专利名称:使用线性扫描马达的离子束注入器的注入角可调的工件支承结构的制作方法
技术领域:
本发明涉及一种联接到离子束注入器的注入腔上的可调整注入角度的工件支承组件或结构,且更具体而言,涉及一种提供工件相对于离子束的旋转和线性运动的工件支承组件或结构,以使得可选定工件的注入角度且工件在选定的注入角度下沿线性路径传送,其中从离子束进入注入腔的入口至离子束与工件注入表面交叉处的距离在工件传送期间保持恒定。
背景技术:
离子束注入器被广泛用于半导体晶片的掺杂工艺。离子束注入器产生离子束,其包括所需的带正电荷离子物质。离子束撞击工件例如半导体晶片、基板或平板的暴露表面,由此以所需离子“掺杂”或注入工件表面。有些离子注入器使用序列注入,其中单个相对大的晶片工件被放置在注入腔中的支承件上并进行注入。注入以一次一个工件进行。对支承件进行定向以使得工件处于离子束线束上且使离子束重复扫描在工件上以注入所需的离子剂量。当注入完成时,将工件从支承件上除去并将另一个工件放置在支承件上用以进行注入。
近年来,半导体工业中的趋势已使用越来越大的晶片工件,例如300毫米直径的晶片。注入大晶片工件或其它工件例如平板的能力变得很需要。一种序列注入工件的方式是使其在扫描的扇状或带状离子束前移动。这种离子束足够宽以使得工件的整个宽度可被均匀地注入。为了注入整个工件,横向于离子束的方向或延伸方向的第二运动是需要的。另外,能够改变注入角度以注入特定工件通常是需要的。注入角度是离子束和工件处理表面之间形成的入射角度。入射角度0度意味着工件的注入表面与离子束线束垂直。
现有技术离子束注入器的工件支承结构的一个缺点在于,除了0度的注入角度以外,工件沿垂直于离子束线束的传送路径的运动导致线束在撞击工件注入表面之前在注入腔内移动的距离产生变化。换另一种方式陈述,如果注入角度不是0度,则工件可被看作相对于离子束线束是倾斜的。如果这种倾斜工件相对于离子束线束垂直移动,则当朝向离子束倾斜的工件部分被注入时,离子束在撞击注入表面之前在注入腔中移动的距离将比工件注入表面中心处的线束距离要少。另一方面,当远离离子束倾斜的工件部分被注入时,离子束在撞击注入表面之前在注入腔中移动的距离将比工件注入表面中心处的线束距离更大。
显然,工件越大以及离开零(0)度的注入角度越大,当注入物从工件注入表面的一端移动至注入表面的相对端时,离子束在注入腔内横穿的线束距离差别越大。由于离子束倾向于在其线束路径上分散,因此不恒定的线束距离可对整个工件注入表面上达到均匀离子剂量的注入具有不利的影响。因此,更大晶片的趋势使该不恒定线束距离的问题恶化。
为了确保工件注入表面的均匀注入,所希望的是,保持离子束撞击工件注入表面之前在注入腔内横穿的线束距离大体上恒定。所需的工件支承结构是一种提供选定所需注入角度并且随后在注入过程中当工件相对于离子束线束移动时,保持离子束进入注入腔的入口和撞击注入表面之间的线束距离大体上恒定。
发明内容
本发明的一个典型实施例涉及一种离子束注入器,其具有用于支承真空腔或注入腔内的工件的工件支承结构。离子束注入器包括用于产生沿传送路径移动且沿轴线被扫描的离子束的离子束源。工件由注入腔中的工件支承结构支承,以使得工件被放置以与扫描离子束的传送路径交叉,从而通过离子束进行工件注入表面的注入。有利地,工件支承结构提供a)选定所需注入角度;和b)移动工件用以通过离子束进行注入表面的注入,同时保持在离子束进入注入腔内的入口和撞击注入表面之间的线束距离大体上恒定。
工件支承结构被联接到注入腔上并且支承工件。工件支承结构包括可转动地联接到注入腔上的旋转构件,旋转构件具有垂直于注入腔内的离子束路径的旋转轴线,其中旋转构件相对于注入腔的旋转改变了工件相对于注入腔中离子束路径的注入角度。工件支承结构进一步包括传送构件,其可移动地联接到旋转构件上并且支承工件用以沿在横向于离子束的方向上的传送路径进行线性运动,同时保持所选定的注入角度。传送构件优选是被设置在注入腔内的线性马达。
