出射的光束L61具有稳定的偏振态,如图9所示的,光束L61的偏振态与纸面之间形成的夹角为0。由于光束L61的偏振态与双折射晶体40的偏振态并不垂直,也不平行,因此光束L61入射到双折射晶体40后形成两束偏振态相互垂直的光束L62、L63,且光束L62、L63的能量与夹角9有关。因此,通过调节光束L61偏振态与双折射晶体40光轴之间的夹角0能够调节两束光束L62、L63的能量。光束L62经双折射晶体40出射后,形成光束L64并入射到保偏光纤54中,而光束L63经双折射晶体40出射后形成光束L65,光束L65经过斜方棱镜43的反射面44后形成光束L66,光束L66经过反射面45后形成与光束L64平行的光束L67,最后光束L67入射到保偏光纤56中。这样,本实施例的偏振分光合光器可以作为偏振I禹合器使用,即可以对入射光束分成的两束光束的能量进行分配。根据光路可逆原理,本实施例也可以作为合光器件使用,具体光路不作赘述。由于本实施例也是通过斜方棱镜43将两束平行的光束之间的距离增大,从而在使用较短的双折射晶体40的情况下满足将两束光束分别入射到两个单光纤准直器的要求,减小偏振分光合光器的体积,也有利于消光比的调节。制造本实施例的偏振分光合光器的方法与第一实施例基本相同,只是在单光纤准直器51内安装保偏光纤60,而不是安装普通的单模光纤,其他步骤相同,不再赘述。第三实施例参见图10,本实施例具有一个偏振分光棱镜70,偏振分光棱镜70作为分光合光器件,具有分光膜71,并具有入射面72以及出射面73、74。由于光路可逆,因此出射面72以及出射面73、74是可以相互调换的,因此入射面72以及出射面73、74均为光传输面。 单光纤准直器81位于入射面72外侧,且单光纤准直器81内安装有单模光纤82。单光纤准直器83、85均位于出射面74的外侧,单光纤准直器83、85内分别安装有保偏光纤84、86。本实施例中,单光纤准直器81、83、85的轴线相互平行。在出射面73外设有作为光方向变换器件的三角棱镜76,三角棱镜76具有反射面77以及两个透光面78、79,反射面77与出射面73之间形成45°的夹角,反射面77与单光纤准直器83轴线之间也形成45°的夹角。在反射面77上镀有高反膜,而在透光面78、79上镀有增透膜。本实施例中,入射面72为第一类光传输面,从单模光纤82出射的光束L71经入射面72入射到偏振分光棱镜70内。光束L71包含有偏振态相互垂直的两个光分量,且光束L71入射到分光膜72后,分别形成反射光束L72以及透射光束L73,反射光束L72经出射面73出射,而光束L73经出射面74出射。本实施例中,出射面73、74均为第二类光传输面。光束L73的偏振态固定,即平行于纸面,并经出射面74出射后入射到保偏光纤86中。光束L72的偏振态与光束L73的偏振态垂直,入射到三角棱镜76的反射面77后形成光束L74,光束L74经过透光面79后入射到保偏光纤84中。从图10可见,光束L74与光束L73平行,因此,三角棱镜76将原本垂直于光束L73传播方向传输的光束L72改变为平行于光束L73传播方向传输的光束L74。这样,单光纤准直器83、85可以轴线平行地设置,减小偏振分光合光器的体积。制造偏振分光合光器时,先将安装有单模光纤82的单光纤准直器81、安装有保偏光纤84、86的单光纤准直器83、85放置在一块基板上,并在基板上放置偏振分光棱镜70,使单光纤准直器81位于偏振分光棱镜70的一侧外,而单光纤准直器83、85位于偏振分光棱镜70的另一侧外。然后,在出射面73外设置三角棱镜76,使三角棱镜76的反射面77与出射面73之间形成45°的夹角。最后,需要对单光纤准直器81、83、85进行调节,包括调节其位置与角度,确保单光纤准直器81、83、85的轴线均垂直于入射面72,且单光纤准直器81的轴线与单光纤准直器85的轴线在同一直线上,单光纤准直器83的轴线与反射面77之间形成45°的夹角,同时确保保偏光纤84能够接收到光束L74。为了调节偏振分光合光器的消光比,三个单光纤准直器81、83、85应该能够绕自身的轴线旋转。若希望偏振分光合光器具有较高的消光比,可调节入射到保偏光纤84、86的光束L74、L73的偏振态基本平行于保偏光纤84、86的快轴或慢轴。这样,偏振分光合光器的消光比可灵活地调节,且能够将偏振分光合光器的消光比做得很高,满足现代光纤传输系统的要求。
