带有供给振荡电压的显影剂载体的成象装置的制作方法

文档序号:2764317阅读:219来源:国知局
专利名称:带有供给振荡电压的显影剂载体的成象装置的制作方法
技术领域
本发明涉及成像装置,诸如复印机,印刷机等,尤其是涉及这样的成像装置,即其中静电潜影由选择驱动激光束而形成于感光件上。
近来,由于对全色图象或系统布置的需要,在复印机或印刷机等领域,数字图象成形已引人注目。例如,激光束印刷机已得到广泛应用,其中潜影承载件由激光束扫描,并且由选择性地驱动激光束而以感光鼓等等之方式在潜影承载件中形成期望的图象。
这种激光束印刷机的典型用途是对字符,图表等进行双电平记录。在这种情况下,点,字符,图表等的记录不需要半调电平记录,因此,印刷机的结构后来是简单的。
在另外方面,印刷机能形成双电平型的色调图象,这种利用高频脉动方法,密度阵型方法等等的印刷机是公知的。然而,众所周知,用高频脉动方法或密度阵型方法不能获得高分辨率的图象。
在这种情况下,最近人们已建议不减小每个象素的高的记录密度而在其中形成半调电平网点。这可按图象信号通过调节激光束的脉冲宽度(PWM)而取得。用这一方法,高分辨力和高色调再现图象能产生。
然而,在该装置中,在具有反射密度不高于0.3的半调区域内,粗糙度或白条出现于图象中。这些缺陷在复印字符之情况时还显得不很突出,但它们在复印照象影象等等的情况下在低密度区显得非常突出。
对于粗糙度之原因作了研究。
在用两成份显影剂时当由潜影网点形成一高光区潜影图象时,在感光件上的潜影如果在显微镜中观看的话象模拟潜影一样不是一散光图象,但它是纯粹的局部图象。如果密度继续减小,由于如图5中所示随着最大对比电压V0的逐步减小,感光件的胶片厚度的影响,潜影变得暗淡。例如,如果试图再现一个反射图象密度为大约0.2的图象,则潜影电压V0为大约150~200V,要逆转显影时,非图象部分的表面电压比显影偏置电压的直流分量高100~200V,以避免背景灰朦,当电V0是150~250时,其与显影偏置电压之直流分量之压差Vcont为大约0-100V。Vcont为0~100V意味着调色剂粒子处于不稳定状态。也即,它们能沉积到感光件上或沉积到显影套筒上。出于这个原因,当潜影图象由两成份显影剂显影时,磁刷的接能状态对显影效果存在明显的影响,因此,由于对应于磁刷的不均匀性而缺损的网点等形成了图象的粗糙度。
利用非磁性单成份显影剂的情况当用非磁性单成份显影剂取代所用的两成份显影剂时,产生相似的情形。当高光潜影具有大约0-100V的比较压差Vcont时(调色剂粒子是不稳定的),将调色剂用于显影辊子上的状态对显影效果具有明显影响,并且白色条和图象粗糙由于对应于显影辊子的调色剂施加之不均匀性而缺损的网点而形成。
在用非磁性单成份显影剂的显影装置中,在正常使用状态易于产生灰朦的背景(调色剂沉积到感光鼓的非图象区)。这就是常规的非磁性单成份显影工作的缺点之一。
因此,本发明的主要目的是提供一种能形成高密度坚固图象而没有灰朦背景的成象装置;
本发明的另一目的是提供一种在其中可防止高光区图象局部缺损的成象装置。
根据本发明之一方面内容,其提供的成象装置包括用于承接静电潜影的图象承接件;用于承载包括调色粒子的显影剂的显影剂载体;用于将具有预定频率的振荡电压加于显影剂载体上的电压施加装置;其中满足下列表达式|Vpp-2Vcont|/16Vf2<d2/|Q|这里Vpp(V)是振荡电压的峰对峰电压,Vf(Hz)是振荡电压的频率,Vont(V)是当图象密度最大时振荡电压的直流分量的电压和于图象承接件上的图象部分的电压之间的电位差。Q(c/kg)是调色剂粒子的平均摩擦电荷量,d(m)是图象承接件和显影剂载体之间的间隙。
