专利名称::涂覆金属的基体的制作方法
技术领域:
:本发明涉及涂覆金属的基体,更进一步地说,涉及涂覆金属的透明基体板,其中所说的金属是银、金或铜或其一种或多种合金。这种涂层基体例如在建筑物或车辆的窗子中以夹层结构和作为滤光器得到了运用。用作为建筑物窗玻璃的的板要求具有较低的太阳因子(FS,如下文中所定义),从而使建筑物内部不会受到太阳辐射的过分加热,同时具有适当的透光性(TL,如下文中所定义)从而提供足够的内部光亮。这些有些相互矛盾的要求可以表示为要求该板具有良好的选择性,即透光性与太阳因子的比率较高(在下文中作进一步解释)。人们还希望窗玻璃板既具有反射中性(也可以说成是低颜色纯度),也具有较低的反射,但是这些性能是很难与高选择性一起获得的性能。人们已经知道通过增加金属层的厚度来改善窗玻璃上金属涂层的选择性。但是,这种做法存在使窗玻璃具有反射紫色的缺点,这种紫色在美学上被认为是不受人欢迎的。人们还提出了通过在该金属层下面采用一种氧化物层来克服该缺陷,所说的氧化物层具有比涂层中的其它氧化物层更高的折射率,从而在代表性的氧化物层之间产生了干涉作用,它们降低了不需要的颜色。法国专利说明书2719036指出采用选自氧化铌和氧化钽的氧化物作为下层。但是,这种高折射率下层不能使所涂覆的基体获得低反光性(RL)和高选择性。我们的早期英国专利说明书2229737和2229738描述了一种带有多层涂层的玻璃材料基体,该涂层包括夹在透明底层和透明外层之间的银反射层。该底层包括至少一层金属氧化物,在该金属氧化物层上沉积了一层厚度为15纳米以下的氧化锌层。该外涂层包括一层牺牲金属,如铝、铋、不锈钢、锡或钛或其混合物的氧化物层。本发明的目的在于提供一种经过改进的涂层,其中反射紫色被中性化并且反射量较低,没有产生涂层选择性方面的缺陷。涂层基体的几项性能具有如适当的标准所定义的精确含义。本发明中所用的那些性能包括下列基于国际照明委员会(“CIE”)定义的性能。本发明中所用的标准光源是如CIE定义的光源C。光源C代表颜色温度为6700°K的平均日光。“透光性”(TL)是光源C透过基体的光流量,用入射光流量的百分比表示。“光的反射性”(RL)是由基体反射的光流量,用光源C的入射光流量的百分比表示。基体的“光吸收指数”(kλ)用下列式子定义(kλ)=λ4πa(λ)]]>其中a(λ)是光线性吸收系数。“太阳因子”(FS)是直接透过基体的总太阳能与在远离能源一侧吸收并再次辐射的能量(作为入射在该基体上的总辐射能量的一部分)的比值。涂层基体的“选择性”(SE)是透光性(TL)与太阳因子(FS)的比值。基体颜色的“纯度”(P)是指如CIE国际照明词汇,1987,P87和P89中所说用光源C测定的色纯度。该纯度是按照线性刻度表示的,在该刻度上所说的白色光具有零纯度,而纯色具有100%的纯度。涂层基体的纯度从与带有涂层的一侧相对的一侧进行测量。术语“折射率”(n)如CIE国际照明词汇,1987,P138中所定义。“主波长”(λD)是指涂层基体透过或反射的峰值波长范围,也作为色调为人们已知。根据本发明,提供了一种带有多层涂层的涂层基体,该涂层按照从该基体依次包括(i)介电材料层,(ii)选自银、金、铜及其一种或多种的合金中的金属层,以及(iii)另一层介电材料层,其特征在于介电材料层(i)是包含一种选择性吸收材料的亚层的复合层,该亚层的折射率至少为1.4,光吸收系数kλ在380<λ<450纳米范围内至少为0.4并且k380<λ<450nm/k650<λ<760nm>2。本发明的涂层基体的特征在于亚层,它是由具有与我们的早期申请的亚层不同的特殊吸收性能的材料形成的。