专利名称:一种有源矩阵型显示装置以及驱动该装置的方法
技术领域:
本发明涉及一种有源矩阵型显示装置,以及驱动该装置的方法,特别地,根据本发明,依据模拟视频信号,控制用于驱动有源矩阵型显示显示的信号线的脉冲占空比。
近年来,开发了适于高清晰度电视、个人计算机或工作站的高分辨率显示装置。在这些显示装置中,有源矩阵型液晶显示装置具有这样的结构,其信号线和扫描线形成在一矩阵形的液晶板中,其开关元件(如薄膜晶体管)配备在其交叉点处。在这样的液晶显示装置中,驱动开关元件的各水平线,使得其以顺序方式导通和关断。结果,信号电压有选择地提供给象素电极,从而激励介质象素电极和配对电极之间的液晶。通过利用信号电压调制透过液晶层的光,可以得到灰度显示或全彩色显示。
该信号电压通过与显示板中的信号线相连的一信号线驱动电路提供。该信号线驱动电路通常分为模拟驱动器(下称“AD”)型信号线驱动电路和数字驱动器(下称“DD”)型信号线驱动电路。AD信号线驱动电路接收模拟视频信号作为输入信号。DD信号线驱动电路接收数字视频信号作为输入信号。
在本发明书中,为了简便,包括与各信号线相对应的信号线驱动电路的驱动元件简称为“信号线驱动器”。
图15和16描述了一般的AD信号线驱动电路。图16显示了与N条信号线相应的所有信号线驱动电路。图15表示了与第i条信号线相对应的信号线驱动电路(这里i表示一整数)。如图15中所示,该AD信号线驱动电路通过取样电容Csmp,保持电容CH,由取样脉冲TsmP(i)控制的模拟信号SW1,由输出脉冲OE控制的模拟信号SW2,以及输出级模拟缓冲寄存器230来控制。该取样电容Csmp设计得使其与保持电容CH相比,具有足够大的电容量。
利用图17中所示的信号时序图,描述该AD信号线驱动电路的操作。利用取样脉冲Tsmp(1)~Tsmp(N),对输入模拟开关SW1的模拟视频信号Va顺序取样,该取样脉冲Tsmp(1)~Tsmp(N)相应于为水平同步信号Hsyne的每一脉冲选择的一个扫描线上的对应的N个象素。取样的结果是,在相应时间点上取得的模拟视频信号Va的瞬时电压Vsmp(1)~Vsmp(N)施加到相应的取样电容Csmp。
第i个取样电容Csmp由与第i个象素相应的模拟视频信号Va的电压值Vsmp(i)充电,并保持该值。按照同时提供给所有模拟开关SW2的输出脉冲OE,已顺序取样并保持的信号电压Vsmp(1)~Vsmp(N)从相应的取样电容Csmp传送给相应的保持电容CH。从而,信号电压Vsmp(1)~Vsmp(N)经输出级模拟缓冲寄存器230输出给与各象素相连的信号线S(1)~S(N)。
在采用AD方法的液晶显示装置中,液晶的透光性,即施加到液晶上的电压与液晶的显示亮度之间的关系是非线性的,如图23中所示。如果,当模拟视频信号本身输入模拟驱动器时,出现亮度的偏差。从而,需要对输入的模拟视频信号进行处理,使其与液晶的透光性相应。
另外,在液晶显示装置中,如果施加d.c.电压,液晶材料可能损坏,因此需要信号处理电路以实现a.c.驱动。图29表示了这样的电路的一个典型。图30是一时序图,描述了图29的电路的典型操作。在图29中,参考符号OP10和OP20表示模拟运算放大器;参考符号SW10和SW20表示模拟开关; INV10表示一逻辑反相电路(反相器)。模拟视频信号va连接到运算放大器OP10的正端和运算放大器OP20的负端。用于偏差调节的可变的d.c电压Vset连接到运算放大器OP10的负端和运算放大器OP20的正端。运算放大器OP10和OP20的输出分别连接到模拟开关SW10和SW20的一端,而模拟开关SW10和SW20的另一端相互连接。从而,模拟视频信号Va作为a.c.模拟视频信号Va′输出。一极性反转信号POL直接控制模拟开关SW10,并经反相器INV10间接控制模拟开关SW20。如图30中所示,模拟视频信号Va是用于通过阳极射线管或类似物进行显示的视频信号。极性反转信号POL与水平同步信号HSYNC同步变化。从而,当极性反转信号POL为高电平时,模拟开关SW10导通,使得运算放大器DP10的输出被输出,如图30中所示。当极生反转信号POL为低电平时,模拟开关SW20导通,使得运算放大器OP20的输出被输出,如图30中所示。从而,得到a.c.模拟视频信号Va'。该a.c.模拟视频信号Va'的极性如图30中所示地进行反转。通过将该a.c.模拟视频信号Va'施加到如图15和16中所示的一般模拟驱动器上,实现a.c.驱动。在本说明书中术语“模拟视频信号”定义成包括,采用CRT(阴极射线管)进行显示的一般模拟视频信号,以及已转换成a.c.信号模拟视频信号。
图18和19描述了一般的DD信号线驱动电路。图19表示了与N条信号线相应的所有信号线驱动电路(这与图16中所示的AD信号线驱动电路相应)。图18表示了与第i条信号线相应的信号线驱动电路(i表示一整数;这与图15中所示的AD信号线驱动电路相应)。为了简便,假设输入数字视频信号由两位组成,即D0和D1。就是说,视频数据具有0、1、2和3四个值。提供给每一象素的灰度电压为V0、V1、V2和V3四个电平中的一个。
图18中所示的信号线驱动电路包括,第一D触发器(取样触发器)Msmp,第二D触发器(保持触发器)MH,解码器DEC,以及配备在相应的外部灰度电压V0-V3与信号线S(i)之间的模拟开关ASW0-ASW3。
此信号线驱动电路的操作如下。响应于与第i个象素相应的取样脉冲Tsmp(i)的上升,视频信号数据D0和D1被取入并保持在取样触发器Msmp中,当对一个水平扫描周期的取样完成时,输出脉冲OE提供给保持触发器MH,使得保持在取样触发器Msmp中的视频信号数据D0和D1被取入保持触发器MH中,并输出给解码器DEC。解码器DEC解码该工位的视频信号数据D0和D1,并将模拟开关ASW0-ASW3中的一个置于导通状态,以便输出相应的外部灰度电压V0-V3中的一个到信号线S(i)。
除了该一般的DD方法,在日本专利公开出版物6-27900中公开了一种二进制多级灰度信号线驱动电路,该电路仅通过输入高和低两个电压电平以及多个数字灰度振荡信号而实现多级灰度显示,不需要任何的外部灰度电压或内部模拟开关。
在描述此二进制多级灰度信号线驱动电路的操作原理之前,描述一个有源矩阵型液晶极显示装置。
图12表示了有源矩阵型液晶板的一个显示装置。图13表示了与其等效的电路。在图13中,信号线的电阻成分以Rsource表示,其电容成分以Csource表示;开关元件T(i,j)的导通(ON)电阻以RON表示;显示装置P(i,j)的电容以CLC表示。在为了提高象素的电压保持率而提供贮存电容的情形下,象素电容CLC为,介于象素电极和一配对电极之间的液晶层构成的液晶电容(液晶盒)加上与该液晶电容并联提供的贮存电容之和。
一般地,RON较之Rsource足够地大; Csource较之CLC足够地大;并且显示装置的时间常数(RON×CLC)较之信号线的时间常数(Rsource×Csource)足够地大。换句话说,从信号线驱动电路的输出到一有源矩阵型液晶显示装置的液晶盒的路径具有低通滤波器的特性。此特性实质上由单个的显示装置的时间常数(RON×CLC)来确定,而不是由信号线本身的时间常数(Rsource×Csource)来确定。
上述的日本专利公开出版物6-27900中公开的二进制多级灰度信号线驱动电路,利用了上述各显示装置的低通滤波器特性作为其基本原理,使得信号线驱动电路的输出只具有高、低两个电平,即VSH和VSL。换句话说,如图14中所示,信号线驱动电路输出具有周期为T、幅度为(VSH-VSL)、占空比(即VSH的输出时间VSL的输出时间)为m∶n的信号。通过将信号线驱动电路的输出的周期T设定到这样一个值,使得该输出可由上述的低通滤波器充分地均化,则在象素中可加入平均电压(m·VSH+N·VSL)/(m+n)。从而,通过调节信号线驱动电路的输出占空比m∶n,即可以在象素上加上一个期望的电压。
图20表示了日本专利公开出版物6-27900中描述的二进制多级灰度信号线驱动电路的构成。图20表示了一个信号线驱动电路,用于提供与两位数据相应的四个电压电平,该信号线驱动电路相应于第i条信号线(这相就于图18中所示的一般数字驱动器)。在图20中,基于取样触发器Msmp·保持触发器MH、取样脉冲Tsmp(i)和输出脉冲OE的操作,以及解码器DEC的输出Y0-Y3,都与图18中所示的电路相同。“与”电路802和803,以及一个三输入端的“或”电路804配备在解码器DEC的输出侧。信号TM1和TM2(下面描述)分别提供给“与”电路802和803的另一输入端。