本发明的这些及其它目的,特征和优点根据与所附附图相关的本发明的最佳实施例的如下说明将会更加清楚明了。


图1使用双成份显影剂的显影装置的剖视图,该双成份显影剂可与本发明的成象装置一起使用;
图2使用非磁性单成份显影剂的显影装置的剖视图,该单成份显影各河与本发明的成象装置一起使用;
图3是可与本发明一起使用的数字式电照象复印装置的剖视图;
图4示出了用于图3复印装置中的激光扫描器;
图5是实地图象部分和高光部分的表面电压曲线图;
图6是在常规的显影偏置条件及本发明的偏置条件下在模拟潜影关系情况时的电压Vcont和图象密度曲线图;
图7是用于测量双成份显影剂的摩擦电荷量的装置的透视图;
图8示出在双成份显影剂情况下作用于调色剂上的力;
图9是根据本发明实施例的显影偏置电压的波形。
图10示出在非磁性单成份显影剂情况下作用于调色剂上的力。
参照图3,其示出根据本发明的实施例的成象装置。在原稿支承平板10上,原稿G朝下放置。随后按压复印开关开始复印工作。原稿G由一单元9照亮并扫描,该单元9整体上具有一原稿照亮灯,一短焦透镜组及CCD(电荷藕合器件)传感器。在单元9中,从原件处反射的光由短焦组成象并入射在CCD传感器上。该CCD传感器包括一光源接收部分,一传送部分和一输出部分。该CCD元件的光源接收部分将光信号转复为电信号,该电信号由传送部分随后与时钟脉冲同步地传递至输出部分。在输出部分,电荷信号转换至电压信号,该信号被放大并减小阻抗,然后输出。对如此产生的模拟信号进行公知的图象处理工作并转为送给印刷机的数字信号。
在该印刷机中,静电潜影对应于图象信号而形成。电照象感光鼓形成的潜影承载件绕中轴以预定的圆周速度旋转,并由接至正负极上的充电器3均匀地充电。接着,该感光鼓1的均匀充电表面通过一激光扫描器100根据图象信号调节的激光束进行扫描,所在感光鼓1上对应于原稿图象的静电潜影逐步形成。
参见图4,其中示意性地示出了激光扫描器100的结构。当激光束由激光扫描器100偏转时,固体激光元件102由光信号产生器101根据提供的图象信号按预定的时间进行驱动或退动。固体激光元件102产生的激光束由一准直仪透镜103转换成远焦光束,并由在b方向旋转的可旋转的多边形镜104在c方向偏转,并由f-θ透镜组105a,105b和105c在感光鼓的扫描表面106上形成成象点。
借助于激光束扫描,对应于图象的一个扫描线的曝光分布产生于感光鼓1的表面106上。该表面106在垂直于扫描方向的方向转动一预定距离,由此在被扫描的表面106上就有对应于图象信号的曝光分布。
因此,形成于感光鼓上的静电潜影由一显影装置4变成可见的色调图象。
参见图1,将参照示范性的成象装置4作出说明,该装置用包括调色剂粒子及磁性粒子的双成份显影剂。该显影装置4包括一具有一开口的显影剂容器14,其中显影套筒11可旋转地面对感光鼓1而支承着。在该显影套筒11中,静止布置有一磁辊12形的磁场产生装置,该磁辊具有若干磁极。在显影剂容器11中布置有搅拌螺旋13和14及调节刮片15以在显影套筒表面形成一薄层显影剂。参考标号V表示施加振荡电压至显象套筒11上的电压源。
这里,将对显影过程及用上述的显影装置4通过双成份磁刷使静电潜影可见化的显影剂循环系统作出说明。
随着显影套筒11的旋转,由磁辊12的磁极N2吸收的显影剂19在从磁极N2部分传送至磁极N1部分的过程中由基本上沿垂直于显影套筒11的表面延伸的调节刮片15调节,并且在显影套筒11上它形成为一薄层。该薄层形的显影剂传递至主显影磁极S1,这时,由磁力而形成链形。该链形显影剂用于对静电潜影进行显影。此后,显影套筒11上的显影剂由磁极N3和N2产生的互斥磁场作用而返回至显影剂容器16中。