有利地,在工件沿其传送路径的运动期间,离子束进入注入腔的入口和离子束与工件表面的交叉处之间的距离保持大体上恒定。
结合附图对本发明典型实施例的这些和其它目的、优点和特征进行了详细描述。
图1是本发明离子束注入器的平面示意图;图2是图1所示离子束注入器的注入腔和相关工件支承结构的剖面示意俯视图,其中晶片支承结构在晶片支承位置;图2A是被虚线围住且以图2A标示的图2所示工件支承结构的一部分的剖面示意俯视图;图3是图2所示的注入腔和工件支承结构的剖面示意前视图,其中工件支承结构在注入位置;和图4是图2所示工件支承结构的传送构件的示意侧视图,其中工件保持器组件被除去。
具体实施例方式
翻到附图,离子束注入器通常在图1中以10表示。注入器包括用于产生离子的离子源12,所述离子形成了横穿线束路径16至末端或注入站20的离子束14。注入站包括限定出内部区域22e的真空腔或注入腔22,在所述内部区域中工件24例如半导体晶片或平板或基板被放置用以通过离子束16进行注入。设置控制电子设备(示意性地以26表示)用以监控和控制由工件24接收的离子剂量。通过用户控制台27执行操作员对控制电子设备26的输入。
离子源12产生撞击工件24的离子束14。当线束沿离子源12和注入腔22之间的线束路径16横穿一定距离时,离子束14中的离子倾向于发散。离子源12包括等离子腔28,其限定出注入源材料的内部区域。源材料可以包括可离子化的气体或蒸发源材料。
沿线束路径16放置了分析磁体30,其使离子束14弯曲且引导其通过线束开闭器32。在线束开闭器32之后,线束14通过使线束14聚焦的四极透镜系统36。线束路径16延伸通过偏转电极38,其中离子束14被重复偏转或扫描以产生带状离子束,以使得注入腔22内的部分离子束14为带状离子束14a。带状离子束14a通过腔22的前壁22b中的开口22a进入注入腔22。带状离子束14a是大体上具有很狭窄的矩形形状的离子束,也就是在一个方向上延伸,例如具有水平或“x”方向的延伸范围(如图2中的W所示),且沿正交方向,例如垂直或“y”方向的延伸范围很有限的线束。
通常情况下,带状离子束14a的延伸范围足以对工件24的整个注入表面25进行注入,也就是,如果横穿注入腔22的带状离子束14a在水平或x方向上延伸(图1)且工件24具有300mm的水平尺寸(或300mm的直径)。控制电子设备26将适当地供给电极38能量,以使得带状离子束14a的水平延伸范围W在撞击注入腔22内的工件24的注入表面24时将至少有300mm。电极38使线束14偏转且平行透镜40沿线束16放置以更正由电极38造成的线束角度偏转,以使得带状离子束14a注入工件24时是平行的。
正如将在下面解释地,工件支承结构100在注入期间支承工件24并相对于带状离子束14移动所述工件,以使得工件24的整个注入表面25以离子均匀地注入。除了上面描述的扫描技术外,本领域的技术人员将认识到注入腔22内带状离子束14a的带状形状可以一些方式产生。例如,等离子腔28的弧切口可被成形,以使得从开端产生具有带状形状的离子束。本发明不限于使用任何特定的技术或结构以成形或形成离子束。
于1990年12月4日授权给Ray等的美国专利4,975,586和于1988年8月2日授权给Myron的美国专利4,761,559披露了对适于进行工件的序列注入的离子注入器的更详细的描述。′586和′599专利被转让给本发明的受让人且其分别的整体在此作为参考被引用。
注入腔的内部区域22e被抽真空。安装在注入腔22内的两个机器手臂42、44自动地将晶片工件装载到工件支承组件或结构100上且从其中卸载所述晶片工件。工件24在图1中被示出在水平装载位置。在注入前,工件支承结构100使工件24旋转至垂直或接近垂直的注入位置。如果工件24是垂直的,也就是相对于离子束14垂直,则注入角度或入射角度是0度。已经发现,为了最小化不希望的通道效应,通常选定小但非零的注入角度。
