专利名称:补偿磁光计算机存储装置中的数据缺陷的系统和方法
交叉引用相关专利本发明涉及以下美国专利申请序号60/022,775的临时申请,题为“基于浮动式磁光头的数据存储和读取系统”,该申请于1996年7月30日提交;序号为60/023,476的临时申请,题为“基于浮动式磁光头的数据存储和读取系统”,该申请于1996年8月6日提交;以及序号为60/025,801的临时申请,题为“基于浮动式磁光头的数据存储和读取系统”,该申请于1996年8月27日提交。这些相关的申请都通过引用结合在这里。所有相关的申请都被共同转让。
背景技术:
本发明一般地涉及存储系统,尤其涉及补偿磁光计算机存储装置中的数据缺陷的系统和方法。
提供数字信息的可靠的存储和读取技术是计算机系统制造商、设计者以及使用者们的重要的考虑因素。在使用浮动式磁光头的磁光存储装置中,数字数据被写到MO存储媒体的旋转盘的前表面,并从那里读出。现在参照
图1(a),示出磁光存储媒体110的前表面112的平面图。在磁光存储装置中,数字数据典型地被写到存储媒体110的表面112上的一组同心或螺旋形磁道114上,并从那里读出。实际上,数字数据通过将激光产生的光束从浮动式磁头射到选出的磁道114上(而此时的存储媒体110在旋转),从存储媒体110的前表面112读出,然后测出从存储媒体110的表面112反射回来的光的幅值和偏振。
现在参照图1(b),示出图1的磁光存储媒体110的截面图。在操作中,浮动式磁光头(图中未示)位于前表面112的上面。图1(b)包含几个样子,它说明磁光存储装置中的不可靠和无效数据的可能的原因。图1(b)的例子包括腐蚀缺陷116、粒子的污染118和“亮点”120。示出这些例子的目的是为了说明,有缺陷的数据可以容易地由各种其它因素引起。
图1(b)的例子都显著地改变了从存储媒体110的表面112读出的数据。腐蚀缺陷116和粒子污染118都减小表面112的反射性质。这种反射率的变化减小了从存储媒体110读出数据的MO信号幅值。相反,亮点120使表面112中的反射率增加。这种增加也减小了存储在存储媒体110上的数据的标记大小,因为亮点120在数据写过程中反射用于加热存储媒体110的激光束。因此,亮点120妨碍了数据有效地写到存储媒体110。
另外,前表面媒体由于诸如粒子污染118之类的原因,更有可能有显著的数据缺陷。传统的MO媒体具有活性层,它们离媒体表面以下有一定的距离。在传统MO媒体上的粒子污染可能因此而不能聚焦,并因此而无法读出。相反,本发明使用前表面媒体110,其上使用浮动式记录磁光头(包括光学和磁场调制线圈)直接从存储媒体110的前表面112记录和检测MO数据标记。因此,前表面112上的粒子污染118对从存储媒体110读出的数据信号具有过大的冲击。
如上所述,腐蚀缺陷116、粒子污染118以及亮点120可能在前表面磁光存储装置中引起数据缺陷。另外,磁光存储装置磁光存储装置可能无法补偿这些数据缺陷。磁光装置常常包含控制数据幅值的自动增益控制装置(AGC),和使数据流同步的锁相振荡器(PLO)。但是,显著的信息失落或数据缺陷可能使AGC或PLO操作如此严重地瓦解,从而磁光装置无法读取正常的数据幅值或数据同步。从上述讨论,显然磁光数据在对付缺陷方面不够强壮。因此,需要一种改进的系统和方法补偿前表面媒体磁光存储装置中的数据缺陷。
发明概述根据本发明,揭示了一种补偿磁光存储装置中的数据的系统和方法。在本发明的较佳实施例中,磁光驱动装置光学地读出存储在磁光存储媒体上的信息,然后使用光学组件驱动分开的电MO+和MO-信号,所述光学组件包含偏振光束分光镜和MO+和MO-信号的分开的光检测器。耦合到磁光驱动装置的数据信道使用反相放大器和加法放大器减去MO+和MO-信号,以相应地产生模拟数据信号,并将其提供给转换器装置。
