专利名称:具有多个静电四极透镜的彩色阴极射线管的制作方法
背景技术:
本发明涉及阴极射线管(以下称作CRT),更具体地讲是涉及具有一字型电子枪的彩色CRT,所述电子枪用多级聚焦透镜将多束电子束聚焦在荧光屏上。
荫罩型彩色CRT是最通用的电视(TV)显象管和信息终端监视显象管。荫罩型彩色CRT在抽真空的外壳的一端内安装有发射多束(通常是三束)电子束的电子枪,在其另一端安装有在抽真空的外壳内表面上涂覆荧光粉形成的荧光屏,用于发射多种颜色(通常是三色)的光,并且安装有一个荫罩,荫罩用作选色电极并与荧光屏近距离隔开。安装在抽真空的外壳外边的偏转线圈产生的磁场使电子枪发射的电子束偏转,以按两个方向扫描荧光屏并在荧光屏上显示所需图象。
图8是荫罩型彩色CRT的横截面图,用于说明其结构的例子,数字81表示形成视屏的面板部分,82是用于内装电子枪的颈部,83是用于连接面板部分81和颈部82的锥部,84是荧光屏,85是用作选色电极的荫罩,86是用于支撑荫罩85的荫罩支架,87是用于屏蔽例如地球磁场之类的外部磁场的磁屏蔽罩,88是荫罩凸出机构,89是一字型电子枪。参考符号DY表示偏转线圈,参考数字83a表示内导电涂层,82a是管脚,参考符号GA是吸气剂。
在该彩色CRT中,抽真空的外壳由面板81、颈部82和锥部83构成,装在颈部82中的电子枪89发射的电子束B(一束中心电子束和两束侧边电子束,图中只画了其中的一束电子束)受偏转线圈DY产生的水平和垂直偏转磁场的作用而按两个方向扫描荧光屏84。
偏转线圈DY是自会聚型的,它产生枕形水平偏转磁场和桶形垂直偏转磁场,从而在整个荧光屏上会聚多个电子束。
电子束B用通过管脚82a供给的诸如视频信号等调制信号进行大小调制,用紧靠面板84前部设置的荫罩85选色,并且撞击相应颜色的荧光粉,从而重现规定的图象。
这种CRT在电子枪中设有多极聚焦透镜,并且广泛采用一种所谓的动态聚焦系统,在该动态聚焦系统中,构成多级聚焦透镜的至少一个电极被供给动态变化的电压,以便在整个荧光屏上得到很小的电子束点。
图9是彩色CRT中用的一字型电子枪的电极结构的一个例子的横截面图,它是沿垂直于三个一字型排列的电子束的一字排列方向截取的。
在图9中,参考数91表示三个阴极,每个阴极内都装有加热器,92是控制电极,93是加速电极,95是第一组聚焦电极,94和96是第二组聚焦电极,941、951和952以及961是分别连接到聚焦电极94、95和96的凸出的校正极板,96b是校正极板,97是阴极,97a是阳极侧校正电极,98是屏蔽杯。
第一组聚焦电极95加固定聚焦电压Vf1;第二组聚焦电极94、96加固定电压Vf2并叠加随电子束偏转量改变的动态电压,阳极97加阳极电压Eb。
在该结构的电子枪中,在分别连接到第一组聚焦电极95和第二组聚焦电极96的凸出的校正极板952和凸出的校正极板961之间形成第二级静电四极透镜LB,在分别连接到第二组聚焦电极94和第一组聚焦电极95的凸出的校正极板941和凸出的校正极板951之间形成对电子束整形的第一级静电四极透镜LA。第一级静电四极透镜LA和第二级静电四极透镜LB构形为使第一级静电四级透镜LA按水平和垂直方向中的一个方向聚焦电子束,并且按水平和垂直方向中的另一方向散射电子束,另一方面,第二级静电四极透镜LB接水平和垂直方向中的一个方向散射电子束,而按水平和垂直方向中的另一个方向聚焦电子束。在第二组聚焦电极96和阳极97之间形成主透镜LM。
通过加速电极93的电位,从被加热的阴极91发射的热电子向控制电极92加速,以形成三束电子束。通过控制电极92中的电子束孔92a、加速电极93中的电子束孔93a和聚焦电极94-96之后,用在第二组聚焦电极96和阳极97之间形成的主透镜LM使三束电子束聚焦在荧光屏上,形成电子束点。
诸如TV显象管和显示器监视显象管之类的彩色CRT中用的电子枪需要在整个荧光屏面积上提供好的聚焦和高的图象分辨率。因此,电子枪需要按电子束偏转量适当控制电子束的横截面形状。
用上述的电子枪,通过聚焦电极95和96之间形成的象散校正静电四极透镜LB,进入主透镜的电子束的横截面形状随电子束偏转量增大而垂直伸长。另一方面,偏转线圈中出现的偏转散焦对电子束有很大影响,它压缩电子束的横截面的垂直直径,扩大了电子束横截面的水平直径,由此,在水平方向延长了电子束的横截面。这样,电子束点在视屏周边是水平方向伸长的。