在典型注入操作中,未掺杂的工件由往复移送装置52从第一卡盒50取得,所述往复移送装置将工件24带到机器手臂54附近,所述机器手臂移动工件至定向器56,在所述定向器处工件24被旋转至特定的晶体取向。手臂54取得定向工件24且将其移入邻近注入腔22的装载站58内。装载站58关闭、被泵抽低至所需真空度并随后打开通向注入腔22。注入站22内的第一手臂42握住工件24、将其带到注入腔22内并将其安放在工件支承结构100的静电夹具或卡盘202上。静电夹具202被供给能量以在注入期间将工件24保持在适当位置。于1995年7月25日授权给Blake等的美国专利5,436,790和于1995年8月22日授权给Blake等的美国专利5,444,597中披露了适当的静电夹具,二者被转让给本发明的受让人。′790和′597专利分别的整体在此作为参考被引用。
在工件24进行离子注入后,工件支承结构100使工件24回复到水平位置并且使静电夹具102去能量供给以释放工件。注入站22的第二手臂44握住已注入工件24并且使其从注入腔22移动至卸载站60。从卸载站60,机器手臂62将已注入工件24移至往复移送装置64,所述往复移送装置将工件安放在第二卡盒66内。
工件支承结构100由控制电子设备26操作。在注入期间工件支承结构100支承工件24,且有利地允许工件24相对于注入腔22内的带状离子束14a进行旋转以及平移运动。依靠其旋转能力,工件支承结构100有利地允许选定离子束14和工件24的注入表面25之间的所需注入角度或入射角度。
依靠其平移或线性运动的能力,工件支承结构100允许工件24的注入表面在注入期间沿与所需注入角度一致的平面运动,从而同时保持所需注入角度并且额外地保持大体上恒定的距离d(图2),所述距离为带状离子束14a从其进入注入腔的内部区域22e的入口至所述带状离子束撞击工件24的注入表面25的点(由于离子束为带状离子束,因此实际上为线)的距离。在注入表面25的整个注入期间保持该大体上恒定的距离。也就是,当工件25在与所需注入角度(IA)一致的平面中相对于带状离子束14a横向移动时,保持该大体上恒定的距离,以使得从注入表面25的一端25a至相对端25b(图2)的整个注入表面被注入。
保持离子束14a在注入腔22和离子束14a在工件24上的撞击点之间的距离或传送路径大体上恒定对于在工件24的整个注入表面25上的均匀离子注入特征是高度希望的。另一种观察工件支承结构100的方式是,其允许离子束从离子源12至其撞击工件注入表面25的点的传送路径大体上恒定。
当离子束14垂直于工件24的注入表面25时,工业上传统把注入角度IA定义为零度。图2所示的工件24相对于带状离子束14a的位置具有等于0度的注入角度IA,也就是,工件24的注入表面25垂直于离子束的方向。为了最小化有害的通道效应,通常可选定非零注入角度用以进行工件24的注入。两个非零注入角度由图2中的虚线示意性地示出且标示为IA1和IA2。如果工件24沿注入角度IA1定向,则工件24的上部分将倾斜远离离子束14,且如果工件24沿注入角度IA2定向,则工件24的下部分将倾斜远离离子束14。
在生产期间,半导体晶片工件或平板工件进行序列注入。也就是说,当完成一个工件的注入时,静电夹具202去能量供给以释放工件且已注入的工件被自动从注入腔22中除去,另一个工件被放置在静电夹具202的支承表面204上且夹具被适当地供给能量以紧固地保持工件24在支承表面204上。
图2-图4最佳地示出了工件支承结构100。图1是顶俯视图,示出了在工件装载和卸载位置的静电夹具202。在工件24装载在静电夹具202的支承表面204上后,工件支承结构100使工件旋转到注入位置,例如图2所示的位置(IA=0度)。图2是顶俯视图,示出了支承在注入位置的工件24的静电夹具202。图1以虚线示出了在注入位置的工件24。