图21显示了信号TM1和TM2的波形。信号TM1的占空比(即,脉冲“1”的时间[m]与脉冲为“0”的时间[n]之间的比为m∶n=1∶2。信号TM2的占空比为m∶n=2∶1。
当视频数据(D0,D1)=(0,0)输入此二进制多级灰度信号线驱动电路时,解码器DEC的输出YO变换到“1”,而其它输出Y1-Y3变换到“0”。由于“或”电路804的输入均为“0”,因此“或”电路804的输出为VSL,如图22A中所示。
当视频数据(D0、D1)=(0,1)输入时,解码器DEC的输出Y1变换到“1”,而其它输出Y0、Y2和Y3变换到“0”。从而“或”电路804的输出具有在VSH与VSL之间振荡的脉冲波形并具有与信号TM1同样的占空比m∶n=1∶2,如图22B中所示。
当视频数据(D0,D1)=(1,0)输入时,解码器DEC的输出Y2变换到“1”,而其它输入Y0、Y1和Y3变换到“0”。从而,“或”电路804的输出具有在VSH与VSL之间振荡的脉冲波形,并具有与信号TM2同样的占空比m∶n=2∶1,如图22c中所示。
当视频数据(D0,D1)=(1,1)输入此二进制多级灰度信号线驱动电路时,解码器DEC的输出Y3变换到“1”,而其它输出Y0、Y1和Y2变换到“0”。结果,“或”电路804的输出为VSH,如图22D中所示。
从而,当视频数据(D0,D1)=(0,0)输入时,信号线驱动电路本身的输出电压VSL施加到象素上。当视频数据(D0,D1)=(1,1)输入时,信号线驱动电路本身的输出电压VSH施加到象素上。当视频数据(D0,D1)=(0,1)输入时,以及当视频数据(D0,D1)=(1,0)输入时,只要信号TM1和TM2的频率分别设置到较从信号线驱动电路的输出到象素的路径的低通滤波器的特性的截止频率足够高的值,则信号线驱动电路的平均电压施加到象素上。从而,平均电压(m·VSH+n·VSL)/(m+n)加到象素上。
在一般的AD方法中,输出级模拟缓冲寄存器230的线性区域通常为所施加电压的约70%那样窄,从而需要一高阻压过程来构造电路元件,使得其能承受施加的高电压,这导致成本的增加,如果要驱动一大的高分辨率的显示板,则大的负载要置于为各信号线配备的输出级模拟缓冲寄存器230上,从而损害了显示质量。
在AD型液晶显示装置的情形下,需要处理模拟视频信号本身,使得显示装置的显示亮度特性(即模拟视频信号的信号电平与液晶的象素的显示亮度之间的关系)变为线性的。这导致成本的增加。
另外,AD型液晶显示装置需要由交流电流来驱动(a.c.驱动)。这需要能够处理模拟视频信号的频带的高速极性反转信号发生电路,这导致成本的增加。
另外,在某些类型的显示板中,将具有相同绝对值的正电压和负电压施加到象素电极上能够导致相应的所保持的电压电平的绝对值之间的差别。换句话说,只反转视频信号的极性,可以产生保持在该象素上的正和负电压电平这间的差异。这导致图象的闪烁,并可能形成图像残留现象。
另一方面,虽然在视频信号数据D0和D1为两位数据的情形下一般的DD方法仅需要四种外部灰度电压V0-V3,但全彩以显示通常认为对于红、蓝和绿每种颜色需要八位信息作为视频信号数据。当采用一般的DD方法进行全彩色显示时,需要256种外部灰度电压(V0-V255);从而需要256个模拟开关(ASW0-ASW255),每个开关配备在外部灰度电压V0-V255中相应的一个与信号线之间。因此,根据一般的DD方法,需要与灰度电平的数量相同数量的外部灰度电压及模拟开关用于每一信号线。从而,当灰度电平的数量增加时,灰度电压的数量及用于每一信号线的模拟开关的数量增加。当电路做到一个LST中时,这导致集成电路片尺寸的增加,从而增加成本。
上述的二进制多级灰度信号线驱动电路省略了一般DD方法需要的外部灰度电压及模拟开关,从而实现了低成本的信号线驱动电路。然而,当此方法用于全彩色显示时,对于红、蓝和绿每一种颜色都需要输入八位信息作为视频信号数据,并实际上需要与灰度电平的数量相同的数量的具有不同占空比的数字灰度振荡信号(相应于上述的TM1和TM2)。输入如此大量的控制信号给信号线驱动电路是非常困难的。如果要显示原本为模拟信号的电视图象或类似物,则需要高速、高分辨率的模拟/数字转换电路,从而增加了成本。
另外,在上述的二进制多级灰度信号线驱动电路中,根据数字灰度振荡信号(相应于上述信号TM1及TM2)的频率,可能需要利用脉冲波形驱动具有负载电容的信号线,以重复进行充电和放电。这导致能耗的增加。
在某些类型的显示板中,从信号线驱动电路的输出到象素的路径的低通滤波器特性不能充分地平均信号线驱动电路的输出的振荡电压。这损坏了显示质量。
根据本发明的一种有源矩阵型显示装置包括一个显示板,该显示板包括多个以矩阵形式设置的象素,扫描线与该多个象素相连,信号线与该多个象素相连;以及一个信号线驱动电路,该电路接收模拟视频信号,并根据与该模拟视频信号的信号电平相应的信号线驱动信号驱动各信号线,其中该信号线驱动电路产生具有与该模拟视频信号的信号电平相应的占空比的脉冲信号,并输出该脉冲信号。
在本发明的一个实施例中,该信号线驱动电路包括一个取样和保持电路,用于对该模拟视频信号进行取样,并产生保持信号;一个参考信号产生电路,用于产生参考信号;以及一个比较电路,用于将该保持的信号与该参考依赖相比,并输出具有与该模拟视频信号的信号电平相应的占空比的脉冲信号。
在本发明的另一实施例中,该信号线驱动电路包括一个数字缓冲寄存器电路,该电路与该信号线连接,并且有至少两个输出电压电平,该信号线驱动电路利用该数字缓冲寄存器电路的输出信号驱动该信号线。
在本发明的另一实施例中,两个输出电压电平中的一个为GND电平。
在本发明的另一实施例中,该脉冲信号是二进制脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号给该信号线,从信号线找到其相应的一个象素间的电路对于该脉冲信号起低通滤波器的作用。
根据本发明,一种驱动有源矩阵型显示装置的方法,模拟视频信号输入该显示装置,该方法包括步骤产生一脉冲信号,该脉冲信号具有与该模拟视频信号的信号电平相应的占空比,均化该脉冲信号,并将平均的电压加到象素上。
在本发明的另一实施例中,该信号线驱动电路控制该脉冲信号的占空比,使得该模拟视频信号的信号电平与象素的显示亮度之间的关系保持线性。
在本发明的另一实施例中,该参考信号是一个校正参考信号,用于校正模拟视频信号的信号电平与象素的显示亮度之间的非线性关系,在而该比较电路将所保持的信号与校正参考信号相比,以产生与模拟视频信号的信号电平相应的脉冲信号,并控制该脉冲信号的占空比,使得模拟视频信号的信号电平与象素的显示亮度之间的关系保持线性。
在本发明的另一实施例中,该脉冲信号是二进制脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号给该信号线,而从信号线的相应的一个象素间的电路对该脉冲信号起低通滤波器的作用。
在本发明的另一实施例中,产生该脉冲信号的步骤包括控制该脉冲信号的占空比的步骤,使得该模拟视频信号的信号电平与象素的显示高度之间的关系保持线性。
在本发明的另一实施例中,该参考信号是校正参考信号,以校正对该模拟视频信号进行γ校正,而该比较电路将所保持的信号与该校正参考信号比较,以产生与模拟视频信号的信息电平相应的脉冲信号,并控制该脉冲信号的占空比,以校正对模拟视频信号进行的γ校正。
本发明的另一实施例中,该信号线驱动电路还包括一个比较电路,以周期的方式交替地逆转该脉冲信号的占空比。
在本发明的另一实施例中,该信号线驱动电路还包括一个逻辑运算电路,该逻辑运算电路接收该比较电路的输出以及一个极性反转信号,并进行逻辑运算,以便输出通过逻辑地交替反转具有与该模拟视频信号的信号电平相应的占空比的信号而得到的脉冲信号。
在本发明的另一实施例中,该脉冲信号是二进制的脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号给信号线,而从信号线到相应的一个象素间的电路对该脉冲信号起低通滤波器的作用。