形成于感光鼓1上的静电潜影能由使用双成份显影剂的显影装置4使之可见化。然而,它也能由使用非磁性单成份显影剂作为显影剂的显影装置使之可见比。
参见图2,其示出一个用非磁性单成份显影剂作显影剂的示范性显影装置4。与上述的使用双成份显影剂的显影剂的显影装置相比,从降低显影装置尺寸的观点出发,图2所示的显影装置存在优越性,因此整个成象装置之显影装置也存在优越性。在另外的显影装置中,磁性单成份显影剂用作显影剂。该磁性显影剂中要求含有磁性材料以得到磁性,因而在纸张上的调色图象固定效果不理想,并且,因在显影剂粒子中含有磁性材料(通常磁性材料是黑色的),彩色再现性比双成份显影剂更不理想。
参见图2,该显影装置4包括一个含非磁性调色粒子的非磁性单成份显影剂的显影剂容器16。该容器设有一开口,作为显影剂载体的显影辊子面对感光鼓1可旋转地支承于该孔中。显影辊子11是非磁性套筒形(铝、不锈钢等)。该显影辊子11由未示出的驱动源沿a方向驱动旋转。该显影辊子11之表面具有2-5μm的不平度以保证携带调色剂。该非磁性调色剂12限制于显影剂容器16的底部附近。即低于显影辊子11处,并由接收辊子14供至显影辊11上。该接收辊14在显影作用后对搅动显影辊子11上的调色剂及显影剂容器中的调色剂19也是有效的。因此,由摩擦刮片15的一端带上摩擦电荷时,显影辊子上吸收的调色剂可调并用于显影辊子11上。
因此,交变电压与直流电压之叠加形式的显影偏压将施加的调色剂从显影辊子11传送至感光鼓1上。
因此,形成于感光鼓1上的调色图象由传送充电器7(如图3所示)被静电地转印至转印材料上。此后,该转印材料由分离充电器8静电地分离并供入图象固定装置6,此时对转印材料进行热固定工作,从而产生印迹。
当调色图象转印后,感光鼓1的表面由清洁器5进行清洁;以去除残余之调色剂及其它的污染物。然后,该感光件可重复用于图象成象工作。
参见图1,将对用双成份显影剂的第一实施例作出说明。
实施例1感光鼓1(潜影承载件)具有80mm的外直径,显影装置4的显影剂容器16之内部由隔板17分成显影室(第一室)R1和搅动室(第二室)R2。在搅动室R2之上,用一隔板在其中隔开而形成一调色剂容器R3。一显影剂19包含于显影室R1和搅拌室R2中。在显影剂容器R3中装载待用的调色剂(非磁性调色剂)。该调色剂装载室R3设有供给孔20,并且调色剂18通过该供给孔20按消耗的调色剂量供入搅拌室R2。
在显影室R1中设有一供按给螺旋13,它借助于旋转在显影套筒11的长度方向传送显影剂室R1中的显影剂。类似地,传递螺旋14设置于搅动室R2中,从而由其旋转在显影套筒11的长度方向通过供给孔20将供给的调色剂传送至搅动室R2中。
用于该实施例中的显影剂19是含非磁性调色剂和磁性粒子(运载粒子)的双成份显影剂。非磁性调色剂和磁性粒子的混合比是非磁性调色剂的重量成份约为5%。这里,非磁性调色剂粒子具有大约8μm的体积平均粒度。该磁性粒子为涂敷树脂材料的铁氧体粒子(最大的磁化强度为60emu/g)。重量平均粒度为50μm,这些粒子具有108Ωcm或更高的电阻,该磁性粒子的磁导率约为5.0。
显影剂容器16在紧埃感光鼓1的位置设有一开口。显影套筒11通过该孔暴露上来,并且该显影套筒11布置于离感光鼓1500μm的间距处。非磁性材料的显影套筒11的外直径是32mm,并且它以280mm/sec的圆周速度旋转。静止地布置于显影套筒11中的磁辊(磁铁12)形的磁场产生装置具有一显影磁极S1,一个布置于其下游的磁极N3及用于传送显影剂19的磁极N2,S2和N1。磁铁12布置于显影套筒11中,以使显影磁极S1面对感光鼓1。磁极S1对在显影套筒11和感光鼓1之间的显影区中的磁场形成是有效的。磁场的功能在于形成磁刷。