当荧光屏上的电子束点变成水平伸长时,由于电子束扫描线和荫罩中电子束孔的排列之间的干扰很容易出现莫尔斯条纹。如果莫尔斯条纹出现在视屏上,在整个荧光屏面积上就很难得到好的一致的聚焦,很难识别在视屏上显示的字符和图象,因此降低了图象分辨率。
因此,除上述静电四极透镜LB之外,还需要在比静电四极透镜LB更接近阴极91的位置在聚焦电极94和95之间形成其它的静电四极透镜LA作为电子束整形透镜,以随电子束偏转量控制电子束点的形状。
如上所述,电子束整形静电四极透镜LA能随电子束偏转量对电子束点增形,因而,能消除象散校正静电四极透镜LB在荧光屏周边产生的电子束的伸长。抑制了莫尔斯条纹的产生,在整个荧光屏上能得到好的一致的聚焦。例如日本特许公开平8-31332(1996年2月2日公开)中公开了用上述静电四极透镜的电子枪。
发明概述在上述的一字型电子枪中,偏转线圈的自会聚磁场产生的偏转散焦,使电心电子枪发射的绿色电子束(以下称作G电子束)、两个侧边电子枪中的一个电子枪发射的红色电子束(以下称作R电子束)和两个侧边电子枪中的另一个电子枪发射的兰色电子束(以下称作B电子束)中横截面的形状有不同的变化。
现在考虑从荧光屏看红色电子枪在右侧,绿色电子枪在管轴上,而兰色电子枪在左侧的情况。当R电子束偏转到荧光屏的左侧,或者,B电子束偏转到荧光屏的右侧时,偏转线圈产生的偏转散焦对R电子束或B电子束的影响比对G电子束的影响弱,因而,R电子束或B电子束的束点的水平方向伸长小于G电子束的束点在水平方向的伸长,因此,在荧光屏左侧的R电子束的垂直直径和在荧光屏右侧的B电子束的垂直直径比G电子束的垂直直径大。
在视屏上显示白色景象时,R电子束的电流是G电子束的电流的1.0至1.3倍。因而,当调节监视器的色温时,R电子束的束点直径变得比G电子束的束点直径大,以至于R电子束的束点直径在荧光屏左侧进一步增大。结果,在荧光屏左侧的R电子束和在荧光屏右侧的B电子束由整形静电四极透镜LA过度补偿,从而形成垂直方向伸长的束点,垂直分辨率降低,这使得在整个荧光屏面积上很难获得良好的一致的特性,这就是要解决的问题之一。
本发明的有代表性的一个目的是,通过把电子束点整形成在整个视屏的宽的面积上有良好形状并且由此抑制莫尔斯条纹的产生,来提供高分辨率的彩色CRT。
为达到上述目的,在本发明的有代表性的一个方案中,在一字型电子枪中按相互隔开的关系设多个静电四极透镜,把其中最接近阴极的一个静电四极透镜构形为对三束电子束中的两个侧边电子束产生的透镜作用弱于对中心电子束产生的透镜作用。
按本发明的一个实施例,提供了一种彩色CRT,它包括抽真空外壳,外壳包括面板部分、颈部和连接面板部分和颈部的锥部;在面板内表面上形成的荧光屏;安装在颈部内的一字型电子枪;和围绕在颈部和锥部之间的过渡区附近安装的电子束偏转线圈,一字型电子枪包括它具有三个一字型排列的阴极、依次设置的用作电子束控制电极的第一电极和用作加速电极的第二电极,用于将大致相互平行地设在一个水平面中的三束电子束射向荧光屏;第一组聚焦电极,加有固定电压值的第一聚焦电压;第二组聚焦电极,加有第二聚焦电压,第二聚焦电压由一个固定电压和一个随三束电子束的偏转同步变化的动态电压构成;阳极,它和第二组聚焦电极中的一个相邻电极一起形成主透镜;和多个轴向隔开的静电四极透镜,它们形成在第一组和第二组聚焦电极中的相对电极之间,以便多个静电四极透镜中的每个透镜,随第一聚焦电压和所述第二聚焦电压之间的聚焦电压差的增大,按水平方向和垂直方向中的一个方向增大其聚焦三束电子束的透镜强度,并按水平方向和垂直方向中的另一个方向增大其散射三束电子束的透镜强度,其中,多个静电四极透镜中最接近三个一字型排列的阴极设置的第一透镜构形为对三束电子束中的两个侧边电子束产生的透镜作用比对三束电子束中的中心电子束产生的透镜作用弱。
本发明不限于上述的结构或随后说明的实施例的结构,在不脱离所附权利要求书限定的发明范围的情况下,还会有多种变化和改进。
附图简述在附图中,全部图中相同的元件用相同的参考数字表示,其中
