专利名称:具有动态压力控制的超声焊接系统的制作方法
技术领域:
本发明一般涉及具有动态压力控制的超声焊接系统。
背景技术:
超声焊接是使用超声波声学振动将两个工件熔接在一起的工艺。超声焊接可被用于硬和软塑料两者,例如半晶态塑料,以及金属。典型地,材料被夹在焊接端(也被称为焊头或焊接头)和砧座之间。焊接端施加超声振动至工件,其在接触点附近局部熔化或变形该工件。该局部材料变形是工件吸收振动能量的结果。由于输入能量(其包括振动的频率和振幅)、连接材料的表面特性和施加在期望接缝处的压力,在不相似金属的情况下,通过熔接或共价结合,可形成接缝。
发明内容
用于将第一工件固定至第二工件的超声焊接系统包括焊接组件和布置为邻近焊接组件的加载组件。焊接组件可包括超声控制器、超声换能器和焊接端。超声换能器可被构造为响应从超声控制器接收的电信号而施加超声振动至焊接端。加载组件则可被构造为在焊接端和第一工件之间产生压力载荷,且包括第一促动器和第二促动器。第一促动器被构造为施加基本上恒定的载荷至焊接组件,且第二促动器被构造为施加动态可变载荷至焊接组件。在一个构造中,第一促动器可为气动促动器,第二促动器可为压电促动器,其可例如与焊接组件布置为串联配置。加载组件可进一步包括压力控制器,且压电促动器可被构造为响应由压力控制器提供的电信号而施加动态可变载荷至焊接组件。压力控制器可被构造为响应提供至超声换能器的电信号的实时功率的指示而提供由压力控制器提供的电信号至压电促动器。在一实施例中,压力控制器可被构造为改变提供至压电促动器的电信号,从而提供给超声换能器的电信号的功率遵循预定功率曲线。超声控制器可被构造为改变提供至超声换能器的电信号的功率,从而超声换能器产生具有基本恒定频率的超声振动。超声振动可具有约5KHz至约IOOKHz范围内的频率。类似的,由压力控制器提供的电信号可被以高于超声振动的频率两倍的速率更新。附加地,用于进行具有动态焊接压力控制的超声焊接操作的方法可包括促动第一促动器以移动超声焊接组件的焊接端使之与工件接触,和在焊接端和工件之间施加压力载荷。固定频率超声振动则可通过给耦合至焊接端的超声换能器提供具有可测量功率的电信号而在焊接端内产生。电信号的实时功率可被监测,且第二促动器可响应电信号的被监测实时功率而被促动。第二促动器的促动可被配置为改变焊接端和工件之间的压力载荷。当结合附图时,从下面的用于执行如所附权利要求限定的本发明的一些最佳方式和其它实施例的具体描述可容易地明白本发明的上述特征和优点,以及其它特征和优点。
图1是包括焊接组件和夹持组件的超声焊接系统的示意性侧视图;图2是如图1中提供的区域“图2”的放大图;图3是在超声焊接过程中的实际和期望焊接功率的图表;图4是用于利用动态压力控制执行超声焊接操作的方法的示意性流程图。
具体实施例方式参考附图,其中相似的标号被用于在各个视图中标识相似或相同的部件,图1示意性地示出了超声焊接系统10,其被构造为在靠近超声焊接端16的区域将第一工件12焊接至第二工件14。在一种构造中,工件12、14可为大致薄规格金属板。在其它构造中,工件
12、14可为线或塑料部件。在焊接过程中,焊接端16可施加横向压力载荷18或法向力至第一工件12。在一种构造中,压力载荷18可将弟一工件12挤压或夹持在弟_■工件14上。在其它构造中,副夹持装置可被用于将工件12、14相对于彼此保持在临时刚性配置中,同时进行焊接。砧座20可被布置在工件配置12、14的与焊接端16相对的那侧上,且可防止施加的压力载荷18弯曲或以其它方式变形工件12、14。换另一方式说,工件12、14可被夹在焊接端16和砧座20之间。超声换能器24可沿大致与第一工件12的表面28共面的方向施加周期性的振动性运动26至焊接端16。更具体地,振动性运动26可为沿表面28的大致线性振动。振动性运动26可具有约5KHz至约IOOKHz范围内的基本恒定的周期频率。例如,在其中工件是金属件的具体实例中,振动性运动26的频率可为约20KHz。