调节刮片15布置于显影套筒11上方,并且其功能在于调节显影套筒11上的显影剂层厚度。其是由非磁性材料组成,如铝,sus316等等。显影刮片15和显影套筒11之间的间隙在本实施例中为800μm。
所用之调色剂有两种,即一种具有大约2.0×10-2c/kg的摩擦电荷量,另一种具有大约3.0×10-2c/kg的摩擦电荷量。
参见图7将对测量调色剂(双成份显影剂)的摩擦电荷量的方法作出说明。
电荷量测量装置设有由在其底部具500目的导电网43的金属制成的测量容器32。欲对其进行摩擦电荷量测量的双成份显影剂供入具有50~100ml容量的聚乙烯料箱,并且0.5~1.5克显影剂沿毛细孔供入测量容器42中,并且该容器盖有一盖子44。对测量容器42的整体重量进行测量(W1(kg))。该测量容器42放在吸起机41上,其中至少与该测量容器42接触的部分是绝缘的。调色剂吸入口47,并且起动控制阀36供给真空表45以250mmA9的真空。在这一状态,吸入工作连续进行足够的时间,最好2分钟,从而去除调色剂树脂材料。电位差由与在测量容器42和地之间的电容器(电容c(F))48串联联连的电位计49测得。其值为V。吸入工作后,对测量容器42的整体重量进行测量(W2(kg))。该调色剂的摩擦电荷量计算如下调色剂的摩擦电荷量(c/kg)=c×v×10-3/(W1-W2)在该实施例中,高光半调图象具有大约0.2的图象密度并且产生实地图象,评价是根据高光半调图象的光滑性和实地图象的密度而定的。静电潜影形成的条件如下。
当要产生高光半调图象时,感光鼓1由充电器3均匀充电至650伏,用半导体激光将表面电位减小至450V而进行PWM曝光(脉冲宽度转换)。在另一方面当实地图象形成时,电压减至约100伏(Vcont=400伏)。在该实施例中,通过逆向显影而使潜影可见化。随之将说明显影步骤。
借助于图1所示的显影装置4,显影套筒11载有处于临近磁极N2位置的显影剂19,并且随着显影套筒11的旋转,显影剂19供至显影区。当显影剂达到显影区附近时,显影剂19的磁性粒子由磁极S1的磁力构成链形,其由显影套筒11竖立起来构成显影剂19的磁刷。磁刷的自由端摩擦感光鼓1的表面。借助于使用交流形电压偏压显影套筒11和感光鼓1之间的直流电压(500V),使磁刷上的调色剂沉积到感光鼓1的潜影部分在该实施例中,交变电压成份的大小Vpp固定至2000V,而频率Vf对摩擦电荷量为大约2.0×10-2c/kg的调色剂及摩擦电荷量为大约3.0×10-2c/kg的调色剂而言是随上述潜影形成条件变化的。对所形成的图象进行评价。因此,将可从下表1中所知一样,只有当A<B时,实(地)图象中的高密度和高光区域的再现性才是满意的。
表1 N不好F一般G好E优秀在此将对A<B之意义作出说明。图8示出作用于在显影套筒11上的调色剂粒子上的力。在图中,q是电荷量;m是质量;a是加速度,v是感光鼓和显象套筒11之间的电位差,d是感光鼓1和显影套筒11之间的间隙。
在每一时期,一交变电压从显影套筒11上作用于调色剂1/(2vf)(秒)。在此期间调色剂运动通过的距离x是X=12a(12Vf)2=12(|q|m·ΔVd)14Vf2]]>=12/Q|·ΔVd·14Vf2=/Q|ΔV8d·Vf2---(1)]]>调色剂能从显影套筒11朝感光鼓1运动所通过的距离x是X+=|Q|·|12VPP+Vcont|8d·Vf2---(2)]]>