第四实施例参见图11,本实施例偏振分光合光器的结构与第三实施例结构基本相同,只是单光纤准直器81内安装的不是普通单模光纤,而是保偏光纤87,从保偏光纤87出射的光束L81偏振态固定,且与纸面之间形成的夹角为0。这样,光束L81入射到分光膜71后形成的光束L82、L83的能量与夹角0相关,通过调节夹角0,可以调节光束L82、L83的能量,从而实现光束的偏振耦合。光束L83从偏振分光棱镜70出射后入射到保偏光纤86,光束L82从偏振分光棱镜70出射后,入射到反光面77并形成光束L84,光束L84入射到保偏光纤84中。制造偏振分光合光器的步骤与第三实施例基本相同,仅是安装到单光纤准直器81的普通单模光纤改为保偏光纤87即可。第五实施例
参见图12,本实施例的偏振分光合光器具有作为分光合光器件的偏振分光棱镜101,偏振分光棱镜101内设有分光膜102,并设有入射面103以及出射面104、105,本实施例中,入射面103以及出射面104、105均为光传输面,且入射面103为第一类光出射面,而出射面104、105为第二类的光传输面。在偏振分光棱镜101的同一侧外设有三个单光纤准直器121、123、125,三个单光纤准直器121、123、125内分别安装有单模光纤122、保偏光纤124、126。单光纤准直器121位于入射面103外侧,向偏振分光棱镜101出射光束L91。在出射面105外设有作为光方向变换器件的三角棱镜106,三角棱镜106的反射面107与出射面105之间形成45°的夹角,并且与单光纤准直器125的轴线之间形成45°的夹角。本实施例中,在反射面107上镀有高反膜,而在透光面108、109上镀有增透膜。在出射面104外也设有三角棱镜110,三角棱镜110具有相互垂直的两个反射面 111、112以及透光面113,反射面111、112上镀有高反膜,而在透光面113上镀有增透膜。反射面111与出射面104之间形成45°的夹角,而反射面112与单光纤准直器123的轴线之间也形成45°的夹角。光束L91包含偏振态相互垂直的两个光分量,且从单模光纤122出射后,在分光膜102上分成偏振态相互垂直的两束光束L92、L93,光束L92经过反射面111反射后形成光束L94,光束L94经反射面112反射后形成光束L95,光束L95入射到保偏光纤124中。光束L93经反射面107反射后形成光束L96,且光束L96与光束L95平行,光束L96入射到保偏光纤126中。本实施例为反射型偏振分光合光器,通过两个三角棱镜106、110分别对两路出射光束进行反射,确保作为出射光纤的保偏光纤124、126以及作为入射光纤的单模光纤122位于偏振分光合光器的同一侧上,且三个单光纤准直器121、123、125的轴线相互平行,有利于偏振分光合光器的封装与使用。此外,由于三个单光纤准直器121、123、125均平行设置,能够减小偏振分光合光器的体积。且三个单光纤准直器121、123、125应能绕自身的轴线自由旋转,从而方便地调节偏振分光合光器的消光比。制造偏振分光合光器时,首先将安装有单模光纤122的单光纤准直器121、安装有保偏光纤124、126的单光纤准直器123、125放置在基板上,并在基板上放置偏振分光棱镜101,在偏振分光棱镜101的出射面104外放置三角棱镜106,在出射面105外放置三角棱镜110。