在本发明的另一实施例中,产生该脉冲信号的步骤包括,逆转该脉冲信号的占空比并产生通过逻辑地交替反转具有与该模拟视频信号的信号电平相应的占空比的信号而得到的脉冲信号的步骤。
在本发明的另一实施例中,该信号线驱动电路包括一个比较电路,用于控制该脉冲信号的占空比,以校正在正电压和负电压之间显示板的电压保持特性的差异。
在本发明的另一实施例中,该参考信号是校正参考信号,用于校正在正电压和负电压之间显示板的电压保持特性的差异,而该比较电路将所保持的信号与该校正参考信号相比,并输出比较的结果到该逻辑运算电路。
在本发明的另一实施例中,该脉冲信号是二进制脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号到信号线上,而从信号线到相应的一个象素间的电路对于该脉冲信号起低通滤波器的作用。
在本发明的另一实施例中,产生脉冲信号的步骤包括,校正显示板的电压保持特性的差异的步骤。
在本发明的另一实施例中,该信号线驱动电路包括改变该脉冲信号的周期的装置。
在本发明的另一实施例中,该参考信号是具有变化的周期的参考信号。
在本发明的另一实施例中,该脉冲信号是二进制脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号给信号线,而从信号线到相应的一个象素之间的电路对于该脉冲信号起到低通滤波器的作用。
在本发明的另一实施例中,产生该脉冲信号的步骤包括,改变该脉冲信号的周期的一个步骤。
本发明的另一实施例中,该信号线驱动电路还包括一个比较电路,用于根据该脉冲信号控制输出阻抗。
在本发明的另一实施例中,在该比较电路与该信号线之间配备有一个阻抗元件,以根据该脉冲信号控制输出阻抗。
在本发明的另一实施例中,该脉冲信号是二进制脉冲信号。
在本发明的另一实施例中,该信号线驱动电路输出该脉冲信号给信号线,而从信号线到相应的一个象素间的电路对该脉冲信号起低通滤波器的作用。
在本发明的另一实施例中,产生该脉冲信号的步骤包括,控制该脉冲信号的输出阻抗到一期望值的步骤。
根据本发明的有源矩阵型显示装置的信号线驱动电路包括,用于产生具有与输入模拟视频信号的信号电平相应的适当占空比的脉冲信号(振荡信号)的部件。通过让此脉冲信号经过具有低通滤波器特性的电路,该脉冲信号的振荡分量被抑制,从而得到一个平均电压。通过将该平均电压提供给一个象素作为数据信号,可以进行与该输入模拟视频信号的信息电平相应的显示。从而,本发明利用一简单的结构,实现了用于灰度显示的大量灰度电压,进而使得可以进行多级灰度显示或全彩色显示。
根据本发明的一个例子的有源矩阵型显示装置包括一个显示板,该显示板具有多个成矩阵形式设置的象素,信号线与该象素相连,扫描线与该象素相连;以及一个驱动电路,用于驱动该显示板。该驱动电路包括一个信号线驱动电路,该信号线驱动电路包括一个取样和保持电路、一个参考信号产生电路、以及一个比较电路。该取样和保持电路取样并保持与象素的一行相应的模拟视频信号的一部分。该比较电路对由该参考信号产生电路产生的参考信号的电平和所取样/保持的模拟视频信号的电平进行比较运算,以输出具有与该模拟视频信号的信号电平相应的占空比的二进制脉冲信号;就是说,通过控制该二进制脉冲信号的占空比,产生与该模拟视频信号的电平相应的灰度信号。从而,外部灰度电压的数量能显著地减少。由于通过进行该模拟视频信号与该参考信号之间的比较而产生了具有不同占空比的脉冲信号,因此,不需要将该模拟视频信号转换成数字视频信号。结果,电路构成能够简化。
由于从信号线到象素(包括在显示板中)的信号路径中存在的电路具有低通滤波器的特性,即使直接输出含有振荡分量的脉冲信号给该信号线,也能将该脉冲信号的平均电压施加到象素上。从而,通过利用从信号线的象素(包括在显示板中)的信号路径中存在的电路的低通滤波器特性,该装置的结构能够简化,并且能耗减小。
通过将该信号线驱动电路设计成包括数字缓冲寄存器电路,而该缓冲寄存器电路具有与该信号线相连的至少两个输出电压电平,同时该数字缓冲寄存器电路的输出信号驱动该信号线,并指定该输出电压电平中的一个为GND电平,由此可以用一个电源驱动多级灰度信号线驱动系统。
根据本发明的另一例子的信号线驱动电路,当将模拟视频信号转换成具有与其信号电平的占空比相应的脉冲信号时,可以校正该脉冲信号的占空比,使得该模拟视频信号的电平与象素的显示亮度(即显示亮度特性)之间的关系变为线性的,并将该校正的脉冲信号作为信号线驱动信号输出给信号线。从而,该信号线驱动电路避免了由于非线性关系引起的亮度偏差。通过校正将要与该模拟视频信号相比较的参考信号的波形,能够实现占空比的校正。由于不需要采用高速模拟校正电路对模拟视频信号进行校正,以解决施加到液晶的电压与亮度电平之间的非线性关系,因此,成本及能耗能够降低,而装置的集成度增加。
根据本发明的另一例子的信号线驱动电路包括一个校正参者信号产生电路,产生一校正参考信号,以对一模拟视频信号受到的γ校正进行校正。通过进行该模拟视频信号的取样值与该校正参考信号间的比较运算,该比较电路产生具有与该模拟视频信号的信号电平以及与该γ校正的作用已经去掉的灰度亮度特性相应的占空比的脉冲信号。从而,即使当由阴极射线管显示的模拟视频信号用作有源矩阵型液晶显示装置的输入信号时,预定由阴极射线管显示的该γ校正(该校正已在发送侧对该模拟视频信号进行)不起任何作用。结果,该液晶显示装置能提供最佳的图象质量。
根据本发明的另一例子的信号线驱动电路,当将模拟视频信号转换成具有与该模拟视频信号的信号电平相应的占空比的脉冲信号以输出给信号线时,采用一简单地逻辑运算电路,周期地逆转该脉冲信号的占空比以作为输出。从而,可以在不采用能处理该模拟视频信号的频带的高速模拟极性反转信号产生电路的条件下而实现a、c、驱动。结果,成本和能耗能够降低,而装置的集成度增加。
根据本发明的另一例子的信号线驱动电路,当将模拟视频信号转换成具有与该模拟视频信号的信号电平相应的占空比的脉冲信号以输出给信号线时,通过采用一个简单的逻辑运算电路周期地逆送该脉冲信号的占空比以作为输出,实现a、c、驱动。并且还施加一个电压,使得依赖于加到显示板上的电压的极性(正或反)而改变的电压保持特性可被校正。结果,能够提供最佳的图象质量,而不会由于施加到显示板上的正和反电压间电压保持特性的差别产生闪烁或图像残留。
根据本发明的另一例子的信号线驱动电路,当将模拟视频信号转换成具有与该模拟视频信号的信号电平相应的占空比的脉冲信号以输出给信号线时,能改变输出给具有负载电容的信号线的该脉冲信号的频率,使其成为期望值。结果,装置的能耗能降低。
根据本发明的另一例子的信号线驱动电路,当将模拟视频信号转换成具有与该模拟视频信号的信号电平相应的占空比的脉冲信号的输出给信号线时,能改变该信号线驱动电路的输出阻抗。结果,显示板能提供最佳的图象质量,即使该显示板从信号线驱动电路的输出到象素间的路径的低通滤波器特性没有充分地平均该脉冲信号而使显示质量受损也能作到这点。
因此,这里描述的本发明提供(1)采用一个简单的结构就能够实现多级灰度显示或全彩色显示的有源矩阵型显示装置,以及(2)驱动该装置的方法。
通过参考附图阅读和理解下面的详细描述,对本领域的技术人员而言,本发明的这些及其它优点是显而易见的。
图1表示了根据本发发明的实施方例1的与一条信号线相应的有源矩阵型显示装置的基本组成。
图2是一波形图,表示了图1中所示的信号线驱动电路的典型输出波形。
图3表示了模拟视频信号与占空比之间的关系。
图4表示了模拟视频信号与象素电压之间的关系。
图5表示了根据实施例1的信号线驱动电路的具体组成。
图6是一波形图,表示了通过根据实施例1的信号线驱动电路得到的波形。
图7表示了根据实施例1的有源矩阵型显示装置的信号线驱动器的组成。
图8是一波形图,描述了图7中所示的信号线驱动器的操作。
图9表示了根据实施例1的有源矩阵型显示装置的整体组成。
图10表示了根据实施例2的有源矩阵型显示装置的信号线驱动器的组成。
图11表示了根据实施例3的有源矩阵型显示装置的信号线驱动器的组成。
图12表示了包括在有源矩阵型液晶板中的一个象素。
图13表示了包括在有源矩阵型液晶板中的一个象素的等效电路。
图14是一波形图1表示了通过一般有源矩阵型显示装置的信号线驱动电路得到的输出波形。