图1是说明按本发明一个实施例的彩色CRT的电子枪的横截面图;图2A和2B分别是图1所示电子枪在箭头IIA-IIA和IIB-IIB方向截取的平面图。
图3是用于说明按本发明另一实施例的彩色CRT的电子枪的横截面图;图4是图3所示的聚焦电极的主要部分的透视图;图5是用于说明按本发明再一实施例的彩色CRT的电子枪的横截面图;图6是与图4相似的透视图,显示出用于说明按本发明再一实施例的彩色CRT的聚焦电极的主要部分;图7是与图4相似的透视图,显示出用于说明按本发明又一实施例的彩色CRT的聚焦电极的主要部分;图8是荫罩型彩色CRT的一个例子的横截面图;图9是彩色CRT中用的一字型电子枪的电极结构的一个例子的横截面图;优选实施例详述以下将参见附图详细说明本发明的实施例。
图1是按垂直于三束一字型排列电子束的一字排列方向的方向看到的电子枪的横截面图,用于说明按本发明的彩色CRT的第一实施例。图1和图9中有相同功能的部分用同样的参考数字表示。
在该实施例中,电子束产生部分包括阴极1、控制电极2和加速电极3;电子束聚焦部分包括构成第三电极4的第一组聚焦电极的第三电极41和第二组聚焦电极的第三电极、第四电极5、构成第五电极6的第一组聚焦电极的第五电极61和第二组聚焦电极的第五电极62、阳极7、屏蔽杯8、位于第二组聚焦电极的第五电极62内的校正极板63以及位于阳极7内的校正极板71。参考数字2a、3a、41a、42a和42b分别表示电极中的电子束孔。
在上述电极结构中,加速电极3和第四电极5加上400V至1000V的固定电压Ec2,第三电极41和第一组聚焦电极的第五电极61加上固定电压值为Vf1的第一聚焦电压。第三电极42和第二组聚焦电极的第五电极62加上第二聚焦电压(Vf2+dVf),它是固定电压Vf2与随扫描视屏的电子束的偏转角变化的动态电压dVf叠加形成的。第一聚焦电压是在例如5KV-10KV范围内的固定电压Vf1,第二聚焦电压是例如5KV至10KV的固定电压Vf2与随扫描视屏的电子束的偏转角变化的300V至1000V的动态电压dVf叠加形成的。
在第一组聚焦电极的第三电极41和第二组聚焦电极的第三电极42之间形成电子束整形静电四极透镜LA,用于随动态电压dVf的增加改变电子束的横截面形状。在第一组聚焦电极的第五电极61和第二组聚焦电极的第五电极62之间形成产生象散的静电四极透镜LB,用于随动态电压dVf的增加以垂直增大方式伸长电子束的横截面形状。也就是说,在该电子枪中,更靠近阴极1的第一级静电四极透镜LA和更靠近阳极7的第二级静电四极透镜LB相互隔开规定的距离。
在静电四极透镜LA中,第一组聚焦电极的第三电极41和第二组聚焦电极的第三电极42的相对表面分别形成水平伸长的匙孔形电子束孔41a和垂直伸长的匙孔形电子束孔42a,这在下面将结合附图2A和2B详细说明。第一组聚焦电极的第三电极41和第二组聚焦电极的第三电极42之间形成电子束整形静电四极透镜LA,它用于随动态电压dVf的增大水平伸长电子束的横截面形状。而且,第一组聚焦电极的第三电极41中形成的水平伸长的匙孔形电子束孔的形状,使中心电子束孔的矩形部分的垂直直径与水平直径之比小于各侧边电子束孔的矩形部分的垂直直径与水平直径之比,第二组聚焦电极的第三电极42中形成的垂直伸长的匙孔形电子束孔的形状,使中心束孔的矩形部分的垂直直径与水平直径之比大于各个侧边电子束孔的矩形部分的垂直直径与水平直径之比,因此,对于各侧边电子束的透镜(作用)强度比对中心电子束的透镜(作用)强度弱。
图2A和2B分别是图1所示第一组聚焦电极的第三电极41的主要部分和第二组聚焦电极的第三电极42的主要部分的平面图。图2A显示出在第一组聚焦电极的第三电极41的面向第二组聚焦电极的第三电极42的一端中形成的电子束孔41a,图2B显示出在第二组聚焦电极的第三电极42的面向第一组聚焦电极的第三电极41的一端中形成的电子束孔42a。