在工件24的注入期间,工件支承结构100沿横向于带状离子束14a的方向移动工件24,以使得整个注入表面25以所需离子进行适当撞击和注入。如图2示意性描述中可以看见,带状离子束14a在与工件24撞击点处在水平或“x”方向上具有比工件24直径更大的宽度W,因此,在“x”方向上的工件传送以使工件完全注入是不需要的。
从图2和图3中可以最佳看到,工件支承结构100被附到注入腔22的侧壁22c上且通过注入腔侧壁22c中的开口22d延伸进入注入腔22的内部区域22e内。工件支承结构100包括旋转构件110和整合传送构件150。工件支承结构的旋转构件110包括附到注入腔22上的旋转转台组件。在一个优选实施例中,旋转构件110包括附到注入腔22上的心轴轴承支承壳体112以及可转动地附到心轴轴承支承壳体112上的旋转驱动机构120。支承壳体112被附到注入腔22上且优选附到注入腔侧壁22c上并且延伸进入注入腔侧壁22c的开口22d内。
响应于来自控制电子设备26的控制信号的旋转驱动机构120精确地使工件24转动至相对于离子束14在+/-89度之间的所需注入角度(IA)。旋转构件110的中心线C-C(如图2中的虚线所示)对准工件注入表面25的前面。
旋转构件110进一步包括被设置在心轴轴承支承壳体112中的心轴轴承系统116和由心轴轴承系统可转动地支承的中空倾斜轴123。如图2可见,倾斜轴123延伸进入注入腔的内部区域22e内。旋转构件110还包括铁磁流体旋转真空密封系统130,其也被设置在心轴轴承系统中分开的轴承组116a、116b之间。
旋转驱动机构120包括旋转伺服马达122,其响应于来自控制电子设备26的控制信号而精确地转动倾斜轴123,从而转动工件24至所需注入角度(IA)。轴123的角位置受监控并且由倾斜轴线旋转编码器126报告给控制电子设备26。伺服马达122为常规设计且例如可以是直接驱动伺服马达或齿轮下降伺服马达。中心开口或孔124延伸通过倾斜轴123以允许设备,例如电连线以通路到传送构件150。中心孔124在大气压力下,不同于抽真空的注入腔内部区域22e。
倾斜轴123通过轴承组件116被可转动地支承在支承壳体112内。轴承组件包括两个分开的轴承116a、116b,其每一个包括被支承在轴承框架内且设置在内部座圈和外部座圈之间的常规机械轴承组件例如滚珠轴承或滚柱轴承。
另一种可选方式是,轴承组件116可以例如是不同类型的轴承组件,例如本领域的技术人员认识到的非接触气体轴承组件或其它类型的轴承组件。
通过磁流体(铁磁流体)密封系统130在注入真空腔的内部区域22e和外部大气之间保持真空(大气压力存在于轴123的中心孔124中,所述轴延伸进入注入腔内部区域22e内)。磁流体密封系统130以圆柱形成形并且限定出倾斜轴123延伸通过的贯通孔或馈通。磁流体密封系统130包括支承环形永久磁体的壳体、两个设置在永久磁体任一侧上的环形极片和设置在极片的轴向向内面向的表面和倾斜轴123之间相应的径向间隙中的铁磁流体。铁磁流体是载体液体中超微磁粒子的胶体悬浮物并且被放置在极片或轴123内加工出的轴向槽中。为了使磁流体密封系统130恰当地工作,倾斜轴123必须是磁性可渗透的。
在磁流体密封系统130中,磁路由静止极片和轴123完成。磁路将磁通量集中在每个极片和轴123之间的径向间隙中。相应径向间隙中的铁磁流体采取液体O形环的形状并且在环形极片和轴123之间产生气密式密封。如果需要,可以使用多级式环形永久磁体和环形极片以增加磁流体密封系统130的压力容量。
磁流体密封系统130的铁磁流体密封提供了在静态和动态状态下对气体、蒸汽和其它污染物的气密式密封。另外,由于密封介质是流体,在可转动轴123和密封系统130的静止部分之间实际上没有摩擦。磁流体密封系统130的适当的中空轴筒底座真空馈通和中空轴法兰底座真空馈通商业上可以从新罕布什尔州(NH)03060-3075纳舒厄市(Nashua)赛门街40号(40 Simon Street)的Ferrotec(美国)公司取得(网站http//www.fero.com/usa/sealing)。于1981年10月6日授权给Ezekiel的美国专利No.4,293,137中披露了磁流体密封系统。′137专利的整体在此作为参考被引用。