在另一方面,调色剂能从感光鼓朝显影套筒11运动所通过的距离x是X_=|Q|·|12VPP-Vcont|8d·Vf2---(3)]]>如果在消去电压期间可动的x距离不足以使调色剂从感光鼓1返回至显影套筒11,那么x+>x-是满足的,借此调色剂朝感光鼓1往复运动。距离x-小于感光鼓1和显影套筒11之间的间隙d是满足的,即如下式|Q|·|12VPP-Vcont|8d·Vf2<d-|VPP-2Vcont|16Vf2<d2|Q|---(4)]]>如果在这样的条件下进行显影工作,则即使在电压V0为150-250V时也不会产生缺损点。借助于在感光鼓1附近的周而复始的往复运动,调色粒子集中在潜影图象部分,所以,每个点可如实地再现,因此能产生依赖于与磁刷链的接触状态而不存在非均匀性的均匀半调色图象。
在非图象部分,表面电位在本实施则中通常比显影偏压电压之直流分量稍高一些,其目的是为了消除灰朦状况。因此,在非图象部,在公式(2)和(3)中Vcont是负的,从而x+<x-是满足的。故而调色粒子朝显影套筒往复运动,所以灰朦状况很难形成。
实施例2在实施例1中,是用平均粒度为大约8μm的非磁性调色剂和涂敷树脂材料的铁氧粒子(最大磁化强度为60emu/g)的磁性粒子并且其重量平均粒度为50μm,它的按重量比5∶9.5混合。在本实施例中,非磁性调色剂的平均粒度为大约5μm,并且磁性粒子是涂敷树脂材料的铁氧粒子形的(最大磁化强度为60emu/g)并且其重量平均粒度为30μm。它们按重量比4.5∶95.5混合。如实施例1一样,改变外加材料的量而制备两种摩擦电荷量,即大约2.0×10-2c/kg的和大约3.0×10-2c/kg的。该实施例之实验在除显影剂不同外的其它与实施例1同样的条件下进行。
与实施例1相似,评价都是根据图象密度大约为0.2的高光半调图象光滑性及实象的图象密度而进行的。
因此,与实施例1相似,只有当A<B满足时,在实象中的高图象密度及高光部分的令人满意的再现性才能满足。这将可从表2中得知。考虑到高光部分,平滑之图象能因使用更小尺寸的调色粒子而形成。
表2 N不好; F一般; G好; E优秀实施例3该实施例不同于第一实施例在于非磁性调色剂的平均粒度大约为8μm,磁性粒子为涂敷有树脂材料的铁氧粒子(最大磁比强度为60emu/g)其平均粒度为30μm,并且它的按重量比7∶93混合。由改变外加材料量制备两种摩擦电荷量,即为2.0×10-2c/kg和大约3.0×10-2c/kg。
在该实施例中,调色剂含量比可相对于实施例1增加,因此改善显影效果,并且电压Vcont为350V。换言之,初始充电电位为600V,电压Vdc(显影偏压电压的直流分量)为450V。除这些条件外,其它条件与实施例1相同。
相似于第一实施例,评价是根据图象密度为大约0.2的高光半调图象的平滑性及实相密度而定的。因此,相似于第一实施例,只有当A<B满足时,实象中的高图象密度及高光部分的令人满意之再现性才能满足,这将从表3中知道。因存在于显影套筒上的调色剂量增加,因此,显影剂的接触链的非均匀性很难产生,因此,在高光部分可形成光滑的图象。
其中N不好; F一般; G好; E优秀;
实施例4在实施例1-3中,将与交变电压不断叠加的直流电压形的电压作用于显影转筒11和感光鼓1,借此将磁刷上的调色剂进行传送并沉积于感光鼓1的潜影部分。在本实施例中,提供一与脉动交变电压叠加的电压,借此在磁刷上的调色剂传送到并沉积到感光鼓1的潜影部分。非磁性调色剂的平均粒度为8μm,并且磁性粒子是涂敷树脂材料的铁氧粒子形的,并肯有50μm的平均粒度。它们按5∶95的重量比混合。
在该实施例中,直流电压为500V,而中间所用的交流电压的幅值固定于200V,频率Vf改变。调色剂的摩擦电荷量为大约2.0×10-2c/kg及大约3.0×10-2c/kg。在这些潜影形式的条件下,对形成的图象进行评价。交流电压没有作用的时期是如图9(A)所示的每个周期的交变电压的一个周期。