当然,三角棱镜106、110反射面的角度需要满足前述所描述的要求。然后,对单光纤准直器121、123、125的位置、角度进行调节,使得三个单光纤准直器121、123、125的轴线均垂直于入射面103。最后,绕自身的轴线旋转单光纤准直器123、125,从而调节偏振分光合光器的消光比。 第六实施例参见图13,本实施例的偏振分光合光器具有作为分光合光器件的偏振分光棱镜130,且设有三角棱镜136,在偏振分光棱镜130的同一侧外设有三个单光纤准直器141、143、145,三个单光纤准直器141、143、145中分别安装有单模光纤142及保偏光纤144、146。偏振分光棱镜130具有分光膜131及两个光传输面132、133,并设有反光面134。三角棱镜136具有反射面137以及两个透光面138、139,反射面137与光传输面133之间形成45°的夹角,且反射面137与单光纤准直器143的轴线之间也形成45°的夹角。从单模光纤142出射的光束L131包含两个偏振态相互垂直的光分量,光束L131入射到分光膜131后分成两束偏振态相互垂直的光束L132、L133,光束L132经反光面134反射后形成光束L134,光束L134经反射面137后形成光束L135,光束L135入射到保偏光纤144中。光束L133经过反射面134后形成光束L136,光束L136与光束L135平行,且光束L136入射到保偏光纤146中。制造偏振分光合光器时,首先将安装有单模光纤142的单光纤准直器141、安装有保偏光纤144、146的单光纤准直器143、145放置在基板上,并在基板上放置偏振分光棱镜130,三个单光纤准直器141、143、145位于偏振分光棱镜130的同一侧。当然,放置单光纤准直器141、143、145时需要确保每一个单光纤准直器141、143、145均能绕自身轴线旋转。然后,在偏振分光棱镜130的光传输面133外设置三角棱镜136,确保三角棱镜136的反射面137与光传输面133之间形成45°的夹角。接着,调节三个单光纤准直器141、143、145的角度及位置,确保单光纤准直器141、143、145的轴线相互平行,且垂直于光传输面132。最后,绕自身轴线旋转单光纤准直器143、145,调节偏振分光合光器的消光比。由上述的多个实施例可见,本发明主要是在分光合光器件的光传输面外设置光方向变换器件,如斜方棱镜或三角棱镜,改变光的传播方向,从而确保入射的光束与出射的光束平行,且两束入射光束或两束出射光束之间具有较大的距离,满足每一束光束均能入射到一根保偏光纤的要求,且每一根单模光纤或保偏光纤均安装到一个独立的单光纤准直器内,通过将单光纤准直器绕自身轴线旋转,方便地调节偏振分光合光器件的消光比。这样,偏振分光合光器的体积可以做得较小,且生产工艺简单,消光比调节灵活方便,消光比还可以调节的很高,满足现代的光纤网络传输系统工作需要。此外,第五实施例及第六实施例也可以通过将安装到单光纤准直器121、141中的普通单模光纤122、142改为保偏光纤来制作偏振稱合器。当然,上述方案仅是本发明优选的实施方式,实际应用时还有更多的改变,例如,上述所有实施例既可以作为偏振分光器件使用,又可以作为偏振合光器件使用,这是根据光路可逆原理决定的;又例如,第一实施例与第二实施例中,可以在双折射晶体的出射面外设置两个斜方棱镜,从双折射晶体出射的每一束光束均经过一个斜方棱镜,类似这样的改变也能实现本发明的目的,这样变化也应该包括在本发明权 利要求的保护范围内。
权利要求
1.偏振分光合光器,包括安装有第一保偏光纤的第一单光纤准直器、安装有第二保偏光纤的第二单光纤准直器以及安装有单模光纤的第三单光纤准直器,并设有一个分光合光器件,所述第三单光纤准直器位于所述分光合光器件的第一光传输面外;其特征在于所述第一单光纤准直器和/或所述第二单光纤准直器与所述分光合光器件的第二光传输面之间设有光方向变换器件,所述光方向变换器件设有至少一个反射面。