图15表示了与第i条信号线(i表示整数)相应的模拟驱动器的一部分的组成。
图16表示了图15中所示的整个模拟驱动器的组成。
图17是一波形图,表示了通过模拟驱动器方法得到的波形。
图18表示了与第i条信号线(i表示整数)相应的数字驱动器的一部分的组成。
图19表示了图18中所示的整个数字驱动器的组成。
图20表示了与第i条信号线(i表示整数)相应的二进制多级灰度信号线驱动电路的组成。
图21表示了在一般的二进制多级灰度信号线驱动电路的情形下,数字灰度振荡信号的波形。
图22A-22D表示了一般二进制多级灰度信号线驱动电路的输出波形。
图23表示了相对于施加到液晶显示装置的液晶上的电压的亮度特性。
图24表示了由于液晶相对于模拟视频信号的亮度特性引起的亮度偏差。
图25表示了根据本发明的实施例4的有源矩阵型显示装置的信号线驱动电路的具体组成。
图26是一波形图,表示了通过根据实施例4的信号线驱动电路得到的波形。
图27表示了根据实施例4的模拟视频信号与液晶的显示亮度之间的关系。
图28表示了根据本发明的实施例5的有源矩阵型显示装置的信号线驱动电路的具体组成。
图29显示了产生模拟极性反转信号的一般电路。
图30是一信号波形图,描述了图29中所示的产生模拟极性反转信号的一般电路的操作。
图31表示根据本发明的实施例6的有源矩阵型显示装置的信号线驱动电路的具体组成。
图32表示了根据本发明的实施例6的有源矩阵型显示装置的信号线驱动电路的组成。
图33是一信号波形,描述了图32中所示的信号线驱动电路的操作。
图34表示了一显示板的所施加的正/负电压保持特性。
图35表示了根据本发明的实施例7的有源矩阵型显示装置的信号线驱动电路的具体组成。
图36表示了根据本发明的实施例7的有源矩阵显示装置的信号线驱电路的组成。
图37是一波形图,表示了当施加正电压时,通过图35中所示的信号线驱动电路得到的波形。
图38是一波形图,表示了当施加负电压时,通过图35中所示的信号线驱动电路得到的波形。
图39表示了根据本发明的实施例8的有源矩阵型显示装置的信号线驱动电路的具体组成。
图40是一波形图,表示了当正信号的频率适当时信号的波形。
图41是一波形图,表示了当正信号的频率不适当时的信号的波形。
图42是一波形图,表示了通过图39中所示的信号线驱动电路得到的波形。
图43表示了根据本发明的实施例9的有源矩阵型显示装置的信号线驱动电路的具体组成。
图44是一波形图,表示了通过图43中所示的信号线驱动电路得到的波形。
图45表示了根据本发明的实施例10的有源矩阵型显示装置的信号线驱动电路的具体组成。
图46是一波形图,表示了通过图45中所示的信号线驱动电路得到的波形。
下面,将参考附图利用实施例对本发明进行描述。
根据本发明的有源矩阵型显示装置,通过平均具有与模拟视频信号的电平相应的占空比的二进制脉冲信号,产生多个灰度信号。本发明的有源矩阵型显示装置的信号线驱动电路将输入模拟视频信号转换成具有与该输入模拟视频信号的电平相应的适当占空比m∶n的脉冲信号。通过让该脉冲信号经过具有你通滤波器特性的电路,得到一平均电压;在平均电压中,该脉冲信号的振荡分量被抑制。通过将具有与该模拟视频信号的电平相应的电压的该平均电压施加到象素上,能够实现多级灰度显示或全彩色显示。从信号线到象素间伸展的电路能够作为具有低通滤波器特性的电路使用,以平均该脉冲信号。
如在上述二制多级灰度信号线驱动电路的情形下,本发明的信号线驱动电路的输出仅有高和低两个电压电平,即VSH和VSL。从而,在图14中所示的信号波形中,本发明的信号线驱动电路输出脉冲信号,该脉冲信号具有周期T、幅度(VSH-VSL)以及占空比(即VSH的输出时间VSL的输出时间)m∶n。通过设定周期T到这样一个值,即使得该脉冲的电平可由上述的低通滤波器充分地平均,即可将平均电压(m·VSH+n·VSL)/(m+n)加到象素上。
实施例1图1表示了根据本发明的实施例1的有源矩阵型显示装置的信号线驱动电路2的操作。本实施例的信号线驱动电路2接收模拟视频信号va并将该模拟视信号Va转换成具有与该模拟视频信号的电平相应的占空比的脉冲信号Vs,然后输出该脉冲信号Vs给信号线。从信号线到象素中(i,j)伸展的电路(该电路形成在显示板1中)起低通滤波器1a的作用。结果,该脉冲信号Vs的振荡分量被抑制的平均电压施加到该象素P(i,j)上。尽管为了简便在图1中该象素P(i,j)与低通滤波器1a分开表示,但该象素P(i,j)还起低通滤波器1a的一部分作用。虽然形成在显示板1中的从信号线到象素P(i,j)伸展的电路在本实施例中作为平均该脉冲信号Vs的低通滤波器使用,但还可以在该显示板之外提供低通滤波器。
图9表示了本实施例的液晶显示装置10的整个组成。如图9中所示,该有源矩阵型液晶显示装置10包括显示板1,信号线驱动器200,扫描线驱动器300,控制电路600,以及参考信号产生电路5。
在包括在显示板1中的有源矩阵基片100上,信号线104和扫描线105形成一矩阵形状,象素电极103及开关元件102(如薄膜晶体管)形成在信号线104及扫描线105的交叉点上。该信号线驱动器200根据来自参考信号产生电路5的信号及该模拟视频信号Va产生信号线驱动信号。该扫描线驱动器300驱动开关元件102以使其导通或关断。信号线驱动器200及扫描线驱动器300的操作由控制电路600控制。
根据显示装置10,驱动开关元件102的各水平线,以便可由扫描线驱动器300顺序地导通或关断。如果来自信号线驱动器200的信号电压有选择地施加到一个象素电极103上,介于象素电极103与形成在一配对基片101上的配对电极101a之间的液晶层被驱动。结果,透过该液晶层的光由该信号电压改变,从而显示一个图像。象素电极103、配对电极101a以及介于其间的液晶层构成一个象素P(i,j)。在由象素电极103、配对电极101a以及介于其间的液晶层产生的液晶电容上并联地形成一个贮存电容以改善电压保持特性的情形下,象素的电容等于液晶电容与贮存电容之和。
在显示板1中,低通滤波器由信号线104本身的时间常数Rsource×Csource、各个象素的时间常数等构成。下面,参考图1-4描述包括在上述信号线驱动器200中的相应于一个信号线104的信号线驱动电路2(图1中所示)的组成和操作。
图1中所示的信号线驱动电路2接收模拟视频信号Va并输出二进制脉冲信号Vs。信号线驱动电路2的输出Vs输入显示板1的一条信号线104;并经由显示板1构成的低通滤波器1a达到象素P(i,j)。
图2表示了信号线驱动电路2的输出Vs的典型输出波形。信号线驱动电路2的输出信号Vs具有高、低两个电平(即分别为VSH和VSL),周期T,以及占空比(即VSH的输出时间VSL的输出时间)m∶n。
将信号线驱动电路2构造成可根据模拟视频信号Va改变其输出Vs的占空比,如图3中所示。由于输出Vs的周期T是根据显示板1的低通滤波器特性确定的,(m·VSH+n·VSL)/(m+n)的平均电压VT加到象素P(i,j)上,这里m和n为不限于整数的正实数。从而,可以根据模拟视频信号Va将期望的电压加到象素上。结果,能够得到多级灰度显示或全彩色显示。
下面,参考图5和6,描述信号线驱动电路2的具体组成及操作。
如图5中所示,信号线驱动电路2包括取样和保持电路3,以及比较电路4。该取样和保持电路3接收模拟视频信号Va、取样脉冲Tsmp、及输出脉冲OE。比较电路4接收取样和保持电路3的输出,以及来自参考信号产生电路5的参考信号Vref。比较电路4的输出Vs连接到显示板1上。
取样和保持电路3包括模拟开关SW1,SW2,取样电容Csmp,以及保持电容CH。取样电容Csmp设计成相比保持电容CH具有足够大的容量。
比较电路4具有正(+)和负(-)输入端。比较电路4包括比较器,其操作如下当加到比较电路4的正端的电压高于加到其负端的电压时,输出Vs等于VSL;当加到正端的电压低于加到负端的电压时,输出Vs等于VSH。
模拟视频信号Va连接到模拟开关SW1,该开关由取样脉冲Tsmp控制其导通或关断。取样电容Csmp连接在模拟开关SW1和SW2之间。电容Csmp经模拟开关SW2与保持电容CH及比较电路4的负端相连,该开关SW2由输出脉冲OE控制其导通或关断。来自参考信号产生电路5的参考信号Vref连接到比较电路4的正端。