超声换能器24可包括压电材料,其响应电信号30而产生机械运动26。在一实施例中,机械放大器32可被以串联配置定位在换能器24和焊接端16之间。机械放大器32可被特别构造为以超声换能器24的固有频率共振(或反之亦然)。通过调适放大器32至换能器24的频率,通过换能器24产生的小的运动可被放大器32增幅,经增幅的运动然后被例如通过柄34传递至焊接端16。虽然图1中提供的焊接端16被示出为楔状元件,但是可设想可使用许多其它焊接端设计。例如,焊接端16可包括接触表面或接触区,其通常被构造为在一区域内接触第一工件12。在这种构造中,接触表面可具有粗糙的、促进摩擦的表面纹理,其可包括多个接触凹凸部和/或突出的楔形部、锥形部或角锥形部(即突出的结构部)。在焊接过程中,施加的压力载荷18可导致焊接端16的突出结构部抵触第一构件12的表面36,即使仅在分子水平上。如图2中大致所示,在焊接端16的感生振动性运动26过程中,摩擦力42可被沿基本上平行于表面36的方向形成。附加地,由于运动26的结果,端部16的成角度接触表面40可施加和表面36横向的抬升力44。如可认识到的,基于振动性运动26的瞬时幅度,这些力42、44可动态地改变。抬升力44可抵消施加的压力载荷18,这可相应地减弱摩擦力42和/或施加至工件12的能量。除了由于可变的合成接触压力载荷(即施加的压力载荷18减去任意动态抬升力44)导致的摩擦力42中的动态变化,摩擦力42可由于第一工件12的材料性质的变化而改变。例如,在超声波施加的摩擦力42局部地加热工件12时,工件12可变软,这可改变端部16传递超声能量至工件12中的能力。再次参考图1,超声控制器50可被用于确保当面对动态可变阻力(即摩擦力42)时机械振动性运动26的频率保持恒定。如上所述,对于至少机械放大器32的正确运行,该恒定频率是被要求的。在操作过程中,超声控制器50可试图通过调制信号30的功率来输出恒定频率电信号30。该调制可以以闭环方式发生,其中控制器50经由反馈环52持续地监测实时频率。然后,控制器50可动态地调节电信号30的功率,以消除实际的被感测频率和期望频率之间的任意偏差。超声控制器50可被实施为一个或多个数字计算机或数据处理设备,其具有一个或多个微处理器或中央处理单元(CPU)、只读存储器(ROM)、随机访问存储器(RAM)、电可擦除可编程只读存储器(EEPR0M)、高速时钟、模拟至数字(A/D)电路和数字至模拟(D/A)电路、输入/输出(I/O)电路、功率电子装置/变压器、和/或信号调制和缓冲电子装置。各控制程序/系统驻留在超声控制器50中或可由其读取访问,其可被储存在ROM或其它适当的有形储存位置和/或储存装置中,且由控制器50的相关硬件部件自动地执行,以提供相应控制功能。超声控制器50、超声换能器24、机械放大器32、柄34和焊接端16 —般可包括超声焊接组件60。与超声焊接组件60相邻的可为加载组件62,其可被构造为产生和控制焊接端16与第一工件12之间的横向压力载荷18的应用。如下所述,加载组件62可一般被构造为移动焊接端16,直至在端部16和第一工件12之间建立临界接触。然后可动态地细调施加的压力载荷18,以将可变抬升力44和/或变动的材料状态计入考量。加载组件62可包括第一促动器64和第二促动器66,其布置为与焊接组件60成串联配置。在一个实施例中,第一促动器64可被构造用于低频高幅运动。相对地,第二促动器66可被构造用于高频低幅运动。在该构造中,第一促动器64可被用于移动焊接端16使之与第一工件12接触和产生稳定状态的压力载荷18。第二促动器66然后可被用于抵消动态/瞬时压力载荷变化,这可归因于超声振动26,也可能是由于太快而第一促动器64不能补偿。换种方式说,第一促动器64可被构造用于焊接组件60的稳定状态的运动,而第二促动器66可被构造用于高速动态调节。如图1中所示,例如,第一促动器64可为气动促动器65,第二促动器66可为压电促动器67。气动促动器65可包括可移动活塞70和压头72,该可移动活塞70和压头72被构造为沿基本上横向于第一工件12的方向74移动。气动促动器65可在收到来自压力控制器68的电信号78时伸展。替换地,其它装置/开关可被用于促动气压促动器65。