另一种可选方式是,差分泵浦、接触型真空密封系统可被用以保持真空并且在本发明的探讨范围之内。差分泵浦、接触型真空型真空密封系统的描述见于2002年7月10日申请的授权给Ferrara并且转让给本发明的受让人的美国专利申请序列No.10/192,344。′344申请的整体在此作为参考被引用。
工件支承结构100进一步包括传送或往复构件150,其与旋转构件110整合且被设置在注入腔的内部区域22e内。在图2-图4中可以最佳看到,传送构件150包括被附到可转动倾斜轴123上的支承框架152和滑动架154,所述滑动架通过线性轴承组件160被机械地联接到支承框架152上用以相对于支承框架152进行线性运动。传送构件150提供工件24沿与选定注入角度(IA)一致的平面进行线性平移运动。
在图2中可以最佳看到,滑动架154包括法兰155,其支承工件保持器组件200。工件保持器组件200包括支承手臂206,所述支承手臂在一端被附接到滑动架154的法兰155上(图2)。在其相对端,支承手臂206支承工件保持器组件200的工件保持器208。工件保持器208支承静电夹具202,其进一步支承工件24以进行在带状离子束14a前的运动。
滑动架154受到线性轴承组件160的支承以进行相对于支承框架152的线性运动。轴承组件160(在图2A和图4中最佳看到)优选包括被附到静止支承件152的向外面166上的一对分开的平行线性轨道支承件162、164和附到滑动架154的向内面176上的四条轴承通道168、170、172、174(图4)。多个滚珠轴承或滚柱轴承被设置在四条轴承通道168、170、172、174的每条中。两条分开通道168、170的轴承靠在轨道支承件162上且沿其滚动,而且两条分开通道172、174的轴承靠在轨道支承件164上且沿其滚动,以提供滑动架154相对于静止支承件152和注入腔22的线性运动。
另一种可选方式是,轴承组件160可以是不同类型的常规线性轴承组件,例如被支承在轴承框架内且设置在内部座圈和外部座圈之间的滚珠轴承或滚柱轴承,正如本领域的技术人员会认识到的。此外,轴承组件160可以是非接触气体轴承组件,其可以如本领域中的技术人员认识到的那样被适当地使用。前面参考的′344申请中披露了非接触气体轴承组件。所有这些类型的轴承组件在本发明的探讨范围内。
滑动架154沿垂直或“y”方向相对于支承框架152的线性运动,所述方向在图3和图4中被标示为“SD”用于“扫描方向”,由线性马达组件实现,所述组件包括设置在滑动架154的向内面向的阶梯部分182和支承框架152之间的线性伺服马达180。线性无电刷伺服马达180优选包括非磁力线圈以提供零堵塞以进行平滑的速度控制和优良的位置精确度。另一种可选方式是,线性伺服马达可以是铁芯无刷类型,但这种类型的伺服马达固有地具有更不平滑和比非磁类型更不精确的位置准确性的速度控制。
从图2A和图4中可以最佳看到,伺服马达180包括细长电磁马达线圈184和设置在位于电磁线圈184的任一侧上相应的磁轨道186a、188a上的两组平行的永久磁体186、188。磁轨道186a、188a由支承框架152支承。电磁线圈184由控制电子设备26适当地供给能量以精确控制滑动架154相对于支承框架152的线性运动。
传送构件150进一步包括线性制动组件190和真空相容线性回读编码器192,二者被附到滑动架154向内面向的表面176上,以有利于精确控制滑动架154的位置并且由此控制工件24相对于离子束14a的位置。线性制动组件190包括活动活塞组件,其可由气压致动或通过螺线管致动,以使得活塞接触支承框架152,由此提供将滑动架154保持在固定位置的方法。