在图2A中,第一组聚焦电极的第三电极41中的三个电子束孔41a构成为其垂直直径为H的水平伸长的匙孔。三个电子束孔41a的中心电子束孔41ac的矩形部分的水平直径C1大于侧边电子束孔41as的矩形部分的水平直径S1,所以,中心电子束孔41ac的矩形部分的垂直直径与水平直径之比H/C1小于测边电子束孔41as的矩形部分的垂直直径与水平直径之比H/S1,由此,使静电四极透镜对侧边电子束的透镜强度比静电四极透镜对中心电子束的透镜强度弱。
在图2B中,第二组聚焦电极的第三电极42中的三个电子束孔42a构成其水平直径为W的垂直伸长的匙孔。三个电子束孔42a的中心电子束孔42ac的矩形部分的垂直直径C2大于侧边电子束孔42as的矩形部分的垂直直径S2,所以中心电子束孔42ac的矩形部分的垂直直径与水平直径之比C2/W大小于侧边电子束孔42as的矩形部分的垂直直径与水平直径之比S2/W。由此,在该第三电极42中,静电四极透镜对侧边电子束的透镜强度也比对中心电子束的透镜强度弱。
在上述实施例中,用以下两种构形(1)在第一组聚焦电极的第三电极41中,中心电子束孔41ac的矩形部分的垂直直径与水平直径之比H/C1小于侧边电子束孔41as的矩形部分的垂直直径与水平直径之比H/S1,和(2)在第二组聚焦电极的第三电极42中,中心电子束孔42ac的矩形部分的垂直直径与水平直径之比C2/W大于侧边电子束孔42as的矩形部分的垂直直径与水平直径之比S2/W。
不过,即使仅仅采用上述两种构形之一,也可以提供与上述实施例相似的优点。
连接到第一组聚焦电极的第五电极61的四个凸出的垂直校正极板611和连接到第二组聚焦电极的第五电极62的两个凸出的水平校正极板621组合形成第二级静电四极透镜LB。四个垂直校正极板611从第五电极61朝第二组聚焦电极的第五电极62轴向凸出,并在三束电子束一字型排列的方向上按相等间距设置,因此,使三束相邻的电子束相互屏蔽。两个凸出的水平校正极板62从第五电极62朝第五电极61轴向凸出,并按与三束电子束的运动方向大致平行地设置,从而在垂直方向上夹置三束电子束。
在本实施例中,电子束整形静电四极透镜LA,减小了偏转到视屏左侧的两束侧边电子束之一R电子束的校正量,并且减小了偏转到视屏右侧的两束侧边电子束中的另一束B电子束的校正量,因而,能抑制由于电子束点的垂直直径的过度增大引起的分辨率变差。
另一方面,偏转到视屏右侧的R电子束形成的束点直径和偏转到视屏左侧的B电子束形成的束点直径水平伸长的程度大于作为中心电子束的G电子束形成的束点的水平伸长程度,也大于转偏到视屏左侧的R电子束和偏转到视屏右侧的B电子束形成的束点的水平伸长程度,因为,偏转线圈的自会聚磁场对偏转到视屏右侧的R电子束和偏转到视屏左侧的B电子束有很强的影响。而且,上述结构的电子束整形静电四极透镜LA对R和B电子束的透镜作用比对G电子束的透镜作用弱,因而,R和B电子束没有象G电子束那样大的程度的整形,结果,用电子束整形静电四极透镜LA整形后,偏转到视屏右侧的R电子束的束点和偏转到视屏左侧的B电子束的束点是水平伸长的。
通常认为,在白色景象中,G电子束产生的亮度比例占70%至80%。在莫尔斯条纹的产生中G电子束占主导地位,因此,即使偏转线圈的自会聚磁场对R和B电子束的束点的伸长的校正量小于对G电子束的束点的伸长校正量,也基本上不会出现由莫尔斯条纹引起的分辨率变差。
在彩色CRT的特性中,由R电子束或B电子束引起的单色分辨率很重要。垂直分辨率对视屏显示特性特别重要。因此,由于电子束整形静电四极透镜LA对R和B电子束的透镜作用强度比对G电子束的透镜作用强度弱造成的在视屏右侧的R电子束的束点的水平伸长和在视屏左侧的B电子束的束点的水平伸长,不会损坏彩色CRT的特性。
如上所述,使电子束整形静电四极透镜LA对两个侧边电子束R和B电子束的透镜强度比对中心电子束G电子束的透镜强度弱,能抑制由于偏转线圈的自会聚磁场造成的R和B电子束的分辨率变差,因此,实现了在整个荧光屏面积上的G电子束束点的一致性,减少了莫尔斯条纹,提高了R和B电子束的分辨率。
图3是从三束电子束的一字型排列方向看到的电子枪的横截面图,用于说明按本发明另一实施例的彩色CRT。图3中功能相同的部分用与图1、2、8和9中相同的参考数字表示。
在图3所示实施例中,第五电极6是由第一组聚焦电极的第五电极65以及第二组聚焦电极的第五电极62和64形成的,第五电极65设置在第五电极62和64之间。