通过形成该亚层的材料,使得由于金属层的厚度而造成不合适的紫色中的兰色成分得到吸收,用比值k(对于380<λ<450nm)/k(对于650<λ<760nm)来表示应该>2。所说的波长范围在可见光内。因此本发明采用两种颜色中性化机理吸收光中的兰色部分(波长范围为约450纳米和450纳米以下)以及由该涂层的组合层呈现的在光谱红色部分(波长范围为约650纳米和650纳米以上)的干涉作用;并且在降低紫色方面它们比以前的方案更有效。另外,与以前仅仅依靠干涉作用的方案不同的是,本发明无需采用折射率比其它氧化物或氮化物高的中性层。该涂层还具有改进的,即降低的反射纯度,并且这一点可以与非常低的光反射(RL)一起达到。本发明的涂层基体以及包含它们的窗玻璃具有与采用很厚的金属层相似的高选择性但没有通常在这类产品中固有的明显反射和强紫色着色作用。与类似的含有一层或多层厚金属层但没有该吸收材料的涂层基体相比,本发明的玻璃板至少具有良好的选择性、较高的反射主波长(λD)-向着绿色;但同时在玻璃一侧具有较低的反射(RL)和较低的反射颜色纯度(P)。在本发明的进一步的实施方案中,该涂层还可以包括另一金属层(iv)和另一介电层(v)。牺牲阻挡层,例如选自铬、铬/镍合金、铌、钽、锡、钛和锌的金属层要位于金属或各个金属层之上,优选的牺牲金属是钛。牺牲金属夺取在涂层形成过程中和以后会攻击该金属层的氧,所形成的氧化物会在该金属层上形成保护层。出于牺牲责任考虑,该牺牲金属优选地其厚度为2-5纳米,但是采用10纳米以下的厚度有助于留下未氧化的牺牲金属层以提高该涂层整体的抗太阳性能。介电材料层(i)、(iii)和(v)优选地包含至少一种金属氧化物或金属氮化物。这些材料的合适例子包括氧化铝(Al2O3)、氮氧化铝、氧化镁(MgO)、氧化铌(Nb2O5)、氧化硅(SiO2)、氮化硅(Si3N4)、氧化钽(TaOC2)、氧化锡(SnO2)、二氧化钛(TiO2)、氧化钇(Y2O3)、氧化锌(ZnO)、和硫化锌(ZnS)。这些材料可以单独使用也可以组合使用。它们是能够调整光反射性(RL)和色纯度(P)的非吸收性透明材料。所需的使涂层降低紫色反射的光学干涉作用通过所说材料的多层亚层,例如SnO2/ZnO或ZnO/SnO2/ZnO很方便地实现。在具有单一金属层的涂层中,介电层(i)(iii)的厚度优选地分别在15-45nm和30-60nm范围内,最优选地为25-45nm和35-55nm。在具有两层金属层的涂层中,介电层(i)、(iii)和(v)的厚度优选地分别在15-35nm、60-90nm和20-40nm范围内。已经发现包含该亚层的涂层基体的选择性至少与亚层产物不存在的等同涂层基体一样高。用于所说亚层的选择性吸收材料的适当例子是不锈钢氧化物(SSOX)、三氧化二铁(Fe2O3)、氧化铬(CrOxCrO或Cr2O3)、氧化钯(PdO)、锗、氧化锗(GeOx其中0<x<1)、硅和氧化硅(SiOx,其中0<x<1),其中优选的是不锈钢氧化物和氧化铁。氧化铁在颜色中性化方面比不锈钢好,但是有时恰好相反,由于不锈钢氧化物没有磁性,因此它比氧化铁容易沉积,氧化铁的抗磁性阻碍它通过磁控阴极溅射法来涂覆。可以看到这些选择性吸收材料也具有良好的紫外(UV)波长吸收性能。因此,带有包含这种选择性吸收材料的涂层的窗玻璃具有降低进入室内的UV辐射量的优点,从而保护室内的任何织物和塑料变色。虽然层(iii)或(v)可以类似地包含选择性吸收材料的亚层,但是,在多数情况下,通过单单在第一层(i)中的亚层就可以适当地获得所需的吸收程度。选择性吸收亚层或每一层选择性吸收亚层的厚度优选地应小于15nm,所说亚层厚度小于5nm的本发明的涂层基体是特别使人感兴趣的。