由于线性马达组件180可能定向以使得滑动架154的传送路径不总是垂直于重力加速度方向,因此线性制动组件190的一个目的是用作失效保护机构,以使得如果线性马达180去能量供给时,制动组件190将被供给能量以使得滑动架154将保持在其目前所需位置且不被加速至沿其传送路径的最低点。线性制动组件190的设计可以为任何常规类型,当线性马达去能量供给时,所述类型的设计阻止滑动架154的运动,以使得作用是失效保护,也就是在动力损失期间,防止滑动架154的运动。
传送构件150进一步包括线性运动布线系统194。布线系统194的一端被附接到滑动架154上且与其一起移动,而且布线系统的另一端是静止的且被附接到支承框架152上。布线系统194为电和冷却线例如线性马达动力线、线性运动通信信息线、水冷却线、制动控制线(气动或电动的)、编码器回读信号信息线、静电夹具控制线、工件旋转马达动力和控制信号线以及工件支承手臂压力通信提供支持,以使得工件支承手臂206的内部区域196可被保持在大气压力下。
布线系统194的水冷却线为位于静电夹具202处的工件24和线性伺服马达180的电磁线圈184提供冷却。有利地,由于支承手臂206的内部区域196在大气压力下,工件保持器组件200的直接驱动马达210转动设置在其上的静电夹具202和工件24用以进行四极或八级注入,因此直接驱动马达不需要冷却水。此外,由于驱动马达210在大气压力下,因此可以使用标准无刷型伺服马达和标准编码器。
在附到支承框架152上的布线系统194的末端,布线系统194的电和冷却线通过真空馈通至在大气压力下的支承框架152的内部区域198(图2A)且随后通过倾斜轴123的中心孔124(如图2和图3中的虚线所示)。布线系统的移动端连接到线性马达180的滑动架154上。与静电夹具202、直接驱动马达210和线性制动组件190通信的布线系统联接装置通过真空馈通至工件支承手臂206的内部区域196。
在注入期间滑动架154的往复线性运动垂直于工件注入表面25的法向矢量。换另一种方式陈述,滑动架154的线性运动导致工件24在与选定注入角度(IA)一致的平面内运动。通过传送构件150相对于旋转构件110的往复线性运动的组合而有利地实现多重独立自由度或运动。这允许工件24在离子束14前进行恒定焦距扫描。换句话说,从工件注入表面25上离子束的撞击点到进入注入腔22内的离子束14入口的距离对旋转构件110的所有旋转角度,也就是所有的注入角度(IA)总是恒定的。
工件24通过静电夹具或卡盘202保持在工件保持器组件200上。使静电卡盘202冷却以便除去注入期间从工件24中传递的能量或热量。为了允许进行四极注入或八级注入,工件保持器208和联接到其上的静电夹具202优选相对于支承手臂206旋转。工件保持器208操作地联接到直接驱动马达210上,以使得工件保持器208和夹具202的工件支承表面204可以转动达到360度。在图2中以虚线D表示的静电夹具202的旋转中心线对准工件24的中心线。另一种可选方式是,驱动马达210可通过皮带或电缆间接地转动工件保持器208。
工件保持器208通过轴承组件220被安装到支承手臂206上。轴承组件220优选是滚珠轴承或滚柱轴承组件,其具有支承在轴承框架内和设置在拱形内部座圈和外部座圈之间的滚珠轴承或滚柱轴承,所述座圈被附到工件保持器208和支承手臂206相应的表面上或形成在其中。另一种可选方式是,轴承组件220可以是非接触气体轴承。
在一个优选实施例中,驱动马达210包括在支承手臂206和工件保持器208之间的整合旋转真空密封系统230。如前面指出的,真空密封系统230是需要的,这是因为工件支承组件的支承手臂206的内部区域196(图2)在大气压力下。类似于上面讨论的密封系统130,真空密封系统230优选是磁流体(铁磁流体)密封系统。另一种可选方式是,差分泵浦径向真空密封系统可被用作密封系统230。这些密封系统设计以及对于本领域的技术人员已公知的其它密封系统例如唇缘密封或其它聚合物材料接触型密封设计和非接触真空密封系统,也将适于真空密封系统230且在本发明讨论的范围内。