连接到第二组聚焦电极的第五电极64的四个凸出的垂直校正极板641和连接到第一组聚焦电极的第五电极65的两个凸出的水平校正极板651形成用于电子束整形的第一级静电四极透镜LA。四个凸出的垂直校正极板641从第五电极64朝向第一组聚焦电极的第五电极65轴向凸出,并按三束电子束的一字型排列方向按规定间距设置,因此,使三束相邻的电子束相互屏蔽。两个凸出的水平校正极板651从第五电极65朝第五电极64轴向凸出,并按大致平行于电子束运动方向的方向设置,从而在垂直方向上夹置三束电子束。凸出的垂直校正极板641和凸出的水平校正极板651的结构示于下面要说明的图4中。
连接到第一组聚焦电极的第五电板65的四个凸出的垂直校正极板652和连接到第二组聚焦电极的第五电极62的两个水平凸出的校正极板621构成第二组静电四极透镜LB。四个凸出的垂直校正极板652从第五电极65朝第二组聚焦电极的第五电极62轴向凸出,并按三束电子束的一字型排列方向按规定间距设置,所以相邻的三束电子束相互屏蔽。两个凸出的水平校正极板621从第五电极62朝第五电极65轴向凸出,并按大致平行于三束电子束的运动方向的方向设置,从而在垂直方向上夹置三束电子束。凸出的垂直校正极板641和凸出的水平校正极板651的结构示于以下要说明的图4中。
加速电极3和第四电极5加上大约400V至大约1000V的固定电压Ec2,第一组聚焦电极的第三电极43和第五电极65加上固定的第一聚焦电压Vf1。第二组聚焦电极的第五电极64和第五电极62加上第二聚焦电压(Vf2+dVf),它是固定电压Vf2与随扫描视屏的电子束的偏转角变化的动态电压dVf叠加形成的。第一聚焦电压是例如5KV至10KV的固定电压Vf1,第二聚焦电压是例如5KV至10KV的固定电压Vf2与300V至1000V的随扫描视屏的电子束的偏转角变化的动态电压dVf叠加形成的。
图4是由图3所示的第一组聚焦电极的第五电极65和第二组聚焦电极的第五电极64形成的第一级静电四极透镜LA的主要部分的透视图。在图4中,连接到第五电极64的四个凸出的垂直校正极板641包括一对内侧的凸出的水平夹置中心电子束通路的垂直校正极板641c和一对外侧的凸出的垂直校正极板641s,垂直校正极板641s位于各个侧边电子束通路外边,并与内侧的凸出的垂直校正极板641c平行。外侧的凸出的垂直校正极板641s和相邻的内侧的凸出的垂直校正极板641c之间的间距WS1选择为大于两个内侧的凸示的垂直校正极板641c之间的间距WC1。在本实施例中,四个凸出的垂直校正极板641的轴向长度L1和高度H1选择为完全相同。面向第五电极64的第一组聚焦电极的第五电极65设有两个凸出的水平校正极板651,它们朝第五电极64凸出并且在垂直方向上夹置三束电子束。两个凸出的水平校正极板651的轴向长度L2和两个凸出的水平校正极板651之间的间距H2选择成分别大小四个凸出的垂直校正极板641的轴向长度L1和间距H1,凸出的水平校正极板651的宽度W2选择成要足以能够与四个凸出的垂直校正极板641共同包围三束电子束的通路。
另一方面,连接第五电极65的四个凸出的垂直校正极板652和连接到面对第五电极65的第五电极62的两个凸出的水平校正极板621,构成第二级静电四极透镜LB。四个凸出的垂直校正极板652有相同轴向长度和高度并且按相等间距设置,两个凸出的水平校正极板621有相同轴向长度和相同宽度。
在本实施例中,用于使电子束整形的第一级静电四极透镜LA能够使其对侧边电子束的透镜强度比其对中心电子束的透镜强度弱,并且象上述的第一实施例的情况一样,能在整个视屏面积上提供良好的一致的聚焦。
在结合图4说明的实施例中,四个凸出的垂直校正极板有相同的轴向长度L1和高度H1,但是若选择外侧的凸出的垂直校正极板641s的高度和轴向长度分别小于内侧的凸出的垂直校正极板641c的高度和轴向长度,同时,象图4所示实施例那样选择间距WS1大于间距WC1,那么静电四极透镜对侧边电子束的透镜强度比对中心电子束的透镜强度更弱。
图5是从三束电子束的一字型排列方向看到的电子枪的横截面图,用于说明按本发明的另一实施例的彩色CRT。图5中功能相同的部分用与图1-4、8和9中同样的参考数字表示。
