专利名称:电子器件、制造方法和电子器件制造装置的制作方法
技术领域:
本文讨论的实施方案涉及电子器件、制造该电子器件的方法以及电子器件制造装置。
背景技术:
倒装芯片安装是在电路板上安装半导体元件的方法之一。在倒装芯片安装中,电路板和半导体元件通过回流和连接形成在电路板和半导体元件的表面上的钎料凸点而彼此电连接和机械连接。随着钎料凸点的小型化,相邻钎料凸点之间的距离变短。这可能导致通过回流而熔化的凸点之间的电短路。此外,由于钎料凸点的直径随着小型化而减小,所以流过钎料凸点的电流的密度增加。这可以显著地引起其中钎焊材料沿着电流流动的电迁移。为了避免该问题,代替使用这种使用钎料凸点的连接方法,提出了一种通过在电极上进行热压接合而使电极(如铜凸点)接合,从而引起金属材料在电极中的固相扩散的方法。这种接合方法也被称为固相扩散接合。与使用钎料凸点的连接方法不同,在固相扩散接合中不需要通过回流来使电极熔化。因此,甚至当相邻电极之间的距离减小时,电极也不可能电短路。因此,固相扩散接合有利于电子器件的小型化。然而,在固相扩散接合的过程中,为了促进电极间的原子的扩散而向半导体元件施加高温和高压。这可能损坏半导体元件。与以下公开内容相关的技术公开在日本公开特许公报号04-309474和05-131279中。
发明内容
本发明的一个目的在于提供一种电子器件、制造电子器件的方法和电子器件制造装置,以减少给电子元件带来的损坏。根据本文讨论的一个方面,提供一种制造电子器件的方法,该方法包括:使第一电子兀件的第一电极的顶表面暴露于有机酸、用紫外光照射第一电极的暴露于有机酸的顶表面以及通过对第一电极和第二电极进行加热和相互压制来使第一电极和第二电子元件的第二电极接合。根据本文讨论的另一方面,提供一种电子器件,该电子器件包括:包括第一电极的第一电子兀件和包括接合到第一电极的第二电极的第二电子兀件,其中在第一电极和第二电极之间形成有晶体层。根据本文讨论的又一方面,提供一种电子器件制造装置,该电子器件制造装置包括:室、设置在该室中并且在其上放置具有电极的电子元件的平台以及设置在室中并且配置为使用紫外光照射电极的紫外灯,其中该紫外灯设置在紫外灯能够使用紫外光照射电极的顶表面的位置处。
根据本文所讨论的再一方面,提供一种电子器件制造装置,该电子器件制造装置包括:第一室,在该第一室中,从包括在第一电子兀件中的第一电极和包括在第二电子兀件中的第二电极中至少之一的表面移除氧化膜;连接至第一室的第二室,在该第二室中使用紫外光照射第一电极和第二电极中的至少之一;接合器,该接合器连接到第二室并且配置为使第一电极和第二电极对准;以及连接到接合器的第三室,在该第三室中对第一电子元件和第二电子元件进行加热和相互压靠。
图1是示出通过固相扩散接合来接合电子元件的过程的横截面图;图2A至图2C是在接合第一电极和第二电极的过程中的放大横截面图;图3是在第一实施方案中使用的电子器件制造装置的配置图;图4A至图4K是在根据第一实施方案的制造过程中的电子器件的横截面图;图5是在第一实施方案中制造的电子器件的横截面图;图6A至图6D是在根据第二实施方案的制造过程中的电子器件的横截面图;图7是用于说明在第二实施方案中的实验结果的图;图8是根据第三实施方案的电子器件制造装置的横截面图;图9是根据第四实施方案的电子器件制造装置的俯视图;图10是根据第四实施方案的电子器件制造装置的横截面图;图1lA至图1lG是示出制造根据第四实施方案的电子元件的方法的横截面图;图12是根据第五实施方案的电子器件制造装置的横截面图;和图13A至图13E是根据第六实施方案的电子器件的横截面图。
具体实施例方式在描述实施方案之前描述准备事项。图1是示出通过固相扩散接合来接合电子元件的过程的横截面图。在该实施例中,给出了接合第一电子元件30和第二电子元件40的情况的描述。在这些电子元件中,第一电子元件30是电路板。第一电子元件30包括形成在第一硅衬底31的表面上的第一电极焊垫34a和第一钝化膜33a。在第一电极焊垫34a上,通过电镀形成由铜制成的柱状第一电极35a。柱状电极也称为凸点电极或柱电极。另一方面,第二电子元件40是半导体元件。第二电子元件40包括形成在第二硅衬底32的表面上的第二电极焊垫34b和第二钝化膜33b。在第二电极焊垫34b上,通过电镀形成由铜制成的柱状第二电极35b。第二电极35b的尺寸不做特别限定。在该实施例中,每个第二电极35b具有在俯视图中侧边为约10 μ m的正方形的形状。然后,在第二电子元件40以面朝下的状态与第一电极部件30相对的状态中,通过未示出的倒装芯片接合器来使第一电极35a与第二电极35b彼此对准。为了便于对准,优选地,第一电极35a大于第二电极35b。在该实施例中, 每个第一电极35a具有在俯视图中侧边为约15 μ m的正方形的形状。