耦合到数据信道的反射信道使用加法放大器接收和组合MO+和MO-信号以相应地产生反射信号,并将其提供给检测装置。然后,检测器较好地使用阈值检测技术检测接收到的反射信号,以产生陡峭变化(coast)信号给转换器装置中的锁相振荡器和自动增益控制器。检测器装置还将陡峭变化信号提供给延迟装置,用于产生错误指针信号给数据信道中的纠错编码(ECC)解码器装置。
当发生数据缺陷时,磁光驱动装置使用所产生的陡峭变化信号以在数据缺陷周期中保持恒定的自动增益控制(AGC)或锁相振荡器(PLO)控制信号。实际中,有缺陷的数据信号被延迟,从而产生的陡峭变化信号可以及时地提供给转换器装置中的自动增益控制装置以及锁相振荡器。自动增益控制装置和锁相振荡器相应地保留它们的预缺陷状态,直到数据缺陷通过,并且正确的数据值回来。由此,陡峭变化信号有效地用作“缺陷跳跃”脉冲。
磁光驱动装置还使用陡峭变化信号,将数据缺陷的位置提供给ECC解码器装置,用于错误校正。实际上,延迟装置接收陡峭变化信号,并相应地产生错误指针信号,该信号有利地与相应地数据缺陷同步。然后解码器装置可以特定地识别特定的数据缺陷的位置,以更为有效地执行选出的纠错功能。本发明由此有效地允许磁光驱动装置将更为强壮和可靠的数据提供给系统使用者。
附图概述图1(a)是根据本发明的前表面磁光媒体平面图;图1(b)是图1(a)的前表面磁光媒体的截面图,包括几个可能的数据缺陷的原因;图2是包括本发明的磁光驱动装置的计算机系统框图;图3是根据本发明图2的磁光装置的图示;图4是图3根据本发明图3的光学装置的示意图;图5是图3的磁光驱动模块的较佳实施例的示图,它包括数据信道和反射信道;图6是图3的驱动模块的一组陡峭变化信号的同步波形;图7是图3的驱动模块的一组错误指针同步波形;及图8是根据本发明,为了补偿磁光计算机存储装置中的数据缺陷的较佳方法的流程图。
较佳实施例的详细描述本发明包含补偿磁光存储装置中的数据缺陷的系统和方法,并包含耦合到存储装置的数据信道,用于接收和处理数据信号,还有耦合到数据信道的检测信道,用于识别数据缺陷,然后相应地产生相应的陡峭变化信号。
现参照图2,示出根据本发明的计算机210。计算机210较好地包含中央处理器(CPU)212、视频监视器214、输入装置216、存储器218、通信接口220和磁光装置222。计算机210的每一个元件最好耦合到公共系统总线224。存储器218也可以选择性地包含包括随机存取存储器(RAM)、只读存储器(ROM)和诸如软磁盘之类的非易失性存储装置等的各种存储装置配置。磁光驱动装置222接受、存储和读取各种类型的数据信息,下面参照附图3到8,进一步讨论。
现在参照附图3,该图示出了图2的磁光驱动装置222的示图。在本发明中,磁光驱动装置222的机械结构将浮式磁光(FMO)头技术与温彻斯特型旋转式制动器臂、吊架以及空气轴承(air bearing)技术结合到磁光(MO)数据存储系统中。在这个较佳实施例中,磁光驱动装置222包括光学组件310、单模态保偏(SMPM)光纤330、光导纤维开关350、制动磁铁以及线圈345、多个SMPM光纤340、多个磁光头臂360、多个吊架365、多个FMO磁光头370和多个MO存储媒体110。
多个MO存储媒体110的每一个都安装在转轴385上,用于以恒定的角速度连续地旋转,并且多个FMO磁光头370的每一个都通过各个相当灵活的吊架365以及磁光头臂360连到电磁制动磁光头和线圈345。熟悉本领域的人将认识到,MO驱动装置222可以只包含一个FMO磁光头370和一个MO存储媒体110,或多个MO存储媒体110的每一个有一个上和下FMO磁光头370。
现在参照附图4,该图示出了图3的光学组件310的概图。光学组件310包含激光光源、电光检测系统和有关的光学元件,较好的作为单独的组件310或作为混合式集成电路元件。在较佳实施例中,光学组件310还包含分布反馈(DFB)激光二极管455,使在可视或接近于紫外线的区域中工作的光源偏振、渗漏(leaky)光束分光镜445、在使激光从激光二极管455通过到渗漏分光镜455之前使用的平行镜电450和光隔离器453,以及最好是将输出光从渗漏分光镜445聚焦到单模态保偏(SMPM)光纤330馈送的倾斜折射指数(GradceentRefractive Index GRIN)透镜的耦合透镜440。