5nm厚度的SSOX可以使14nm银层的颜色中性化,而相同厚度的Fe2O3可以使17.5nm的银层中性化。金属层(ii)和(iv)由银、金或铜或其一种或多种合金形成。在本发明带有单层金属层(ii)的实施方案中,该金属的厚度优选地为10-20纳米,相应的其光反射性(RL)低于20%。在本发明的带有单层金属层(ii)的另一种实施方案中,其厚度优选地为20纳米以上、30纳米以下,相应地其光反射性(RL)低于40%。当采用两层这种涂层(ii)(iv)时,它们的厚度优选地为10-25纳米。在第一介电层(i)中采用吸收性亚层可以使涂层基体获得比具有相同厚度金属层的常规“中性”涂层具有较低的光反射性(RL)。在具有两层金属层(ii)和(iv)的本发明的涂层的情况下,RL值优选地低于15%。该基体最典型地是玻璃,但也可以是另一种透明材料,例如聚碳酸酯、聚甲基丙烯酸甲酯或聚对苯甲酸乙烯酯。该涂层基体优选地其色纯度(P)低于20%,更优选地低于10%。这种有利的低色纯度显然与通过本发明获得的低RL值有关。此外,除了使涂层基体的纯度获得相当大的降低以外,本发明还增加了其主波长(λD),优选地主波长为480-500纳米。在该波长范围内,色调不再是紫色的,而是趋向于兰色至兰/绿色。在本文中,涂层和亚层所说的厚度尺寸是指几何厚度。除非另有说明,否则所说的涂层基体的性能是在厚度为6毫米的单块普通透明钠-钙-硅玻璃基础上测定的。这些性能是从与涂覆面相对的一面,即从玻璃一侧观察的。该相对的面通常不涂覆。用于窗玻璃中时,该涂层基体通常与一块或多块未涂覆的基体板包含在多块窗玻璃组合件中,涂层涂覆在内表面上。根据本发明,还可以很容易地获得具有至今还很难获得的选择性的双层玻璃板。本发明当在涂层中采用单层金属层时可以获得超过1.4的选择性,而当在涂层中采用双层金属层时则可以获得超过2.0的选择性。此外,这些高选择性还可以与低色纯度和低反射性一同获得。虽然在本文中主要针对用于窗玻璃中的涂层基体进行了描述,但是本发明还可以适用于用于滤光器中的涂层基体。这种滤光器的典型例子是用来将从中通过的可见光辐射带宽度减小的单色滤光器。作为为人们已知的“四分之一波长”或Fabry-Perot滤光器,它们通常位于最大人体视觉分辨能力波长范围(550nm±50nm)的中心。尤其是,它们还可以用来消除某些光谱,这些光谱对于透光性没有帮助,但会损害太阳因子,即光谱中的红外和紫外部分。因此,它们可以获得较高的选择性,但是这一优点通常由于反射颜色纯度的不合适增加而损失掉。根据本发明,吸收亚层的引入可以克服掉该缺点。用于这些滤光器的涂层基体具有与前面所说的双金属层涂层基体相同的结构,但是它们具有不同的介电厚度,即(i)和(v)低于10纳米(不包括应低于15纳米的选择性吸收亚层)(iii)(550nm/4n)±15%[其中n代表介电层(iii)的折射率]。这些涂层优选地通过真空沉积而施加。这种方法是优选的,其原因在于涂层可以很容易地控制厚度及组成,从而确保获得本发明所需要的产品均匀性。该沉积方法通常采用一个或多个真空沉积室、基体的输送机、电源和进气开关。每一个沉积室含有平面磁控溅射阴极、气体进口和排气出口,沉积是通过将基体在该阴极下通过数次而实现的。该室中的压力通常为约0.3Pa。本发明的涂层基体的各个层的厚度相对较低,使得涂层施加的时间缩短并且各种材料用量较为经济。实施例参照下列非限制性实施例来对本发明作更详细的描述。对于本发明的每一个实施例,至少有一个对比实施例,从而证明由本发明的涂层基体获得的改进。