因此,如将由下表4可知的,只有当A<B得到满足时,高密度的实象和令人满意的高光象的再现性两者才会满意。
表4 其中 N不好; F一般; G好; E优秀考虑到实施例1,A<B的意义已相对于图8作了说明。在该实施例中,如果显影工作是在上述方程(1)-(4)所限定的条件下进行,则当电压V大约为150~250V时,在交变电压的一周期内调色剂不足以在显影套筒和感光鼓之向往复运动。另外,当交变电压停止时,直流分量之功能在于将对应于潜影电位的调色剂量吸至感光鼓,因此,从而能避免缺损网点之缺陷。这一现象比在实施例1连续施加交变电压时更加明显。
借助于周而复始的脉动,调色剂集中到潜影部分,从而在半调色图象中,没有因磁刷接触状态而形成的不均匀性,故每个网点可真实地再现。因此所生成的图象比按实施例1形成的更好。
在非图象部分,这了避免灰朦在本实施例中表面电位通常比显影偏压电压的直流分量稍高。因此,在方程(2)和(3)中的电压Vcont在非图象部分是负的,因此x+<x-得到满足。另外,交变电压停止,从而直流分量之功能在于将调色剂朝显影套筒吸引,并且显影剂粒子朝显影套筒偏离,因此灰朦进一步减小。
在该实施例中,所用之交变电压如图9(A)所示,但本发明并不限于此。例如,如图9(B)所示,其采用两周期作用而5个周期停止,或如图9(C)所示一个周期作用而10个周期停止。在该实施例中,使用的矩形波,然而它也可用三角形波形,正弦波形等,最适当的应用可由本领域熟练专业人员根据显影速度和条件而选取。
偏压作用周期与停止周期的比例最好是1(1/2)~1∶15。
实施例5在该实施例中,与实施例4比较,非磁性显影剂平均粒度为大约5μm,磁性粒子为涂敷树脂材料的铁氧粒子(最大磁比强度为60emu/g),其重量平均粒度为30μm。它们安重量比4.5∶95.5混合。摩擦电荷量相似于实施例4,大约为2.0×10-2c/kg和大约3.0×10-2c/kg。这些不同的摩擦电荷量由改变外加材料量而产生。
相似于实施例1,评价是根据图象密度为大约0.2的高光半调图象的光滑性及实象的图象密度而进行的。
因此,相似于第四实施例,只有当A<B满足时,高图象密度的实现及具令人满意的高光部分的再现性两者才能满足要求。这可从表5中得知。尤其是在高光部分,因调色剂粒度减小,因此比实施例4产生更光滑的图象。
表5 N不好; F一般; G好; E优秀 UE超优秀实施例6与实施例4不同,本实施例中非磁性调色剂平均粒度大约为8μm,并且磁性粒子为涂敷树脂材料的铁氧粒子(最大磁化强度为60emu/g)。其重量平均粒度为30μm。它们按重量百分比7∶93混合,从而构成显影剂。所用的摩擦电荷量如实施例1中一样为约2.0×10-2c/kg和约3.0×10-2c/kg。该不同的电荷量是由改变外加材料的量而得到。
在该实施例中,与实施例4比较,调色剂含量可增加,因此显影效果改善,并且Vcont选择为350V。主要的充电电位为600V,而Vdc(显影偏压电压的直流分量)为450V。至于其它条件都与实施则4中相似。
相似于实施例1,评价是根据图象密度约为0.2的高光半调图象的光滑性及实象的图象密度而进行的。因此,只有当A<B满足时,实象中的高图象密度和高光部分的满意的再现性两者才可能满足要求,这可从表6中得知。由于存在于显影套筒上的调色剂量增加,从而与显影剂链接触的非均匀性不容易产生,因此,高光部分的图象比在实施例5中的更光滑一些。
表6
N不好; F一般; G好; E优秀以下将对用图2所示的单成份显影剂的显影装置作出说明。
实施例7在该实施例中,一种非磁性单成份显影剂被带电至摩擦电荷量为约2.0×10-2c/kg,而另一种带电至约3.0×10-2c/kg。