下面,描述信号线驱动电路2的具体操作。通过利用取样脉冲Tsmp控制模拟开关SW1以在取样电容Csmp处对模拟视频信号Va进行取样,并产生取样电容Csmp的电压Vsmp。从而,模拟视频信号va被取样。由于取样电容Csmp设计或相比保持电容CH具有足够大的电容量,当模拟开关SW2由输出脉冲OE导通时,取样电容Csmp的电压Vsmp作为电压VH保持在保持电容CH中。所保持的电压VH基本等于取样电压Vsmp。
由参考信号产生电路5产生的参考电压Vref具有锯齿状波形,其周期为T,如图6中所示。参考电压Vref输入给比较电路4的正端。如图6中所示,比较电路4的参考电压Vref和保持的电压VH进行比较运算,以输出具有VSH和VSL两个电压电平的脉冲信号VS给显示板1。从而,比较电路4在图6中以m表示的区域中输出电压VSH,在那里保持的电压vH大于参考电压Vref,并在图6中以n表示的区域中输出电压VSL,在那里保持的电压VH小于参考电压Vref。脉冲信号Vs输出给显示板1,并通过主要归因于开关元件的导通电阻Ron×Clc的该显示板1的低通滤波器特性而被平均。从而,相应的象素施加上(m·VSH+n·VSL)/(m+n)的平均电压VLC。
最后,参考图7和8,简要地描述作为一个整体的信号线驱动器200的操作。信号线驱动器200包括多个图5中所示的结构的信号线驱动电路2。
图7表示了本实施例的有源矩阵型显示装置10的信号线驱动器200的组成。图8表示了与图i条信号线104相应的信号线驱动电路2的输出波形。如图7中所示,信号线驱动器200包括与各信号线S(1)-S(N)相应的信号线驱动电路2(图5中所示)。
在信号线驱动器200中,输入模拟视频信号Va根据取样脉冲Tsmp(1)、Tsmp(2)、···、Tsmp(i)、···以及Tsmp(N)顺序取样,该取样脉冲输入到各信号线驱动电路2的模拟开关SW1。结果,与各信号线S(1)、S(2)···S(i)···及S(N)相应的电压被取样。
在完成对于一个水平扫描周期该模拟视频信号的取样以后,在输出脉冲OE输入给各信号线驱动电路2的模拟开关SW2时,取样电压Vsmp(1)、Vsmp(2)···Vsmp(i)···以及Vsmp(N)传送给各保持电容CH。保持在保持电容CH上的电压通过各信号线驱动电路2的比较电路4与参考电压Vref顺序地进行比较,并输出给各信号线S(1)-S(N)。
在与第i条信号线相应的信号线驱动电路2中,根据取样脉冲Tsmp(i),与第i条信号线相应的模拟视频信号的电压va在取样电容Csmp(i)中被取样,以作为取样电压Vsmp(i)。然后,取样电压Vsmp(i)根据输出脉冲OE传送给保持电容CH,并通过比较电路4与参考电压Vref比较。结果,如图8中所示的脉冲信号输出给信号线S(i)。在一个水平扫描周期后,取样电压Vsmp(i)′就与上述Vsmp(i)相对应了。
根据具有上述组成的本实施例的显示装置10,当保持电压VH相应于模拟视频信号Va的变化而改变时,各信号线驱动电路2的脉冲信号Vs的占空比(m∶n)要发生改变。结果,与模拟视频信号Va相等或相应的电压能加到象素上。从而,利用一简单的结构能得到全彩色显示。
由于利用了对上述脉冲信号起低通滤波器作用的从信号线驱动电路2到象素间的信号路径的传送特性,因此不需要单独再设置低通滤波器。从而,装置的结构能够简化。
如上所述,不可避免地伴随此种结构的显示装置10的由于信号线而产生的不需要的电容和电阻在本实施例中作为一个低通滤波器使用。然而,通过调整整个显示装置10的设计或增加特有的滤波器电路和/或元件,还可以使该显示装置的特性与根据本发明的驱动方法相适应,从而给予显示装置10以最佳的低通滤波器特性,以平均信号线驱动电路2的脉冲信号。
实施例2图10描述了根据本发明的实施例2的有源矩阵型显示装置。和图5相似,图10也表示了显示装置的一个信号线驱动器中的信号线驱动电路2a。
如图10中所示,信号线驱动电路2a包括数字缓冲寄存器电路6,该电路6和与实施例1的信号线驱动电路2中的比较电路4相同的比较电路4的输出相连。此缓冲寄存器电路6接收两个电压值VSH及VSL。比较电路4的输出信号经缓冲寄存器电路6驱动信号线。下面,描述本实施例的显示装置10的功能及效果。
在实施例1中,例如,通过利用存在于相应象素等的时间常数Ron×Clc中的低通滤波器特性,平均各信号线驱动电路的脉冲信号,以将与模拟视频信号Va相应的电压施加到象素上。然而,在某些类显示板中,基于相应的象素等的时间常数Ron×Clc的低通滤波器特性可能不足以充分地平均脉冲信号,从而降低显示质量。
在实施例2中,信号线驱动电路2a在其输出级侧包括数字缓冲寄存器电路6。通过指定或调节缓冲寄存器电路6的输出阻抗到一期望值,可以调节从信号线驱动电路2a的输出到象素间的路径的低通滤波器特性,从而改善显示质量。
实施例3图11描述了根据本发明的实施例3的有源矩阵型显示装置。和图5相似,图11表示了该显示装置的信号线驱动器中的信号线驱动电路2b。
如图11中所示,信号线驱动电路2b包括数字缓冲寄存器电路7。本实施例的缓冲寄存器电路7与实施例2的缓冲寄存器电路6之间的差别在于,电路7除接收VSH外还接收GND而不接收VSL。与实施例2相同,比较电路4的输出信号经缓冲寄存器电路7驱动信号线。
从而,本实施例的信号线驱动电路2D提供的脉冲信号具有两电压电平VSH及GND。加到象素上的平均电压是与模拟视频信号Va相应的电压如VT=m·VSH/(m+n)。
利用这样组成的显示装置,可以省略外部电压VSL,从而进一步降低成本及能耗。
实施例4图25描述了根据本发明的实施例4的有源矩阵型显示装置。和图5相似,图25表示了该显示装置的信号线驱动器的信号线驱动电路2C。图26是一波形图,表示了信号线驱动电路2C输出的脉冲信号的波形,以及输入给信号线驱动电路2C的比较电路4a的校正参考信号Vref。图27表示了根据本实施例的模拟视频信号与液晶的显示亮度之间的关系。
在图25中,参考符号50表示产生校正参考信号Vrefh的校正参考信号产生电路,该电路考虑了加到液晶上的电压与液晶的显示亮度之间的非线性关系。校正参考信号Vrefh(而不是如实施例1中所用的具有锯齿波形的参考信号)输入到信号线驱动电路2C的比较电路4a的正端。
如图23中所示,液晶的透光性(即液晶显示板的亮度与加到液晶上的电压之间的关系)是非线性的;即,施加到液晶上的电压的每一单位的变化,其亮度变化不是恒定的。从而,如图24中所示,如果模拟视频信号Va本身输入给实施例1中的信号线驱动电路2,则在电平Va1处,模拟视频信号Va可能具有ΔL的亮度偏差。这导致实际的显示比与原始模拟视频信号Va的电平Va1相应的亮度LVa1暗ΔL。
在本实施例中,如图26中所示,与模拟视频信号Va相应的取样和保持电路3(图25)的输出与校正参考信号Vrefh比较,而显示板1的信号线由具有与比较结果相应的占空比的脉冲信号Vs驱动。校正参考信号Vrefh要能使得,当具有与该比较结果(大或小)相应的占空比的脉冲信号Vs的平均值加到液晶上时,模拟视频信号Vs与液晶的亮度达到线性关系,如图27中所示。
根据具有上述组成的本实施例的显示装置10,除根据实施例1得到的优点以外,还具有下述优点模拟视频信号Va的取样值与校正参考信号Vrefh进行比较,该校正参考信号Vrefh考虑了加到液晶上的电压与液晶的显示亮度之间的非线性关系,具有与比较结果相应的占空比的脉冲信号Vs的平均电压电平加到构成各象素的象素电极上,从而保证模拟视频信号与液晶的亮度之间保持线性关系。结果,可以防止由于液晶没有配备高速模拟校正电路以根据非线性关系校正模拟视频信号而产生的加到液晶上的电压与液晶的显示亮度之间的非线性关系引起的亮度偏差。
实施例5图28描述了根据本发明的实施例5的有源矩阵型显示装置。和图5类似,图28表示了该显示装置的信号线驱动器中的信号线驱动电路2d。
在图28中,参考符号50a表示校正参考信号产生电路以产生校正参考信号Vrefr,该信号Vrefr考虑了要针对电视视频信号进行的r校正。该校正参考信号Vrefr,(而不是图1中采用的锯齿形参考信号)输入到信号线驱动电路2d的比较电路4b的正端。