尽管已经在某种特定程度上对本发明进行了描述,但本发明旨在包括落入所附权利要求的精神或范围内的披露设计的所有变型和改型。
权利要求
1.一种离子束注入器,包括a)用于产生沿线束移动的离子束的离子束源;b)注入腔,其中工件被放置以与所述离子束交叉从而通过所述离子束对所述工件的注入表面进行离子注入;和c)联接到所述注入腔上且支承所述工件的工件支承结构,所述工件支承结构包括1)联接到所述注入腔上用以改变所述工件相对于所述注入腔内部分所述离子束的注入角度的旋转构件;和2)设置在所述注入腔内且活动地联接到所述旋转构件上的传送构件,所述传送构件支承所述工件以进行沿线性传送路径的运动。
2.根据权利要求1所述的离子束注入器,其中所述传送构件的运动保持所述离子束在撞击所述工件的所述注入表面之前移动通过所述注入腔的恒定的距离。
3.根据权利要求1所述的离子束注入器,其中所述旋转构件具有垂直于所述注入腔内所述部分所述离子束的旋转轴线。
4.根据权利要求1所述的离子束注入器,其中所述传送构件的运动垂直于所述旋转构件的旋转轴线且平行于所述工件的所述注入表面。
5.根据权利要求1所述的离子束注入器,其中所述传送构件包括附到所述旋转构件上的支承框架、可相对于所述支承框架沿线性传送路径移动的滑动架和沿其传送路径驱动所述滑动架的线性马达。
6.根据权利要求5所述的离子束注入器,其中所述传送构件进一步包括在所述注入腔内部延伸且包括用于保持所述工件的静电夹具的工件保持器组件。
7.根据权利要求6所述的离子束注入器,其中所述静电夹具相对于所述离子束为可转动的。
8.根据权利要求1所述的离子束注入器,其中在所述注入腔和所述旋转构件之间通过圆形真空密封保持真空。
9.根据权利要求8所述的离子束注入器,其中所述圆形真空密封为铁磁流体真空密封。
10.根据权利要求1所述的离子束注入器,其中所述传送构件包括附到所述旋转构件上的支承框架、可相对于所述支承框架沿线性传送路径移动的滑动架和在所述支承框架和所述滑动架之间的线性轴承。
11.一种离子束注入器,包括a)用于产生沿线束移动的离子束的离子束源;b)注入腔,其中工件被放置以与所述离子束交叉从而通过所述离子束对所述工件的表面进行离子注入;和c)联接到所述注入腔上且支承所述工件的工件支承结构,所述工件支承结构包括1)联接到所述注入腔上用以改变所述工件相对于所述注入腔内部分所述离子束的注入角度的旋转构件;和2)设置在所述注入腔内且活动地联接到所述旋转构件上的传送构件,所述传送构件支承所述工件以进行沿传送路径的线性运动,其中所述传送构件的运动平行于所述工件的所述注入表面。
12.根据权利要求11所述的离子束注入器,其中在所述工件沿其传送路径运动期间,在所述离子束进入所述注入腔内的位置和所述离子束与所述工件表面的交叉处之间的距离保持恒定。
13.根据权利要求11所述的离子束注入器,其中所述旋转构件具有垂直于所述注入腔内的所述部分所述离子束的旋转轴线。
14.根据权利要求11所述的离子束注入器,其中所述传送构件包括设置在附到所述旋转构件上的支承框架和支承所述工件的活动滑动架之间的线性伺服马达。
15.根据权利要求11所述的离子束注入器,其中所述传送构件的运动垂直于所述旋转构件的所述旋转轴线。
16.根据权利要求11所述的离子束注入器,其中所述传送构件包括被安装在所述旋转构件内部且具有与所述旋转构件的所述旋转轴线交叉的运动方向的传送轴。
17.根据权利要求16所述的离子束注入器,其中所述传送构件进一步包括在所述注入腔内部延伸且包括用于保持所述工件的静电夹具的工件保持器组件。
18.根据权利要求16所述的离子束注入器,其中所述静电夹具相对于所述离子束为可转动的。
19.根据权利要求11所述的离子束注入器,其中在所述注入腔和所述旋转构件之间通过圆形真空密封保持真空。
20.根据权利要求19所述的离子束注入器,其中所述圆形真空密封为铁磁流体真空密封。