对于每一个实施例,将6毫米厚的透明玻璃基板在真空沉积装置中通过,该装置包括带有阴极的室,该阴极根据特定的涂层配有钛、不锈钢、铁、锌和锡把用来在氧气气氛中分别沉积二氧化钛(TiO2)、不锈钢氧化物(SSOX)、氧化铁(Fe2O3)、氧化锌(ZnO)和氧化锡(SnO2)介电亚层[(i)、(iii),有时为(v)]。银靶和钛靶类似地用于在氩气气氛中沉积一层或多层银〖(ii)和有时为(iv)〗并且用钛作为一层或多层牺牲阻挡层。将基体板放入返回通道,使之经过沉积装置,从而获得所需层和厚度的两层或三层介电材料层。所形成的涂层包括如表1所示的层。从玻璃一侧检测它们的光学性能,其结果示于表2中,在最后三栏中TL、FS和SE结果是用加入一块如上所说涂覆的板的双层玻璃组合件而获得的。该组合件板之间的间隙用氩气填充。在这些实施例中,当介电体含有SnO2/ZnO结构的亚层时,这些氧化物以相同的比例(0.5/0.5)存在。当该结构为ZnO/SnO2/ZnO时,其比例为0.25/0.5/0.25。在所有的实施例中,对于SSOX来说,在兰色范围(380<λ<450nm)内的吸收系数为0.4-1.2,而对于Fe2O3来说为0.5-0.9。实施例1(对比)表示高折射率材料(TiO2,与ZnO或SnO2折射率约2.0相比,其为2.5)在介电体1中的运用。这种材料限制了由重要的银层引起的紫色的色纯度(相对于采用低折射率材料来说)。这一点与现有技术相对应。实施例2(对比)表示即使在这样一种情况下,反射降低了,颜色纯度被进一步降低,并且主波长的范围由于引入本发明的第一层介电吸收亚层而得到增加。实施例3表示吸收亚层越厚,涂层光反射性和反射颜色纯度越低,而其主波长越高。实施例10表示本发明在滤光器中的运用。该实施例还说明与SSOx相比Fe2O3的杰出中性化能力。表1(厚度,纳米计)</tables>表2<tablesid="table2"num="002"><tablewidth="816">实施例TL(%)RL(%)λD(nm)p(%)TL(%)FS(%)SE171.121.747821.064411.56275.111.648010.068411.563a84.58.247223.076521.463b80.96.748013.573491.493c78.95.84877.971481.484a72.020.447513.565411.594b71.717.14815.365401.635a58.433.74789.052311.685b58.730.34902.253311.716a47.743.74788.943241.796b47.939.64862.543241.797a71.59.248610.964302.137b70.28.04944.763292.178a70.610.947823.064282.298b67.67.74837.761252.449/1a67.513.347732.061232.659/1b64.78.948114.858212.769/2a67.113.047737.660242.509/2b64.013.048516.358232.529/3a70.810.347738.864262.469/3b66.77.148118.862252.4810a73.710.447351.866351.8910b67.011.148918.261331.85</table></tables>权利要求1.一种带有多层涂层的涂层基体,该涂层按照从该基体依次包括(i)介电材料层,(ii)选自银、金、铜及其一种或多种的合金中的金属层,以及(iii)另一层介电材料层,其特征在于介电材料层(i)是包含一种选择性吸收材料亚层的复合层,该亚层的折射率至少为1.4,光吸收系数kλ在380<λ<450纳米范围内至少为0.4并且k380<λ<450nm/k650<λ<760nm>2。