在较佳实施例中,光导纤维开关350(图3)在输出端接收光导纤维330,并将从光纤330发出的光引入输出端处的一根光导纤维340。光导纤维开关350的转换性质是双向的,从而沿输出端的任何一根SMPM的光导纤维传送回开关350的光也可以到达输入端的光导纤维330处。来自光导纤维开关350的SMPM光导纤维340最好沿各个磁头臂360和挂架365到达各个浮动式磁光头370。
在较佳实施例中,在写过程中,光通过单个光导纤维340传送到相应的FMO磁头370,目的是在局部加热旋转磁光存储媒体110的相应表面,由此产生“加热点”。使用安装在FMO磁头370上的电磁线圈产生电磁场,该电磁场然后自发地磁化加热点内的区域,其方向为垂直向上或向下。由此,当MO存储媒体110旋转时,对施加的电磁场进行调制,以便将数字数据编码为“上或下”的磁畴方向的图案。
在读出的过程中,密度更低的偏振光通过SMPM光导纤维340输送到单个FMO磁头370,目的是用聚焦的光的射束点探测旋转的存储媒体110。以此下方式实现读出,在存储媒体110的聚焦点处的磁化方向通过磁光克尔效应改变反射光的光偏振。由此,读出处理产生正向旋转光或反向旋转光。按照这种方式,朝上或者朝下的磁化方向的图案(表示所存储的数字数据)对从存储媒体110反射的光的编振进行调制。除了数据信息,存储媒体110还保存预先记录的伺服信息,其中MO驱动装置222读出该伺服信息,然后用于将磁头370放置在存储媒体110的选出的磁道114上的正确的位置。
来自存储媒体110的反射光信号通过FMO磁光头370、多个SMPM光导纤维340中的一个以及光导纤维开关350反馈,最后经过光导纤维330到达透镜440。然后,渗漏分光镜445使反射的光信号通过半波片430传送到偏振分光镜425,该偏振分光镜425对接收的光中的偏振进行正面和负面的辨别。由此偏振分光镜425将具有偏振的正面的反射光发送到光检测器416,并将具有偏振负面的反射光发送到光检测器414。
相应地,光检测器416将正向旋转的光转换为成比例的模拟电压,该模拟电压由前置放大器412在它经线路406被传送到驱动模块390前放大。类似地,光检测器414相应地将反向旋转旋转的光转换为成比例的模拟电压,该模拟电压由前置放大器410在它经线路408被传送到驱动模块390之前放大。
现在参照图5,示出图3的驱动模块390的较佳实施例的概图。在这个较佳实施例中,驱动模块390包括两个单独信道(数据信道510和反射信道514),因为磁光驱动装置222使用两种明显不同类型的光敏装置。如上所述,数据信道510检测出从存储媒体110反射的光,以决定偏振面的旋转(相应于每一个磁记录磁畴),由此分别产生相应的数字数据。
相比之下,反射信道514检测出从存储媒体110反射的光的幅值。例如,在读出模式过程中,每当读出光束射到压印在存储媒体110上预先设置的伺服图案,反射光的幅度都受到毁灭性的干扰。然后,反射信道514相应地使用检测到的反射信号,得到必需的伺服控制信息,它被用于控制磁光驱动装置222中选出的功能。本发明还有利地使用反射信道514,有效地补偿在磁光驱动装置222中产生的数据的缺陷,如下所述。
在正常的操作中,数据信道510通过线路406从光学装配310接收MO+信号,,并通过线路408从光学组件310接收MO-信号。然后,反相放大器524在加法放大器520结合MO+信号与反相的MO-信号,以将模拟数据信号通过线路528提供到转换器526之前,使MO-信号反相。通过结合MO+信号与反相的MO-信号,加法放大器520有效地去除了任何反射信号的信息。由此,线路528上的模拟数据信号只表示从存储媒体110反射的光的偏振面的信息。