虽然未示出,气动促动器65可包括任意蓄压器、泵、阀和/或控制电路,该蓄压器、泵、阀和/或控制电路可被用于在收到电信号78时实现这种促动。压电促动器67可被布置在压头72和焊接组件60之间,且可被构造为响应由压力控制器68提供的电促动信号82而沿横向于工件12的维度80伸长和缩回。压电促动器,例如所示的一个,通常能产生大力、高精度促动响应,尽管仅是在短行程长度内(例如小于100微米)。附加地,由于压电促动器的响应时间极快(例如,能在10MHZ促动),它们可适于在一个超声周期内通过焊接端16动态地调节施加的压力载荷18多次(例如由压电促动器67施加的压力的更新速度可大于超声振动频率的两倍)。通过经由电促动信号82控制压电促动器67的促动,压力控制器68可动态地调整施加的压力载荷18。在一个实施例中,压力控制器68可响应提供至超声换能器24的电信号30的功率90的指示(其可由超声控制器50提供至压力控制器68)而调整施加的压力载荷18。更具体地,压力控制器68可经由压电促动器67调整施加的压力载荷18,从而提供至超声换能器24的电信号30的功率遵循预定功率轨迹92,例如图3中大致所示(垂直轴线94示出了功率,水平轴线96示出了时间)。预定功率轨迹92可被储存在与压力控制器68相关联的储存器98中(如图1中所示)。虽然提供至超声换能器24的电信号30的功率被直接相关于注入焊接的功率,如上所述,其由超声控制器50单独地控制以保持恒定的产生的频率。但是,通过调节施加的压力载荷18,压力控制器68可有效地调整传入工件12的功率量,由此间接地影响提供至超声换能器24的功率。该动态调节可通过信号30 (由超声控制器提供)的当前功率的指示与预定轨迹92的比较而以闭环的方式进行。虽然传统的PID类型控制环可被用于动态地控制压电促动器67的响应,其它提前预测控制方法可类似地被使用,以将高频动态计入考量。压力控制器68可被实施为一个或多个数字计算机或数据处理设备,每一个数字计算机或数据处理设备具有一个或多个微处理器或中央处理单元(CPU)、只读存储器(ROM),随机访问存储器(RAM)、电可擦除可编程只读存储器(EEPROM),高速时钟、模拟至数字(A/D)电路和数字至模拟(D/A)电路、输入/输出(I/O)电路、功率电子装置/变压器、和/或信号调制和缓冲电子装置。各控制程序/系统驻留在压力控制器68中或可由其读取访问,其可被储存在ROM或其它适当的有形储存位置和/或储存装置中,且由控制器68的相关硬件部件自动地执行,以提供相应控制功能。参考图3,通过动态地控制施加的压力载荷18,与不进行动态压力控制的类似构造(即曲线102)相比较,实际功率100可更靠近地跟随预定功率曲线/轨迹90。对于预定曲线90的这种逼近可以提供更可预测的焊接,特别是由于焊接的质量高度依赖于初始功率注入的速率(即斜率104),和传递至工件12的总能量(即功率曲线90下的面积106)。在其他构造中,和跟随如图3中所示的预定功率曲线/轨迹不同,施加的压力载荷18可被动态地控制以遵循预定的力/压力曲线,例如通过监测与焊头或砧座相关联的加载单元或力传感器。替换地,在第三构造中,压电换能器67的促动可被促动以遵循预定位移曲线,例如由如线性可变差分变换器(Linear Variable Differential Transformer(LVDT))的位移传感器测量的。压电促动器67的动态控制可进一步被构造为在故障或错误状况被检测到时减小施加的压力载荷18。例如,如果实际功率100未按预想响应,压力控制器68可指令压电促动器67减小施加的压力载荷18,以避免损坏工具。图4示出了用于执行具有动态压力控制的超声焊接操作的实例性方法120。如所示,方法120可通过促动第一促动器64以使得焊接端16与第一工件12接触而开始,从而端部16可施加初始稳定状态的压力载荷18在工件12上(步骤122)。方法120可继而包括产生固定频率超声振动26 (步骤124),例如通过给超声换能器24提供具有可测量功率的电信号30 (步骤126),和使用机械放大器32放大换能器24的输出(步骤128)。