在各种模拟视频信号中,用于电视播送的正式视频信号(如NTSC型)在发送侧受到r校正(r=1/2.2),使得阴极射线管上的显示保持r=1,从而防止阴极射线管的亮度相应于视频信号的亮度偏移。结果,图像接收管的制造费用降低。该r校正可定义为视频信号校正,该校正在发送侧对电视信号进行,以校正阴极射线管型电视的发射亮度。
相应于输入视频信号电压(施加到液晶上的电压)的液晶的透光性(亮度特性)不同于相应于视频信号的阴极射线管的发射亮度特性。从而,如果电视视频信号没有在液晶显示装置侧进行校正而输入到液晶显示装置,则液晶显示装置不能正确地再生灰度亮度特性,从而导致不令人满意的显示图像。
在本实施例中,如图28中所示,与上述模拟视频信号Va相应的取样和保持电路3的输出与校正参考信号Vrefr进行比较,显示板1的信号线由具有与该比较结果相应的占空比的脉冲信号Vs驱动。校正参考信号Vrefr使得,当具有与对应于受到r校正的模拟视频信号Va的比较结果相应的占空比的脉冲信号Vs的平均值加到液晶上时,可利用已校正的r校正,根据正确的灰度亮度特性实现显示。
根据具有上述组成的本实施例的显示装置,除了根据实施例1得到的优点外,还具有下述优点模拟视频信号Va的取样值与校正参考信号Vrefr进行比较,该信号Vrefr考虑了对电视视频信号进行的r校正,具有与比较结果相应的占空比的脉冲信号Vs的平均电压电平施加到构成各象素的象素电极上,从而,利用已校正的r校正,保证了根据正确的灰度亮特性实现显示。结果,即使当模拟视频信号(例如NTSC型)输入给液晶显示装置,也可以在液晶显示装置上得到最佳的显示图象,而不受r校正的影响,该r校正由于显示彩阴极射线管而在发送侧对电视视频信号进行。
实施例6图31和32描述了根据本发明的实施例6的有源矩阵型显示装置。图31(相应于图5)表示了该显示装置的信号线驱动器中的信号线驱动电路2e。图32(相应于图7)表示了包括多个信号线驱动电路2e的信号线驱动器200的整个组成。图33(相应于图8)是一时序图,表示了与信号线驱动器200的第i条信号线相应的信号线驱动电路2e的输出波形。如图32中所示,信号线驱动器200包括与各信号线S(1)-S(N)相应的信号线驱动电路2e(图31中所示)。
如图31中所示,视频信号Va输入给信号线驱动电路2e。比较电路4c的输出连接到“同”门8的一个输入端。极性反转信号POL连接到“同”门8的另一输入端。“同”门8的输出驱动相应的信号线。当极性反转信号POL为高电平时,“同”门8输出与比较电路4c的输出相同的波形。当极性反转信号POL为低电平时,“同”门8输出通过反转比较电路4c的输出而得到的波形。换句话说,脉冲信号的占空比在逻辑上逆转,例如占空比m∶n逻辑地逆转为n∶m。
视频信号Va为通常用于由阴极射线管或类似物显示的视频信号。在需要a、c、驱动的一般液晶显示装置或类似物的情形下,需要通过高速模拟极性反转信号产生电路将视频信号Va转换成a、c、信号,如图29中所示,并将得到的a、c、信号作为模拟视频信号Va输入信号线驱动电路,如图8和9中所示。然而,根据本发明,与图8中所示的输出Vs(i)的波形类似的波形能够通过简单地输入视频信号Va而得到,如图33中所示。
实施例7如实施例6中所述,本发明通过采用简单的逻辑电路,使得可以实现a、c、驱动,并防止d、c、电压施加到象素上,从而防止象素的液晶材料的损坏。然而,在某些类显示板中,具有同样绝对值的正电压及负电压施加到象素电极上可能导致相应的保持电压电平的绝对值之间的差异。换句话说,只反转视频信号的极性可能在保持在象素中的正和负电压电平之间产生一差异。这导致图像的闪烁,并可能发展成图像残留现象。
图34是板的特性曲线图,表示了施加到象素上的电压与保持在象素中的电压之间的关系。在图34中,纵座标的标度设计成使得施加到象素上的正电压与象素中保持的电压之间展现线性关系。从而,当正电压Vs1施加到象素上,象素中保持正电压Kpos。然而,当一负电压Vs1(具有与正电压Vs1相同的绝对值)施加到象素上,象素中保持反电压Kneg,该负电压Kneg具有与负电压Kpos不同的绝对值。从而,在加正电压Vs1的情形下与加负电压Vs1的情形下,象素中保持的电压之间存在偏差ΔVz。为了保证当施加负电压到象素上时象素中保持同样电压值Kpos,应施加负电压Vs2而不是Vs1到象素上。
图35和36描述了根据本发明的实施例7的有源矩阵型显示装置。图35(相应于图5)表示了该显示装置的信号线驱动器中的信号线驱动电路2f。图36(相应于图7)表示了包括多个信号线驱动电路2f的信号线驱动器200的整个构成。图37是一波形图,表示了用于正电压的参考信号Vrefp,该参考信号在施加正电压到象素上时采用。图38是一波形图,表示了用于负电压的参考信号Vrefn,该参考信号在施加负电压到象素上时采用。
如图35中所示,由用于正电压产生电路51的参考信号产生的参考信号Vrefp连接到模拟开关SW11的一个输入端;由同于负电压产生电路52的参考信号产生的参考信号Vrefn连接到模拟开关SW21的一个输入端。模拟开关SW11和SW21的其它各输入端连接到比较电路4d的正端。模拟开关SW11由极性反转信号POL直接控制,而模拟开关SW21由经反相器INV11中的逻辑反相该极性反转信号POL而得到的信号控制。从而,当正电压施加到象素上时,用于正电压的参考信号Vrefp作为参考信号输入给比较电路4d;当负电压施加到象素上时,用于负电压的参考信号Vrefn作为参考信号输入给比较电路4d。在本实施例中,控制这样进行,使得,在正电压VS1施加在象素上(如图37中所示)的情形下,当施加负电压到象素上时(如图38中所示),产生用于负电压的参考信号Vrefn,以将负电压VS2施加到象素上,从而对象素中保持的电压的偏差△Vz进行补偿。通过利用由极性反转信号POL控制的“同”门8的输出驱动该信号线,当施加正电压时象素中保持电压7Kpos,而当施加负电压时象素中保持电压-Kpos。结果,可以防止d、c、分量施加到象素上,并能实现无闪烁或无图像残留现象的高质量的显示装置。
实施例8图39描述了根据本发明的实施例8的有源矩阵型显示装置。图39(相应于图5)表示了该显示装置的信号线驱动器中的信号线驱动电路2g。可变周期的参考信号Vrefup(而不是图5中所示的参考信号产生电路5产生的参考信号Vref)输入给信号线驱动电路2g的比较电路4e的正端。该可变周期的参考信号Vrefup由可变周期的参考信号产生电路53产生。
如上所述,从信号线驱动电路的输出到象素间的路径具有低通滤波器的特性,该特性基本由各象素的时间常数Ron×Clc确定,而不是由信号线本身的时间常数Rsource×Csource来确定。
从而,为了将脉冲信号的平均电压施加到象素上,需要指定该脉冲信号的周期为这样一个值,即可使得该脉冲信号被上述低通滤器充分地平均,如图40中所示。然而,信号线对于信号线驱动电路是负载电容,因此,需要以与该脉冲信号同样的周期对信号线驱动电路的输出重复进行充电/放电。从而,随着脉冲信号的频率增加,信号线驱动电路的能耗不可避免地增加。另一方面,如果考虑到低通滤波器的特性而脉冲信号的频率很低,则如图41中所示,脉冲信号不能充分平均。结果,适当的电压不能施加到象素上,从而降低显示质量。
如图42中所示,由可变周期参考信号产生电路53产生的可变周期参考信号Vrefup被控制,使得其周期在同样的电压写入周期中(即,在本实施例的情形下Hsync)满足下述关系T0≥T1≥T2≥···≥Tx(等式1)
换句话说,可变周期参考信号Vrefup的频率逐渐增加。从而,信号线驱动电路2g的脉冲信号的周期也满足等式1,而其占空比满足m0∶n0=m1∶n1=m2∶n2=···=mX∶nX(等式2)从而,相对于同样的电压写入周期,当电压刚开始施加到象素上时,脉冲信号的频率如此地低,以致于脉冲信号不能被充分平均,但脉冲信号的频率逐步增加,使得当完成电压施加到象素上时,脉冲信号被充分地平均,如图40中所示。从而,不需要指定脉冲信号的周期很高以利用上述低通滤波器充分地平均脉冲信号。结果,显示装置的能耗能够降低。