在本发明的较佳实施例中,转换器526的输入端(在线路528)包括规定量的电传送延迟,它根据本发明延迟了模拟数据信号。转换器526将线路528上接收到的模拟数据信号提供给自动增益控制器(AGC)532以及锁相振荡器(PLO)536。在较佳实施例中,转换器526利用部分响应最大相似(PRML)技术将线路528上的模拟数据信号转换为数字数据信号,该信号在线路548上输出。另外,转换器526产生在线路552上输出的数据时钟信号。
AGC532试图纠正接收到的模拟数据信号的幅值中的变化,然后将纠正的模拟数据信号提供给模拟-数字转换器(ADC)540。PLO536还从线路528接收到模拟数据信号,并相应地将定时脉冲提供给ADC540以及PRML电路544。接着,ADC540相应地将接收到的模拟数据信号转换为相应地数字数据信号,该数字数据信号然后被提供给PRML电路544。数字数据信号和来自PLO536的定时脉冲由PRML电路544进行处理,并产生线路548上的数字数据信号和线路552上的数据时钟信号。然后。解码器556接收线路548上被处理的数字数据信号和线路552上的数据时钟信号。
在较佳实施例中,解码器556包含传统的Reed-Solomon解码器,它使用选定的纠错编码(ECC)技术辨别和纠正线路548上的数字数据信号中的错误,并相应地产生正确的数字数据信号,经系统总线224送至主机CPU212。Reed-Solomon编码器的一个重要的性能是“N”字节的ECC可以纠正“N”字节的ECC消磁(已知位置的错误),而“N”字节的ECC只能纠正“N/2”个未知位置的错误。换句话说,如果可以精确地规定错误的位置,给定的ECC字节的大小将加倍有效。
为了根据本发明补偿数据缺陷,反射信道514通过线路560选取MO+信号并通过线路564选取MO-信号,并使用加法放大器568有利地结合选取的MO+和MO-信号,以产生反射信号,该反射信号由检测器572接收。在较佳实施例中检测器572包含阈值检测装置,它低通滤波从加法放大器568接收到的反射信号,然后每当低通滤波后的反射信号高于或低于规定的阈值(表示数据缺陷)时进行检测。通过低通滤波后的反射信号越过规定阈值的上限或下限,则检测器572根据检测到的数据缺陷,相应地产生陡峭变化信号。陡峭变化信号参照图6截面图将在下面描述。
检测器572将产生的陡峭变化信号经线路576提供给PLO536,并将陡峭变化信号经过线路576和580提供给AGC532。如上所述,来自加法放大器528的模拟数据信号在转换器526的输入端延迟。由此,陡峭变化信号可以有利地被定时,使AGC532和PLO536在检测到数据缺陷期间保持它们正确的预先缺陷状态。陡峭变化信号因此而本质上为“缺陷跳跃”脉冲。实际上,每一个AGC532和PLO536都包含一个保持电路,它根据接收到的陡峭变化信号缺陷跳跃脉冲,保持电流AGC532和PLO536状态。
在较佳实施例中,检测器572还通过线路584将陡峭变化信号提供给延迟装置588,然后相应地产生一个错误的指针信号,并通过线路592将其传送给解码器556。延迟装置588提供选定大小的电传播延迟,以有利地将错误指针信号同步到相应的数据缺陷,如下面参照图7所讨论的。延迟装置588可以通过使用一个或更多串联的“D”触发器,有效地实现。然后编码器556接收和利用线路592上的错误指针信号,识别数据缺陷的位置,由此,有利地使错误纠正码功能的效果加倍,如上所述。
现在参照图6,示出图3的驱动模块390的一组陡峭变化信号定时波形。图6的波形包括由加法放大器520产生的模拟数据信号610、由加法放大器568产生的反射信号612,由检测器572产生的陡峭变化信号576以及转换器526中延迟的模拟数据信号616。模拟数据信号610显示了周期T(在定时620与定时624之间),它相应于存储媒体110上被感受到的数据缺陷,并因此在数据信号电压值中有一个显著的降落。另外,模拟数据信号610在定时620前急剧衰减,并在定时624之后需要一个短周期以达到正常数据值。