在图5所示实施例中,用于给电子束整形的第一级静电四极透镜LA,是用连接到第一组聚焦电极的第三电极44的四个凸出的垂直校正极板441和连接到面对第三电极44的第二组聚焦电极的第三电极45的两个凸出的水平校正极板451构成的。四个凸出的垂直校正极板441从第三电极44朝第二组聚焦电极的第三电极45轴向凸出,并按规定间距在三束电子束的一字型排列方向上设置,使相邻的电子束相互屏蔽。两个凸出的水平校正极板451从第三电极45朝第三电极44轴向凸出,并按大致平行于电子束运动方向的方向设置,从而在垂直方向上夹置三束电子束。在侧边电子束通路两侧两个相邻的凸出的垂直校正极板441之间的间距选择成大于在中心电子束两侧两个相邻的凸出的垂直校正极板441之间的间距,以使静电四极透镜对测边电子束的透镜强度比对中心电子束的透镜强度弱。
第二级静电四极透镜LB由连接到第二组聚焦电极的第五电极67的四个凸出的垂直校正极板671和连接到面对第五电极67的第一组聚焦电极的第五电极66的两个凸出的水平校正极板661构成。四个凸出的垂直校正极板671从第五电极67朝第一组聚焦电极的第五电极66轴向凸出,并按相等间距在三束电子束的一字型排列方向上设置,使相邻的三束电子束相互屏蔽。两个凸出的水平校正极板661从第五电极66朝第五电极67轴向凸出,并按大致平行于电子束运动方向的方向设置,从而在垂直方向上夹置三束电子束。参考数字67a表示设在第五电极67内的校正极板。
加速电极3和第四电极5加上大约400V至1000V的固定电压Ec2,第一组聚焦电极的第三电极44和第五电极66加上固定电压值Vf1的第一聚焦电压。第二组聚焦电极的第三电极45和第五电极67加上第二聚焦电压(Vf2+dVf),它是固定电压Vf2与随扫描视屏的电子束的偏转角变化的动态电压dVf叠加形成的。第一聚焦电压是例如5kV至10kV的固定电压Vf1,第二聚焦电压是例如5kV至10kV的固定电压Vf2与300V至1000V的随扫描视屏的电子束的偏转角变化的动态电压dVf叠加形成的。
图6是与图4相同的的透视图,显示出聚焦电极的主要部分,用于说明按本发明另一实施例的彩色CRT。
在图6所示实施例中,用于对电子束整形的第一级静电四极透镜LA是由平板形聚焦电极68和由个U形电极构成的聚焦电极69形成的。聚焦电极69是由与中心电子束相关的大致U形的电极69c和与两个侧边电子束相关的两个大致U形的电极69s形成的,并满足以下关系Wc2<Ws2,H3c>H3s,L3c>L3s其中,Wc2是与中心电子束相关的电极69c的两个凸出的垂直校正极板691c之间的间距;H3c是凸出的垂直校正极板691c的高度;L3c是凸出的垂直校正极板691c的轴向长度;Ws2是与两个侧边电子束相关的电极69s的两个凸出的垂直校正极板691s之间的间距;
H3s是凸出的垂直校正极板691s的高度;L3s是凸出的垂直校正极板691s的轴向长度。
图7是与图4相同的透视图,显示出聚焦电极的主要部分,用于说明按本发明又一实施例的彩色CRT。
在图7所示实施例中,用于给电子束整形的第一级静电四极透镜LA是由平板形聚焦电极70和大致U形的聚焦电极71形成的。聚焦电极70形成有垂直伸长的匙孔形电子束孔70c和70s,中心电子束孔70c的垂直直径c3选择成大于侧边电子束孔70s的垂直直径s3。面向聚焦电极70的大致U形的聚焦电极71形成有直径相同的三个圆形电子束孔71c、71s。
在本实施例中,通过使中心电子束孔70c的垂直直径c3大于侧边电子束孔70s的垂直直径s3,静电四极透镜对侧边电子束的透镜强度比对中心电子束的的透镜强度弱。如上所述,用本发明的各种代表性结构,通过使电子枪的电子束整形静电四极透镜对侧边电子束的透镜强度比对中心电子束的透镜强度弱,提供了有优异分辨率特性的CRT,它抑制了由于偏转线圈的自会聚磁场引起的侧边电子束的分辨率变差,由此在视屏的大面积中提供了优良的聚焦并且抑制了莫尔斯条纹产生。
权利要求