2.根据权利要求I所述的偏振分光合光器,其特征在于所述单模光纤为第三保偏光纤。
3.根据权利要求I或2所述的偏振分光合光器,其特征在于所述分光合光器件为双折射晶体,所述第一单光纤准直器及所述第二单光纤准直器位于所述双折射晶体的第一侧外,所述第三单光纤准直器位于所述双折射晶体的第二侧外, 所述双折射晶体的第一侧与所述双折射晶体的第二侧相对设置。
4.根据权利要求3所述的偏振分光合光器,其特征在于所述光方向变换器件为斜方棱镜,所述斜方棱镜的第一反射面与所述第二光传输面之间形成的夹角为45°,所述斜方棱镜的第二反射面与所述第一单光纤准直器的轴线和/或所述第二单光纤准直器的轴线之间形成的夹角为45°。
5.根据权利要求I或2所述的偏振分光合光器,其特征在于所述分光合光器件为偏振分光棱镜,所述第一单光纤准直器及所述第二单光纤准直器位于所述偏振分光棱镜的第一侧外,所述第三单光纤准直器位于所述偏振分光棱镜的第二侦1J夕卜,所述偏振分光棱镜的第一侧与所述偏振分光棱镜的第二侧相对设置。
6.根据权利要求5所述的偏振分光合光器,其特征在于所述光方向变换器件为三角棱镜,所述三角棱镜的反射面与所述第一单光纤准直器的轴线和/或所述第二单光纤准直器的轴线之间形成的夹角为45°,且所述三角棱镜的反射面与所述第二光传输面之间形成的夹角为45°。
7.根据权利要求I或2所述的偏振分光合光器,其特征在于所述分光合光器件为偏振分光棱镜,所述第一单光纤准直器、所述第二单光纤准直器及所述第三单光纤准直器均位于所述偏振分光棱镜的同一侧外;所述光方向变换器件为三角棱镜,所述三角棱镜的反射面与所述第一单光纤准直器的轴线之间形成的夹角为45°,所述三角棱镜的反射面与所述第二单光纤准直器的轴线之间形成的夹角也为45°,且所述三角棱镜的反射面与所述第二光传输面之间形成的夹角为 45。。
8.偏振分光合光器的制造方法,包括将安装有第一保偏光纤的第一单光纤准直器以及安装有第二保偏光纤的第二单光纤准直器布置在基板上,并在所述基板上放置一个分光合光器件,将安装有单模光纤的第三单光纤准直器放置在所述分光合光器件的第一光传输面外;其特征在于在所述第一单光纤准直器和/或所述第二单光纤准直器与所述分光合光器件的第二光传输面之间设置光方向变换器件,所述光方向变换器件设有至少一个反射面,且所述反射面与所述第一单光纤准直器的轴线和/或所述第二单光纤准直器的轴线之间形成的夹角为45° ;绕安装有出射光纤的单光纤准直器的轴线旋转所述单光纤准直器。
9.根据权利要求8所述的偏振分光合光器的制造方法,其特征在于所述单模光纤为第三保偏光纤。
10.根据权利要求8或9所述的偏振分光合光器的制造方法,其特征在于所述分光合光器件为双折射晶体或偏振分光棱镜,所述光方向变换器件为斜方棱镜或三角棱镜。
全文摘要
本发明提供一种偏振分光合光器及其制造方法,偏振分光合光器具有安装有第一保偏光纤的第一单光纤准直器、安装有第二保偏光纤的第二单光纤准直器以及安装有单模光纤的第三单光纤准直器,并设有一个分光合光器件,第三单光纤准直器位于分光合光器件的第一光传输面外,其中,第一单光纤准直器和/或第二单光纤准直器与分光合光器件的第二光传输面之间设有光方向变换器件,光方向变换器件设有至少一个反射面。该方法包括将多个安装有光纤的单光纤准直器安装到基板上,并在基板上布置分光合光器件,对多个单光纤准直器绕自身轴线旋转,调节偏振分光合光器的消光比。本发明能够减小偏振分光合光器的体积,且消光比调节灵活方便,也能将消光比做得很高。
文档编号G02B17/08GK102707451SQ20121021183
公开日2012年10月3日 申请日期2012年6月25日 优先权日2012年6月25日
发明者何冬玲, 彭成新, 潘鑫, 贺谭斌, 赵泽雄 申请人:珠海保税区光联通讯技术有限公司