类似地,反射信号612在定时620之后立即显示了电压值显著的降落,并在定时624后立即返回到正常的值。在较佳实施例中,转换器526延迟模拟数据信号610,以得到延迟的模拟数据信号616。检测器572由此可以在定时620有利地产生陡峭变化信号576,并且“加到”AGC532和POL536,而被延迟的模拟数据信号616仍然是正确的。该延迟周期“D”示于波形616中的定时620和628之间,还示于定时624和632之间。如在陡峭变化信号波形576中描述的,检测器572增加了陡峭变化信号576的脉冲宽度,其增加的周期是延迟周期的两倍(周期“2D”在定时634结束),以保证延迟的模拟数据信号616在结束陡峭变化信号576的“缺陷跳跃”脉冲时已经回到正确的数据值。
现在参照图7,示出图3的驱动模块390的一组错误指针定时波形。图7的波形来自编码器556(图5),最好包含数据字节时钟552,同步字节脉冲712,数字数据信号548和错误指针信号592。如图7所示,在定时714处,数据字节时钟552的前沿记录同步字节脉冲712的时间,这刚好在数字数据信号548中的数据字节传送之前。
在定时720,数字数据信号548开始传送一组数据字节,它包含有缺陷的字节,示于定时724和728之间。为了描述的目的,图7中示出单个缺陷数据字节。但是,在实际操作中,显然有多于单个数据字节可以是不正确或有缺陷的。如图7中所示,本发明有利地使用延迟588使错误指针信号592同步,以在定时724开始并在定时728结束,由此,有效地识别数字数据548中缺陷数据字节的位置。
现在参照图8,示出补偿磁光驱动装置222中的数据缺陷的较佳方法的步骤的流程图。开始,在步骤810中,磁光驱动装置222光学地读出存储在磁光存储媒体110上的信息。在步骤812,磁光驱动装置222然后使用光学组件310(包括偏振分光镜和光检测器414和416)分别得出电信号MO+和MO-。
在步骤814,数据通道510然后使用反相放大器524和加法放大器520减去MO+和MO-信号,相应地产生一个模拟数据信号送到转换器526。在步骤816中,反射信道514用加法放大器568将MO+和MO-信号相加,相应地产生反射信号送给检测器572。
接着,在步骤818中,检测器572较好地使用阈值检测技术检测接收到的反射信号,以产生陡峭变化信号给转换器526中的PLO536和AGC532。检测器572也提供陡峭变化信号给延迟装置588,以产生错误指针信号给解码器556。在步骤820中,磁光驱动装置222等待,直到在从存储媒体110读出的信息中发生数据缺陷。
当发生数据缺陷时,在步骤822,磁光驱动装置222使用所产生的陡峭变化信号在从存储媒体110读出的有缺陷的数据的期间保持恒定的AGC和PLO控制信号。在实际中,有缺陷的数据信号被延迟,产生的陡峭变化信号可以及时地提供给转换器526中的AGC532和PLO536。AGC532和POL536相应地保留它们的预缺陷状态,直到数据缺陷通过,并且正确的数据值返回。由此陡峭变化信号有效地作为“缺陷跳跃”脉冲。
在步骤824中,磁光驱动装置222还使用陡峭变化信号,以将数据缺陷的位置提供到解码器556。在实际中,延迟装置588接收陡峭变化信号,并相应地产生与相应地数据缺陷同步的错误指针信号。然后解码器556可以接收错误指针信号,特定地识别特定的数据缺陷的位置,并更为有效地实现所选择的错误修正功能。
已经参照较佳实施例解释了本发明。按照这里的揭示,对于熟悉本领域的技术人员,其它的实施例是显然的。例如,本发明可以容易地使用有别于上述较佳实施例中所描述的配置来实现。另外,本发明可以有效地与有别于上面较佳实施例中描述的其它的系统结合使用。因此,在较佳实施例的基础上的这些和其它的修改是被本发明所覆盖的,其范围只由所附的权利要求限定。
权利要求
1.一种补偿存储装置中的数据缺陷的系统,其特征在于包含数据信道,它耦合到所述存储装置,用于接收和处理数据信号;及检测信道,它耦合到所述数据信道,用于检测所述数据缺陷,并相应地产生相应地缺陷脉冲,所述数据信道接收所述缺陷脉冲,并相应地补偿所述数据缺陷。