实施例9图43描述了根据本发明的实施例9的有源矩阵型显示装置。图44是一波形图,描述了图43中所示的显示装置的操作。图43(相应于图5)表示了该显示装置的信号线驱动器中的信号线驱动电路2n。如图43中所示,在本实施例的显示装置中,比较电路4f的输出经一可变阻抗元件80连接到信号线。从而,从比较电路4f输出的脉冲信号的信号路径的阻抗等于可变阻抗元件80的阻抗与从信号线到一象素(形成在显示板1中)间的电路的阻抗之和。通过调节可变阻抗元件80的阻抗,脉冲信号的信号路径的阻抗能够被控制。换句话说,用于平均脉冲信号的低通滤波器的频率特性能够被控制。
如图44中所示的参考信号Vref30输入给比较电路4f的正端。图43中所示的可变阻抗元件80由控制信号Vcont控制。在本实施例中,此控制使得可变阻抗元件80的阻抗值与控制信号VconT的电平成比例地增加。
如上所述,从信号线驱动电路的输出到象素间的路径具有低通滤波器的特性,并且该特性基本由各象素的时间常数Ron×Clc确定,而不是由信号线本身的时间常数Rsource×Csource来确定。然而,在具有小的Ron和Clc值的某些类型显示板中,由参考信号Vref30的周期T30确定的脉冲信号的频率可能不足以保证施加到象素上的电压被充分地平均。结果,适当的电压不能施加到象素上,从而降低显示质量。另一方面,通过简单地增加各信号线驱动电路的输出阻抗,脉冲信号能够被充分地平均,但在此情形下,在同样的电压写入周期中,不可能达到期望的电压值。
根据本实施例,比较电路4f的输出经具有电阻Rcont的可变阻抗元件80与信号线相连。从而,该低通滤波器的特性由时间常数(Rcont+Ron)×Clc确定,而不是由各象素的时间常数Ron×Clc来确定。因此,如图44中所示,控制这样进行,使得在同样的电压写入周期中(即,在本实施例的情形中Hsync)控制信号Vcont的电平逐步地增加,从而使得可变阻抗元件80的电阻值Rcont地逐步地增加。因此,即使在显示板具有如此低的Ron和Clc值使得由参考信号Vref30的周期T30确定的脉冲信号的频率不能保证施加到象素上的电压充分地平均、阻止适当的电压施加到象素上的情形下,可以充分地平均施加到象素上的电压,并达到期望的电压值。
实施例10图45描述了根据本发明的实施例10的有源矩阵型显示装置。图45(相应于实施例9中所用的图43)表示了该显示装置的信号线驱动器中的信号线驱动电路2i。表1描述了具有图45中所示组成的信号线驱动电路2i的输出缓冲寄存器电路85的操作。图46是一波形,描述了图45中所示的信号线驱动电路2i的操作。
表1CNT1CNT2比较器4g的输出P1P2P3N1N2N3高 高 高 通通通断断断高 高 低 断断断通通通高 低 高 通通断断断断高 低 低 断断断通通断低 低 高 通断断断断断低 低 低 断断断通断断如图45中所示,根据本实施例,比较4g的输出经可变阻抗输出缓冲寄存器85连接到一个信号线。参考信号Vref30输入给比较电路4g的正端,如实施例9。可变阻抗输出缓冲寄存器85由控制信号CNT1和CNT2控制。可变阻抗输出缓冲寄存器85包括由PMOS晶体管P1和NMOS晶体管N1组成的第一缓冲寄存器;由PMOS晶体管P2和NMOS晶体管N2组成的第二缓冲寄存器;由PMOS晶体管P3和NMOS晶体管N3组成的经三缓冲寄存器;以及逻辑元件,即反相器INV20、INV21及INV22,“与”门AND1和AND2,以及“或”门or1和OR2。
如表1中所见,可变阻抗输出缓冲寄存器85如下操作。
当控制信号CNT1和CNT2均为高电平时,第一缓冲寄存器、第二缓冲寄存器以及第三缓冲寄存器均操作以驱动信号线。
当控制信号CNT1为高电平而CNT2为低电平时,第一缓冲寄存器和第二缓冲寄存器操作以驱动信号线。与比较电路4g的输出无关,第三缓冲寄存器的PMOS晶体管P3和NMOS晶体管N3处于载断状态,从而第三缓冲寄存器不介入信号线的驱动。
当控制信号CNT1和CNT2均为低电平时,与比较电路4g的输出无关,第二缓冲寄存器的PMOS晶体管P2及NMOS晶体管N2,以及第三缓冲寄存器的PMOS晶体管P3及NMOS晶体管N3均处于截断状态,从而无论是第二缓冲寄存器还是第三缓冲寄存器均不介入信号线的驱动。只有第一缓冲寄存器操作以驱动信号线。
由于PMOS和NMOS晶体管组成的缓冲寄存器电路具有一些输出阻抗,该阻抗由MOS晶体管的导通电阻产生,因此,输出电路的输出阻抗能够根据同时驱动信号线的输出缓冲寄存器的数量而改变。
如图46中所示,对于同样的电压写入周期(即,在本实施例的情形下Hsync),当写入刚开始时,控制信号CNT1和CNT2均为高电平,从而第一、第二和第三输出缓冲寄存器均驱动信号线。接着,控制信号CNT1保持高电平而控制信号CNT2变为低电平,从而第一和第二缓冲寄存器驱动信号线。在电压写入周期的后期,控制信号CNT1与CNT2均为低电平,从而只有第一缓冲寄存器驱动信号线。因此,在同样的电压写入周期中,用于驱动信号线的输出缓冲寄存器的数量逐步减少,从而逐步增加输出电路的输出阻抗。因此,如图46中所示,即使在显示板的通过参考信号Vref30的周期T30确定的脉冲信号的频率不能保证加到象素上的电压充分地平均、阻止适当的电压施加到象素上的情形下,也可以充分地平均施加到象素上的电压,并达到期望的电压值。
如上所述,根据本发明,可保证用于驱动信号线的脉冲信号的占空比根据模拟视频信号的信号电压而改变。另外,该脉冲信号由从信号线驱动电路到象素间的信号路径的低通滤波器特性来平均,从而脉冲信号的平均电压可施加到象素上。
因此,通过简单地采用二进制脉冲信号,可以将期望的电压施加到象素上,从而实现多级灰度显示或全彩色显示。结果,可以实现多级灰度信号线驱动电路,降低成本及能耗,并增加集成度。
通过这样构造信号线驱动电路以使其包括与信号线相连的数字缓冲寄存器电路,并且该电路具有至少两个输出电压电平以根据数字缓冲寄存器电路的输出信号驱动信号线,并指定一个输出电压电平为GND电平,可以根据仅有一个电源的全彩色信号线驱动系统实现驱动。
通过利用从信号线驱动电路到象素间的信号的路径的传送特性,不需要有特殊地设置低通滤波器。从而,装置的结构能简化。
另外,根据本发明,当将模拟视频信号转换成具有与该模拟视频信号相应的占空比的脉冲信号时,模拟视频信号与液晶的显示亮度之间的关系被指定为线性的,从而能够防止由于显示装置的亮度特性引起的亮度偏差,进而能够实现高质量的显示装置。
另外,根据本发明,模拟视频信号的取样值与校正参考信号比较,并且产生脉冲信号以输出给信号线作为信号线驱动信号,该脉冲信号具有与模拟视频信号的信号电平相应的占空比,并且有r影响已被校正的灰度亮度特性。结果,当视频信号(例如用于电视播送的NTSC型视频信号)输入给液晶显示装置时,可以在液晶显示装置上得到最佳的高质量显示图像而不受r校正的影响,该r校正是为了使用阴极射线管进行显示而在发送侧对电视视频信号进行的。
因此,根据本发明的用于模拟视频信号的有源矩阵型显示装置,其成本及能耗能够降低,而响应速度加快,其中不需要输出级的模拟缓冲寄存器或模拟开关。由于不需要各种数字视频信号或控制信号,其外围电路能够简化,集成度增加。另外,可以利用一个电源实现具有信号线驱动电路的全彩色有源矩阵型显示装置。
另外,根据本发明,不需要对显示装置本身的亮度特性进行校正或对模拟视频信号本身进行信号处理,而采用其它方法校正对阴极射线管显示进行的r校正是需要的。从而,能够省略用于此信号处理的能处理该视频信号带的任何高速模拟校正电路,进而能降低成本,简化外围电路,并增加集成度。
另外,根据本发明,当将模拟视频信号转换成具有与该模拟视频信号相应的占空比的脉冲信号以输出给信号线时,在脉冲信号输出之前通过采用简单的逻辑运算电路,脉冲信号的占空比就可以按周期的方式逻辑地交替逆转。结果,能够实现a、c、驱动,而不用增添能够处理模拟视频信号的频带的高速模拟极性反转信号产生电路。因此,能降低成本和能耗,并增加集成度。
另外,根据本发明,当将模拟视频信号转换成具有与该模拟视频信号相应的占空比的脉冲信号以输出给信号线时,在脉冲信号输出之前通过采用简单的逻辑运算电路,脉冲信号的占空比就可以按周期的方式逻辑地交替逆转,从而克服在正电压和反电压之间显示板的保持特性的差异。结果,能够提供最佳的图像质量,而不存在由于正和负电压之间电压保持特性的差异引起的闪烁或图像残留。