1.一种彩色阴极射线管,包括抽真空的外壳,所述外壳包括面板部分、颈部和用于连接所述面板部分和颈部的锥部;在所述面板部分内表面上形成的荧光屏;安装在所述颈部中的一字型电子枪;和围绕在所述颈部与所述锥部之间的过渡部分附近安装的电子束偏转线圈,所述一字型电子枪包括电子束产生部分,它具有三个一字型排列的阴极、依次设置的用作电子束控制电极的第一电极和用作加速电极的第二电极,用于将大致相互平行地设在一个水平面中的三束电子束射向所述荧光屏;第一组聚焦电极,加有固定电压值的第一聚焦电压;第二组聚焦电极,加有第二聚焦电压,所述第二聚焦电压由一个固定电压和一个随所述三束电子束的偏转同步变化的动态电压构成;阳极,它和所述第二组聚焦电极中的一个相邻电极一起形成主透镜;和多个轴向隔开的静电四极透镜,它们形成在所述第一组和第二组聚焦电极中的相对电极之间,以便所述多个静电四极透镜中的每个透镜,随所述第一聚焦电压和所述第二聚焦电压之间的聚焦电压差的增大,按水平方向和垂直方向中的一个方向增大其聚焦所述三束电子束的透镜强度,并按水平方向和垂直方向中的另一个方向增大其散射所述三束电子束的透镜强度,其中,所述多个静电四极透镜中最接近所述三个一字型排列的阴极设置的第一透镜构形为对所述三束电子束中的两个侧边电子束产生的透镜作用比对所述三束电子束中的中心电子束产生的透镜作用弱。
2.按权利要求1的彩色阴极射线管,其中所述多个静电四极透镜的第一个静电四极透镜,随所述第一聚焦电压和所述第二聚焦电压之间的聚焦电压差的增大,按水平和垂直方向中的一个方向,增大其聚焦所述三束电子束的透镜强度,而按水平和垂直方向中的另一方向,增大其散射所述三束电子束的透镜作用,并且所述多个静电四极透镜中位于所述第一静电四极透镜下游的第二静电四极透镜,随所述聚焦电压差的增大,按所述水平和垂直方向中的所述另一方向,增大其聚焦所述三束电子束的透镜强度,而按水平和垂直方向中的所述的一个方向,增大其散射三束电子束的透镜强度。
3.按权利要求1的彩色阴极射线管,其中所述多个静电四极透镜中的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,所述中心透镜和所述的两个侧边透镜中的每一个,是在所述第一组和第二组聚焦电极的所述面对的电极中的一个电极中形成的三个垂直伸长的电子束孔中的相应束孔与所述第一和第二组聚焦电极的所述面对的电极中的另一个电极中形成的三个水平伸长的电子束孔中的相应束孔之间形成的;并且用于所述中心电子束的所述垂直和水平伸长的电子束孔的大致矩形部分的垂直直径与水平直径之比满足以下的至少一个条件(i)用于所述中心电子束的所述垂直伸长的束孔的大致矩形部分的垂直直径与水平直径之比大于用于所述两个侧边电子束的所述垂直伸长的束孔的各大致矩形部分的垂直直径与水平直径之比,和(ii)用于所述中心电子束的所述水平伸长的束孔的大致矩形部分的垂直直径与水平直径之比小于用于所述两个侧边电子束的所述水平伸长的束孔的各大致矩形部分的垂直直径与水平直径之比。
4.按权利要求1的彩色阴极射线管,其中所述多个静电四极透镜中的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,形成所述多个静电四极透镜中的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的至少一个电极被形成有下列一种束孔(i)三个垂直伸长的束孔和(ii)三个水平伸长的束孔,并且所述中心电子束孔的大致矩形部分的垂直直径与水平直径之比满足下述条件之一(iii)当形成所述多个静电四极透镜的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的所述至少一个电极形成有所述的三个垂直伸长的孔时,用于中心电子束的所述垂直伸长的孔的大致矩形部分的垂直直径与水平直径之比大于用于所述两个侧边电子束的所述垂直伸长的孔的各大致矩形部分的垂直直径与水平直径之比,和(iv)当形成所述多个静电四极透镜的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的所述至少一个电极形成有所述的三个水平伸长的孔时,用于所述中心电子束的所述水平伸长的孔的大致矩形部分的垂直直径与水平直径之比小于用于所述两个侧边电子束的水平伸长的孔的各大致矩形部分的垂直直径与水平直径之比。