2.如权利要求1所述的系统,其特征在于所述存储装置包含磁光盘驱动系统,,并且相应地驱动电路包含所述数据信道和所述检测信道。
3.如权利要求2所述的系统,其特征在于所述检测信道通过分析所述数据信号中的反射信息产生所述缺陷脉冲。
4.如权利要求3所述的系统,其特征在于所述检测信道通过使用阈值检测器装置分析所述反射信息来检测所述数据缺陷。
5.如权利要求2所述的系统,其特征在于所述数据信道将所述缺陷脉冲提供给自动增益控制,它通过为所述数据信号保留正确的预缺陷的数据状态,相应地补偿所述数据缺陷。
6.如权利要求2所述的系统,其特征在于所述数据信道将所述缺陷脉冲提供给锁相振荡器,它通过为所述数据信号保留正确的预缺陷数据状态,相应地补偿所述数据缺陷。
7.如权利要求2所述的系统,其特征在于所述检测器信道从所述缺陷脉冲导出错误位置脉冲,并将所述错误位置脉冲提供给所述数据信道,以对所述数据信号执行错误校正。
8.一种补偿存储装置中的数据缺陷的方法,其特征在于包含步骤将数据信号提供给耦合到所述存储装置的数据信道;用耦合到所述数据信道的检测信道检测所述数据缺陷;相应于所述数据缺陷产生缺陷脉冲;及将所述缺陷脉冲提供给所述数据信道,以补偿所述数据缺陷。
9.如权利要求8所述的方法,其特征在于所述存储装置包含磁光盘驱动系统以及相应的包含所述数据信道和所述检测信道的驱动电路。
10.如权利要求9所述的方法,其特征在于所述检测信道通过分析所述数据信号中的反射信息,产生所述缺陷脉冲。
11.如权利要求10所述的方法,其特征在于所述检测信道通过使用阈值检测装置分析所述反射信息,检测所述数据缺陷。
12.如权利要求19所述的方法,其特征在于所述数据信道将所述缺陷脉冲提供给自动增益控制,它通过为所述数据信号保留正确的预缺陷的数据状态,相应地补偿所述数据缺陷。
13.如权利要求9所述的方法,其特征在于所述数据信道将所述缺陷脉冲提供给锁相振荡器,它通过为所述数据信号保留正确的预缺陷的数据状态,补偿所述数据缺陷。
14.如权利要求9所述的方法,其特征在于所述检测信道从所述缺陷脉冲导出错误位置脉冲,并将所述错误位置脉冲提供给所述数据信道,以在所述数据信号上实现错误校正。
15.一种补偿存储装置中的数据缺陷的系统,其特征在于包含用于将数据信号提供给耦合到所述存储装置的数据信道的装置;用于用耦合到所述数据信道的检测信道检测所述数据缺陷的装置;用于相应于所述数据缺陷,产生缺陷脉冲的装置;及用于将所述缺陷脉冲提供给所述数据信道,以补偿所述数据缺陷的装置。
16.如权利要求15所述的系统,其特征在于所述检测信道通过分析所述数据信号中的反射信息,产生所述缺陷脉冲。
17.如权利要求16所述的系统,其特征在于所述检测信道通过使用阈值检测装置,分析所述反射信息,检测所述数据缺陷。
18.如权利要求15所述的系统,其特征在于所述数据信道将所述缺陷脉冲提供给自动增益控制,它通过为所述数据信号保留正确的预缺陷的数据状态,相应地补偿所述数据缺陷。
19.如权利要求15所述的系统,其特征在于所述数据信道将所述缺陷脉冲提供给锁相振荡器,它通过为所述数据信号保留预缺陷的数据状态,相应地补偿所述数据缺陷。
20.如权利要求15所述的系统,其特征在于所述检测器信道从所述缺陷脉冲导出错误位置脉冲,并将所述错误位置脉冲提供给所述数据信道,以在所述数据信号上执行错误校正。
全文摘要
本发明提供了一种补偿磁光计算机存储装置中的数据缺陷的系统和方法,包含耦合到存储装置,用于接收和处理数据信号的数据信道(510),和耦合到数据信道,用于检测数据缺陷,然后产生相应的缺陷跳跃脉冲的检测信道(572)。数据信道相应地使用缺陷跳跃脉冲补偿数据缺陷,由此保持数据信号的可靠性。
文档编号G02B26/08GK1257600SQ98803979
公开日2000年6月21日 申请日期1998年4月1日 优先权日1997年4月3日
发明者K·A·贝尔瑟 申请人:西加特技术有限公司