在系统10在产生超声振动26时,方法120可进一步包括监测电信号30的实时功率(步骤130),和以受控方式促动第二促动器66以调整焊接端16和工件12之间的压力载荷18 (步骤132)。压力载荷18的调整可被操作,以使得电信号30的实时功率100跟随预定曲线90。虽然用于执行本发明的最佳方式已经被详细描述,与本发明相关的本领域技术人员应认识到在所附的权利要求的范围内的执行本发明的各种替换设计和实施例。应理解,第一促动器64可为具有较长行程长度的任意促动器,例如气动或液压促动器、导杆或滚珠丝杠、螺线管等。类似地,第二促动器66可为具有高频响应(即高于超声振动26的频率的两倍)的任意促动器。上面的说明或附图中示出的所有事实应被解释为仅是说明性的且不是限制性的。
权利要求
1.一种用于将第一工件固定至第二工件的超声焊接系统,该系统包括: 焊接组件,其包括超声控制器、超声换能器和焊接端;该超声换能器被构造为响应从超声控制器接收的电信号而施加超声振动至焊接端;和 加载组件,其被布置为邻近焊接组件且被构造为在焊接端和第一工件之间产生压力载荷,该加载组件包括第一促动器和第二促动器; 其中第一促动器被构造为施加基本上恒定的载荷至所述焊接组件;且 其中第二促动器被构造为施加动态可变载荷至所述焊接组件。
2.按权利要求1所述的超声焊接系统,其中所述加载组件进一步包括压力控制器;和 其中第二促动器被构造为响应由所述压力控制器提供的电信号而施加动态可变载荷至所述焊接组件。
3.按权利要求2所述的超声焊接系统,其中所述压力控制器被构造为响应提供至所述超声换能器的电信号的实时功率的指示而提供电信号至第二促动器。
4.按权利要求3所述的超声焊接系统,其中,所述压力控制器被构造为改变提供至第二促动器的电信号,从而提供给所述超声换能器的电信号的功率遵循预定功率曲线。
5.按权利要求4所述的超声焊接系统,其中所述超声控制器被构造为改变提供至所述超声换能器的电信号的功率,从而所述超声换能器产生具有基本恒定的频率的超声振动。
6.按权利要求2所述的超声焊接系统,其中所述超声振动具有约5KHz至约IOOKHz范围中的频率;且其中由所述压力控制器提供的电信号被以大于所述超声振动的频率的两倍的速率更新。
7.按权利要求1所述的超声焊接系统,其中第一促动器和第二促动器被布置为与所述焊接组件成串联配置。
8.按权利要求1所述的超声焊接系统,其中第一促动器是气动促动器,且其中第二促动器是压电促动器。
9.一种用于将第一工件固定至第二工件的超声焊接系统,该系统包括: 焊接组件,其包括超声控制器、超声换能器和焊接端;该超声换能器被构造为响应由超声控制器提供的电信号而施加超声振动至焊接端;和 加载组件,其被布置为邻近焊接组件且被构造为在焊接端和第一工件之间产生压力载荷,该加载组件包括气动促动器和压电促动器;以及与所述压电促动器电通信的压力控制器;且 其中所述气动促动器被构造为施加基本上恒定的载荷至所述焊接组件;且 其中所述压电促动器被构造为响应由所述压力控制器提供的电促动信号而施加动态可变载荷至所述焊接组件。
10.按权利要求9所述的超声焊接系统,其中由所述超声控制器提供的电信号具有可测量功率;且 其中所述压力控制器被构造为响应由所述超声控制器提供的电信号的功率的指示而提供电促动信号至第二促动器。
全文摘要
用于将第一工件固定至第二工件的超声焊接系统包括焊接组件和布置为邻近焊接组件的加载组件。焊接组件包括超声控制器、超声换能器和焊接端。超声换能器被构造为响应从超声控制器接收的电信号而施加超声振动至焊接端。加载组件被构造为在焊接端和第一工件之间产生压力载荷,且包括第一促动器和第二促动器。第一促动器被构造为施加基本上恒定的载荷至焊接组件,且第二促动器被构造为施加动态可变载荷至焊接组件。
文档编号B23K20/10GK103084728SQ20121043574
公开日2013年5月8日 申请日期2012年11月5日 优先权日2011年11月4日
发明者J.P.斯派塞, B.R.克里斯琴, J.A.埃布尔 申请人:通用汽车环球科技运作有限责任公司