5.按权利要求1的彩色阴极射线管,其中所述多个静电四极透镜的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,所述中心透镜和所述两个侧边透镜中的每个透镜是由连接到所述第一组和第二组聚焦电极的所述面对的电极中的至少一个电极的板构成的,使所述三束电子束中的相应电子束夹置在其间,并且在水平和垂直方向中的至少一个方向上,形成所述两个侧边透镜中的每个透镜的所述板之间的间距大于形成所述中心透镜的所述板之间的间距。
6.按权利要求2的彩色阴极射线管,其中所述多个静电四极透镜中的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,所述中心透镜和所述的两个侧边透镜中的每一个,是在所述第一组和第二组聚焦电极的所述面对的电极中的一个电极中形成的三个垂直伸长的电子束孔中的相应束孔与所述第一和第二组聚焦电极的所述面对的电极中的另一个电极中形成的三个水平伸长的电子束孔中的相应束孔之间形成的;并且用于所述中心电子束的所述垂直和水平伸长的电子束孔的大致矩形部分的垂直直径与水平直径之比满足以下的至少一个条件(i)用于所述中心电子束的所述垂直伸长的束孔的大致矩形部分的垂直直径与水平直径之比大于用于所述两个侧边电子束的所述垂直伸长的束孔的各大致矩形部分的垂直直径与水平直径之比,和(ii)用于所述中心电子束的所述水平伸长的束孔的大致矩形部分的垂直直径与水平直径之比小于用于所述两个侧边电子束的所述水平伸长的束孔的各大致矩形部分的垂直直径与水平直径之比。
7.按权利要求2的彩色阴极射线管,其中所述多个静电四极透镜中的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,形成所述多个静电四极透镜中的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的至少一个电极形成有下列一种束孔(i)三个垂直伸长的束孔和(ii)三个水平伸长的束孔,并且所述中心电子束孔的大致矩形部分的垂直直径与水平直径之比满足下述条件之一(iii)当形成所述多个静电四极透镜的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的所述至少一个电极形成有所述的三个垂直伸长的孔时,用于中心电子束的所述垂直伸长的孔的大致矩形部分的垂直直径与水平直径之比大于用于所述两个侧边电子束的所述垂直伸长的孔的各大致矩形部分的垂直直径与水平直径之比,和(iv)当形成所述多个静电四极透镜的所述第一静电四极透镜的所述第一和第二组聚焦电极的所述面对的电极中的所述至少一个电极形成有所述的三个水平伸长的孔时,用于所述中心电子束的所述水平伸长的孔的大致矩形部分的垂直直径与水平直径之比小于用于所述两个侧边电子束的水平伸长的孔的各大致矩形部分的垂直直径与水平直径之比。
8.按权利要求2的彩色阴极射线管,其中所述多个静电四极透镜的所述第一静电四极透镜包括用于所述中心电子束的中心透镜和用于所述两个侧边电子束的两个侧边透镜,所述中心透镜和所述两个侧边透镜中的每个透镜是由连接到所述第一组和第二组聚焦电极的所述面对的电极中至少一个电极的板构成的,使所述三束电子束中的相应电子束夹置在其间,并且在水平和垂直方向中的至少一个方向上,形成所述两个侧边透镜中的每个透镜的所述板之间的间距大于形成所述中心透镜的所述板之间的间距。
全文摘要
一种彩色阴极射线管具有三个一字型排列电子束的电子枪。电子枪包括加有第一固定聚焦电压的第一组聚焦电极和加有第二聚焦电压的第二组聚焦电极,第二聚焦电压由固定电压和随电子束偏转同步变化的动态电压组成。第一和第二组聚焦电极的面对的电极之间形成多个轴向隔开的静电四极透镜。多个静电四极透镜中最接近阴极的静电四极透镜构形为能使透镜对两个侧边电子束的透镜作用比对中心电子束的透镜作用弱。
文档编号H01J29/48GK1344008SQ0113319
公开日2002年4月10日 申请日期2001年8月1日 优先权日2000年9月8日
发明者宫川晃一, 加藤真一, 野口一成, 内田刚 申请人:株式会社日立制作所