21.根据权利要求11所述的离子束注入器,其中所述传送构件包括附到所述旋转构件上的支承框架、可相对于所述支承框架沿线性传送路径移动的滑动架和在所述支承框架和所述滑动架之间的线性轴承。
22.一种离子束注入器的工件支承组件,所述注入器产生沿线束移动的离子束且包括注入腔,其中工件被放置以与所述离子束交叉从而通过所述离子束对所述工件的注入表面进行离子注入,所述工件支承组件包括a)联接到所述注入腔上用以改变所述工件相对于所述注入腔内的部分所述离子束的注入角度的旋转构件;和b)设置在所述注入腔内且活动地联接到所述旋转构件上的传送构件,所述传送构件支承所述工件以进行沿线性传送路径的运动。
23.根据权利要求22所述的工件支承组件,其中所述传送构件的运动保持所述离子束在撞击所述工件的所述注入表面之前移动通过所述注入腔的恒定的距离。
24.根据权利要求22所述的工件支承组件,其中所述旋转构件具有垂直于所述注入腔内所述部分所述离子束的旋转轴线。
25.根据权利要求22所述的工件支承组件,其中所述传送构件的运动垂直于所述旋转构件的旋转轴线且平行于所述工件的所述注入表面。
26.根据权利要求22所述的工件支承组件,其中所述传送构件包括设置在附到所述旋转构件上的支承框架和支承所述工件的活动滑动架之间的线性伺服马达。
27.根据权利要求26所述的工件支承组件,其中所述传送构件进一步包括在所述注入腔内部延伸且包括用于保持所述工件的静电夹具的工件保持器。
28.根据权利要求27所述的工件支承组件,其中所述静电夹具为可转动的。
29.根据权利要求22所述的工件支承组件,其中在所述注入腔和所述旋转构件之间通过圆形真空密封保持真空。
30.根据权利要求29所述的工件支承组件,其中所述圆形真空密封为铁磁流体真空密封。
31.根据权利要求22所述的工件支承组件,其中所述传送构件包括附到所述旋转构件上的支承框架、可相对于所述支承框架沿线性传送路径移动的滑动架和在所述支承框架和所述滑动架之间的线性轴承。
32.一种使用离子束注入器将离子注入工件中的方法,所述注入器产生离子束以进行工件注入并且具有注入腔,其中工件被放置以与所述离子束交叉用以对所述工件的注入表面进行离子注入,所述方法的步骤包括a)设置联接到所述注入腔上并且支承所述工件的工件支承结构,所述工件支承结构包括1)联接到所述注入腔上用以改变所述工件相对于所述注入腔内的部分所述离子束的线束的注入角度的旋转构件;和2)设置在所述注入腔内且活动地联接到所述旋转构件上并且支承所述工件以进行沿传送路径的运动的传送构件;b)将所述工件放置在所述传送构件上;c)通过旋转所述旋转构件而选定所述工件的所需注入角度;d)将所述离子束引导在所述工件上;和e)通过移动所述传送构件而沿线性传送路径移动所述工件。
33.根据权利要求32所述的将离子注入工件的方法,其中所述传送构件的运动保持所述离子束在撞击所述工件的所述注入表面之前移动通过所述注入腔的恒定的距离。
34.根据权利要求32所述的将离子注入工件的方法,其中所述离子束撞击所述工件时为带状离子束,且所述工件的传送路径横向于所述带状离子束的延伸方向和所述注入腔内所述部分所述离子束的线束路径。
全文摘要
一种离子束注入器包括用于产生沿线束移动的离子束的离子束源和真空腔或注入腔,其中工件被放置以与所述离子束交叉用以通过所述离子束对所述工件的表面进行离子注入。所述离子束注入器进一步包括联接到所述注入腔上且支承所述工件的工件支承结构。所述工件支承结构包括可转动地附到所述注入腔上的旋转构件。所述旋转构件相对于所述注入腔的旋转改变了所述工件相对于所述注入腔内的所述部分所述离子束的束线的注入角度。所述工件支承结构进一步包括设置在所述注入腔内、活动地联接到所述旋转构件上并且支承所述工件以进行沿传送路径的线性运动的传送构件。所述传送构件包括线性马达。
文档编号H01J37/317GK1751375SQ200480004805
公开日2006年3月22日 申请日期2004年2月20日 优先权日2003年2月21日
发明者R·米切尔 申请人:艾克塞利斯技术公司