另外,根据本发明,当将模拟视频信号转换成具有与该模拟视频信号相应的占空比的脉冲信号以输出给信号线时,输出给信号线的脉冲信号的频率改变一期望值,该信号线是负载电容。结果,装置的能耗能够降低。
另外,根据本发明,当将模拟视频信号转换成具有与该模拟视频信号相应的占空比的脉冲信号以输出给信号线时,信号线驱动电路的输出阻抗能改变到一期望值。结果,即使在一显示板中从信号线驱动电路的输出到象素间的路径的低通滤波器特性不允许脉冲信号被充分地平均、从而降低显示质量的情形下,也能够提供最佳的图像质量。
本领域的技术人员能容易地做出各种其它的改进而不脱离本发明的范围和实质。从而,所附的权利要求书的范围不限于上面的描述,而要从广义角度去解释。
权利要求
1.一种有源矩阵型显示装置,包括一显示板,该显示板包括成矩阵形设置的多个象素,扫描线与该多个象素相连,信号线与该多个象素相连;以及一信号线驱动电路,用于接收模拟视频信号,并根据与该模拟视频信号的信号电平相应的信号线驱动信号驱动各信号线,其中,该信号线驱动电路产生具有与该模拟视频信号的信号电平相应的占空的脉冲信号,并输出该脉中信号。
2.如权利要求1所述的有源矩阵型显示装置,其中该信号线驱动电路包括一取样和保持电路,对模拟视频信号进行取样并产生保持信号;一参考信号产生电路,产生参考信号;以及一比较电路,将该保持的信号与参考信号相比,并输出具有与该模拟视频信号的信号电平相应的占空比的脉冲信号。
3.如权利要求1所述的有源矩阵型显示装置,其中,该信号线驱动电路包括数字缓冲寄存器电路,该数字缓冲寄存器电路与信号线相连并具有至少两个输出电压电平,该信号线驱动电路利用该数字缓冲寄存器电路的输出信号驱动信号线。
4.如权利要求3所述的有源矩阵型显示装置,其中该两输出电压电平中的一个为GND电平。
5.如权利要求2所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
6.如权利要求1-5中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,从该信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
7.一种驱动一有源矩阵型显示装置的方法,模拟视频信号输入该显示装置,该方法包括步骤产生一脉冲信号,该脉冲信号具有与该模拟视频信号的信号电平相应的占空比以及平均该脉冲信号并施加一平均电压到一象素上。
8.如权利要求1所述的有源矩阵显示装置,其中该信号线驱动电路控制该脉中信号的占空比,使得该模拟视频信号的信号电平与象素的显示亮度之间的关系保持线性。
9.如权利要求2所述的有源矩阵型显示装置,其中该参考信号是校正参考信号,以校正该模拟视频信号的信号电平与象素的显示亮度之间的非线性关系,以及该比较电路将所保持的信号与该校正参考信号相比,以产生与该模拟视频信号的信号电平相应的脉冲信号,并控制该脉冲信号的占空比,使得该模拟视频信号的信号电平与象素的显示亮度之间的关系保持线性。
10.如权利要求9所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
11.如权利要求8-10中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,而从该信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
12.如权利要求7所述的驱动有源矩阵型显示装置的方法,其中,产生该脉冲信号的步骤包括,控制该脉冲信号的占空比使得该模拟视频信号的信号电平与象素的显示亮度之间的关系保持线性的步骤。
13.如权利要求2所述的有源矩阵型显示装置,其中该参考信号是校正参考信号,以校正对该模拟视频信号进行的r校正,以及该比较电路将保持的信号与该校正参考信号比较,以产生与该模拟视频信号的信号电平相应的脉冲信号,并控制该脉冲信号的占空比,以校正对该模拟视频信号进行的r校正。
14.如权利要求1所述的有源矩阵型显示装置,其中该信号线驱动电路还包括一个比较电路,以周期的方式交替地逆转该脉冲信号的占空比。
15.如权利要求2所述的有源矩阵型显示装置,其中该信号线驱动电路还包括逻辑运算电路,以及该逻辑运算电路接收该比较电路的输出和极性反转信号,并进行逻辑运算,以输出通过逻辑地交替反转具有与该模拟视频信号的信号电平相应的占空比的信号而得到的脉冲信号。
16.如权利要求15所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
17.如权利要求14-16中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,而从该信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
18.如权利要求7所述的驱动有源矩阵型显示装置的方法,其中产生该脉冲信号的步骤包括,逆转该脉冲信号的占空比并产生通过逻辑地交替反转具有与该模拟视频信号的信号电平相应的占空比的信号而得到的脉冲信号。
19.如权利要求14所述的有源矩阵型显示装置,其中该信号线驱动电路包括比较电路,以控制该脉冲信号的占空比,从而对正电压和负电压之间该显示板的电压保持特性的差异进行校正。
20.如权利要求15所述的有源矩阵型显示装置,其中该参考信号是校正参考信号,以对正电压和负电压之间该显示板的电压保持特性的差异进行校正,以及该比较电路将保持的信号与该校正参考信号比较,并输出比较结果给该逻辑运算电路。
21.如权利要求20所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
22.如权利要求19-21中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,而从该信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
23.如权利要求18所述的驱动有源矩阵型显示装置的方法,其中产生该脉冲信号的步骤包括对显示板的电压保持特性的差异进行校正的步骤。
24.如权利要求1所述的有源矩阵型显示装置,其中该信号线驱动电路包括改变该脉冲信号的周期的部件。
25.如权利要求2所述的有源矩阵型显示装置,其中该参考信号是具有变化的周期的参考信号。
26.如权利要求25所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
27.如权利要求24-26中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,而从信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
28.如权利要求7所述的驱动有源矩阵型显示装置的方法,其中产生该脉冲信号的步骤包括改变该脉冲信号的周期的步骤。
29.如权利要求1所述的有源矩型显示装置,其中该信号线驱动电路还包括比较电路,以根据该脉冲信号控制输出阻抗。30.如权利要求2所述的有源矩阵型显示装置,其中在该比较电路与该信号线之间配备一个阻抗元件以根据该脉冲信号控制输出阻抗。
31.如权利要求30所述的有源矩阵型显示装置,其中该脉冲信号是二进制脉冲信号。
32.如权利要求29-31中任何一个所述的有源矩阵型显示装置,其中该信号线驱动电路输出该脉冲信号给信号线,而从该信号线到与其相应的象素间的电路对该脉冲信号起低通滤波器的作用。
33.如权利要求7所述的驱动有源矩阵型显示装置的方法,其中产生该脉冲信号的步骤包括控制该脉冲信号的输出阻抗到一期望值的步骤。
全文摘要
根据本发明的有源矩阵型显示装置包括一显示板,该显示板包括成矩阵型设置的多个象素,扫描线与该多个象素相连,信号线与该多个象素相连;以及一信号线驱动电路,接收模拟视频信号并利用与该模拟视频信号的信号电平相应的信号线驱动信号驱动各信号线。该信号线驱动电路产生具有与该模拟视频信号的信号电平相应的占空比的脉冲信号并输出该脉冲信号。
文档编号G02F1/133GK1122492SQ9511523
公开日1996年5月15日 申请日期1995年7月27日 优先权日1994年7月27日
发明者柳俊洋, 川口登史, 竹田信 申请人:夏普公司