形成图象密度约为0.2的高光半调图象及实象。评价是根据高光半调图象的光滑性及实象的图象密度而定的。这里,产生图象的静电潜影如下。
首先,由充电器将感光鼓均匀充电至-650伏。用半导体激光将表面电位减至约450伏而产生PWM曝光(脉冲宽度调节)。在另一方面,当实象产生时,表面电位减至大约300V(Vcont=200V)。在该实施例中,显影工作是逆向显影的。显影过程说明如下。
在具图2所示结构的显影装置中,显影偏压以叠加的500V直流电压和交变电压的形式施加于显影辊11与感光鼓1之向,借助于该电压,在显影辊子11上的调色剂传送并沉积于感光鼓1的潜影部分上。在该实施例中,交变电压的幅值Vpp固定于2000V,频率Vf是变化的。在上述潜影形成条件下用带电至约2.0×10-2c/kg和约3.0×10-2c/kg的两种显影剂产生图象并进行评价。
如从图7中得知的一样,只有当A<B满足时,实象中的高图象密度及高光象的满意再现性两者才能实现。
表7 N不好; F一般; G好; E优秀这里将对A<B的意义作出说明。图10示出作用于显影套筒上一种调色粒子上的力。在该图中,q是电荷量;m是质量;a是加速度;△V是感光鼓1和显影套筒11间的电位差;d为感光鼓1和显影套筒11间的间隙。
在每个周期,一个交变电压由显影套筒作用于调色剂1/(2vf)(秒)。在此期间调色剂能运动通过的距离x是X = 1/2 a( 1/(2Vf) )2= 1/2 ( (|q|)/(m) · (△V)/(d) ) 1/(4Vf2)= 1/2 |Q|· (△V)/(d) · 1/(4Vf2) = (|Q|△V)/(8d-Vf2) (5)调色剂能从显影套筒11朝感光鼓1运动通过的距离x为X+=|Q|·|12VPP+Vcont|8d·Vf2---(6)]]>在另一方面,调色剂能从感光鼓1朝显影套筒11运动通过的距离为X_=|Q|·|12VPP-Vcont|8d·Vf2---(7)]]>如果在一个消去电压的周期中运动的距离x-不足以使调色剂从感光鼓返回到显影套筒上,则x+>x-是满足的,借此调色剂朝感光鼓1来回运动。这可由x-小于感光鼓1和显影套筒11之间的间隙d而得到满足。如下式|Q|·|12VPP-Vcont|8d-Vf2<d-|VPP-2Vcont|16Vf2<d2|Q|---(8)]]>如果显影工作是在这样的条件下进行,则即使是V0150~250V时缺损点也不会产生。借助于邻近感光鼓的周而复始运动,调色剂粒子集中于潜影部分,所以每个点都可真实地再现,因此形成一均匀的半调图象,其不存在依赖于与磁刷链接触状态的非均匀性。
在非图象部分为了消除灰朦,在本实施例中表面电位通常比显影偏压的直流分量稍高。因此,在非图象部分,在方程(6)和(7)中Vcont是负的,从而x+<x-得到满足。所以,调色剂粒子朝显影套筒往复运动,从而灰朦很难形成。
实施例8在实施例7中,不断与交变电压叠加的直流电压形的电压作用于显影辊子和感光鼓1之间,借此将在磁刷上的调色剂传送走并沉积到感光鼓1的潜影部分,在本实例中,所用的是与脉动交变电压叠加的电压,借此,位于磁刷上的调色剂被传送并沉积于感光鼓1的潜影部分上。在本实施例中,直流电压500V,而脉动作用的交变电压的幅值Vpp为200V并且频率Vf是变化的。调色剂的摩擦电荷量约为2.0×10-2c/kg及大约3.0×10-2c/kg。在这些潜影形成的条件下,对产生的潜影进行评价。交变电压没有作用的时间周期是如图9(A)所示用于交变电压的每个周期的一个周期。因此,正如可以下表8中知道的一样,只有当A<B满足时,实象的高密度及高光象的满意再现性两者才能得到满足。