2.如权利要求1所说的涂层基体,其中该涂层包括另一层金属层(iv)和另一层介电层(v)。3.如权利要求1或2所说的涂层基体,其中该涂层在该金属层或每层金属层上面包括一层牺牲阻挡层。4.如权利要求3所说的涂层基体,其中该牺牲阻挡层的厚度为2-5nm。5.如权利要求3或4所说的涂层基体,其中该牺牲阻挡层是钛金属,它在最后的涂层中基本上是完全氧化的。6.如前面权利要求中任意一个所说的涂层基体,其中该介电层的材料由至少一种金属氧化物或金属氮化物组成。7.如权利要求6所说的涂层基体,其中该介电层的材料由一种或多种氧化铝、氮氧化铝、氧化镁、氧化铌、氧化硅、氮化硅、氧化钽、氧化锡、二氧化钛、氧化钇、氧化锌和硫化锌组成。8.如前面权利要求中任意一个所说的涂层基体,其中该亚层的选择性吸收材料选自不锈钢氧化物、氧化铁、氧化铬、氧化钯和氧化锆。9.如前面权利要求中任意一个所说的涂层基体,其中该选择性吸收亚层的厚度为小于15nm。10.如权利要求9所说的涂层基体,其中该选择性吸收亚层的厚度为小于5nm。11.如前面权利要求中任意一个所说并且具有单一金属层的涂层基体,其中介电层(i)和(iii)的厚度分别在25-45nm和35-55nm范围内。12.如前面权利要求中任意一个所说并且具有单一金属层的涂层基体,其中金属层的厚度为10-20nm。13.如权利要求12所说的涂层基体,其中光反射性(RL)低于20%。14.如前面权利要求1-11中任意一个所说并且具有单一金属层的涂层基体,其中金属层的厚度为20nm以上、30nm以下。15.如权利要求14所说的涂层基体,其中光反射性(RL)低于40%。16.如权利要求1-10中任意一个所说并且具有两层金属层的涂层基体,其中两层金属层的厚度均为10-25nm。17.如权利要求1-10,或16中任意一个所说并且具有两层金属层的涂层基体,其中介电层(i)、(iii)和(v)的厚度分别为15-35nm、60-90nm和20-40nm。18.如前面权利要求中任意一个所说的涂层基体,它形成滤光器的一部分。19.如权利要求18所说的涂层基体,其中介电层(i)和(v)的厚度均低于10nm,不包括任何选择性吸收亚层;介电层(iii)的厚度为(550nm/4n)±15%,其中n代表介电层(iii)的折射率。20.如权利要求16-19中任意一个所说的涂层基体,其光反射性(RL)低于15%。21.如前面权利要求中任意一个所说的涂层基体,其色纯度(P)低于20%,优选地低于10%。22.如前面权利要求中任意一个所说的涂层基体,其主波长为480-500nm。23.如前面权利要求中任意一个所说的涂层基体,它形成窗玻璃的一部分。24.一种双层窗玻璃,它包括如前面权利要求甲任意一个所说的涂层基体。25.如权利要求24中所说并且选择性高于1.4的的双层窗玻璃。全文摘要本发明提供了一种带有多层涂层的涂层基体,该涂层按照从该基体依次包括(i)介电材料层,(ii)选自银、金、铜及其一种或多种的合金中的金属层,以及(iii)另一层介电材料层,其特征在于介电材料层(i)是包含一种选择性吸收材料亚层的复合层,该亚层的折射率至少为1.4,光吸收系数kλ在380<λ<450纳米范围内至少为0.4并且k文档编号G02B5/20GK1173428SQ9711545公开日1998年2月18日申请日期1997年7月24日优先权日1996年7月25日发明者Y·诺维斯,J·M·狄帕尤申请人:格拉沃贝尔公司