N不好; F一般; G好; E优秀参见图10,考虑到图7,对A<B的含义作出说明。在该实施则中,如果显影工作是在上述方程(5)-(8)所定义的条件下进行,则调色剂在电压V0为约150~250V时在交变电压的一个周期内不足以能在显影套筒和感光鼓之间往复运动。另外,当交变电压停止时,直流分量之功能在于将对应于潜影电位的调色剂量吸至感光鼓,因此,能避免网点缺损的缺陷。
借助于在感光鼓上的脉动振荡循环,调色剂粒子集中到潜影部分,所以每个网点能真实地再现,因此,即使在从显影辊子11供给的调色剂短缺的部分也能形成均匀的半调图象。因而所形成的图象比按实施例7形成的图象好。
在非图象部分,为了避免灰朦,在本实施例中表面电位通常比显影偏压的直流分量稍高。因此在非图象部分,方程(6)和(7)的电压Vcont是负的。从而,x+<x-得到满足。另外,交变电压停止,则直流分量的作用在于将调色剂朝显影套筒吸引,因此调色粒子朝显影套筒偏离。故灰朦效果进一步减小。
本该实施例中,所用之交变电压如图9(A)所示,但本发明并不仅限于此。例如,如图9(B)所示,两个周期作用电压而5个周期停止,或如图9(C)所示,1个周期作用电压而10个周期停止。在该实施例中,所用的是矩形波,然而它也可由三角波,正弦波等取代。最合适的应用可由本领域的技术人员根据复印速度或显影条件而作出适当的选择。
偏压作用周期与停止周期的比最好是1∶(1/2)~1∶15。
虽然本发明在此参照其中公开的结构作出了说明,但它并不限于此处列举的详细说明,并且该申请旨在于复盖这样的改型及变化,即它们可能落于改进的目的范围内或权利要求所述范围内。
权利要求
1.一种图象成象装置,包括一用于承载静电潜影的图象承载体;用于携带包括调色剂粒子的显影剂的显影剂承载体;用于向所述显影剂载体供给预定频率的振荡电压的电压施加装置,其中下式得到满足|Vpp-2Vcont|/16Vf2<d2/|Q|这里Vpp(V)是振荡电压的峰值对峰值电压,Vf(Hz)是振荡电压的频率,Vcont(V)是当产生最大图象密度时振荡电压的直流分量电压与所述图象承载件上的图象部分的电位之间的电位差;Q(c/kg)是调色剂粒子的平均摩擦电荷量,d(m)是所述图象载体和所述显影剂载体之间的间隙。
2.如权利要求1所述装置,其中调色剂粒子为非磁性粒子。
3.如权利要求1所述装置,其中所述显影剂载体包括一磁场产生装置,显影剂包括除调色剂粒子以外的磁性粒子。
4.如权利要求1所述装置,其中振荡电压包括相互叠加的直流分量和交流分量,交流分量不是对每个预定的间隔都是叠加的。
5.如权利要求1所述装置,其中图象部分是所述图象载体的低电位图象部分。
6.如权利要求5所述装置,其中所述图象载体包括一感光层,并且根据图象信号对可选择地接通或断开的光点而暴光。
7.如权利要求1所述装置,其中振荡电压具有一矩形波形。
全文摘要
一种图象成象装置,其包括用于承载静电潜影的图象承载件用于携带包括调色剂粒子的显影剂载体;用于向显影剂载体供给预定频率的振荡电压的电压源;其中下式得以满足。|Vpp-2Vcont|/16Vf这里Vpp是振荡电压的峰值与峰值电压,V(H)为振荡电压之频率,Vcont(V)是当产生最大的图象密度时振荡电压的直流分量电压和图象载体上图象部分的电位之间的电位差;Q(c/kg)是调色粒子的平均摩擦电荷量,d(m)是图象承载体和显影剂携带件之间的间隙。
文档编号G03G15/06GK1097877SQ9410526
公开日1995年1月25日 申请日期1994年3月18日 优先权日1993年3月19日
发明者剱持和久, 大木繁, 铃木启之 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1