图2A至图2C是示出在接合过程中图1的第一电极35a和第二电极35b的放大横截面图。如图2A所示,在接合之前,第一电极35a和第二电极35b中的每一个包括多个铜晶粒36。然后,通过预先进行CMP (化学机械抛光)使得第一电极35a和第二电极35b的顶表面平坦化以确保它们之间的粘附。通过CMP,在第一电极35a和第二电极35b的顶表面中露出上述晶粒36。接下来,如图2B所示,通过上述倒装芯片接合器来加热第一电极35a和第二电极35b且同时将其彼此压靠。在此,当在该过程中加热温度低或压制负荷小时,晶粒36在第一电极35a和第二电极35b之间的边界处变得不连续并且电极35a和35b可能容易彼此分离。因此,为了使边界处的晶粒36熔合(merge),在该过程中,将第一电极35a和第二电极35b加热到比铜的晶粒36的再结晶温度更高的温度并且同时利用大于20gf每凸点的负荷来使其彼此充分压靠 O如图2C所示,通过在上述条件下进行加热和压制,在第一电极35a和第二电极35b之间的边界周围的晶粒36被熔合,从而使得所述第一电极35a和第二电极35b能够被机械地牢固地连接。然而,通过使用这种方法,第一电子元件30和第二电子元件40可能被如上所述的300°C高温和高于20gf的负荷损坏。在下文中,参考附图给出实施方案的描述。(第一实施方案)图3是在第一实施方案中使用的电子器件制造装置的配置图。根据第一实施方案的电子器件制造装置20包括第一室21、第二室24、倒装芯片接合器25和第三室26,并且还包括它们之间的传送单元23a至23c。第一室21被连接到有机酸供给单元22并且被供给有包含有机酸的气体。第一室21、第二室24和第三室26被单独地连接到未示出的真空泵并且可以被减压。在第一室21、第二室24和第三室26与各自的传送单元23a至23c之间设置有未示出的阀以保持第一室21、第二室24和第三室26中的气密性。在第一实施方案中,通过使用电子器件制造装置20,在图1中示出的第一电子元件30和第二电子元件40以如下方式彼此电连接和机械连接。图4A至图4K是在根据第一实施方案的制造过程中的电子器件的横截面图。如图4A所示,第一电子元件30和第二电子元件40被放置在第一室21内的平台21c 上。在下面描述的实施例中,第一电子元件30和第二电子元件40是从晶片切下的芯片。然而,也可以对晶片进行以下过程。此外,以下过程可以在如下状态中进行:第一电子元件30和第二电子元件40之一是晶片,并且另一电子元件是从晶片切下的芯片。然后,在该状态下,从气体入口 21a供给包含有机酸的气体到第一室21内,在第一室21内的多余的气体从气体出口 21b排出。待引入到第一室21中的气体在有机酸供给单元22处产生。有机酸供给单元22包括充有惰性气体(例如氮)的罐22a和容纳液体有机酸22b的容器22c。有机酸供给单元22通过使惰性气体鼓泡来产生包含有机酸气体。虽然没有特别的限定,但是在本实施方案中使用甲酸作为有机酸。代替甲酸,有机酸可以是羧酸如乙酸或草酸。如图4B所不,仅在暴露于有机酸之前,在第一电极35a的顶表面包括因为铜被自然氧化所产生的具有5nm至IOnm厚度的被氧化的铜膜。代替自然氧化膜,热氧化的铜膜可以作为氧化膜I形成为大于自然氧化膜的厚度,例如约IOnm至150nm的厚度。当具有氧化膜I的第一电极35a的顶表面暴露于甲酸时,取决于氧化膜I的组成进行由以下化学式(I)和(2)表示的反应中的任意一个。Cu0+2HC00H — Cu (HCOO) 2+H20...(I)Cu02+2HC00H — Cu (HCOO) 2+H2+02...(2)如图4C所示,通过这些反应,在第一电极35a的顶表面上形成包含甲酸铜的有机酸金属膜2。为了上述反应更快速地进行,优选地,通过引入第一室21中的未示出的加热器来将第一电极35a加热至约120°C。在第一实施方案中,如下文所述,由有机酸金属膜2形成包括非晶铜层或微晶铜层的铜的变质层(altered layer of copper)。因此,为了不阻止铜的变质层的形成,优选地,在该过程中的加热温度比非晶或微晶铜的再结晶温度130°C低。第一室21内的压力也不做特别限定。然而,当氧化膜I为自然氧化膜时,氧化膜I薄,因此即使在减压下也可以完全形成为有机酸金属膜2。在第一实施方案中,在第一室21内的压力被设置为约600毫托的减压,并且将该过程实施30分钟。另一方面,当氧化膜I为比自然氧化膜厚的热氧化膜时,通过在比大气压力高的压力下使氧化膜I暴露于甲酸可以使整个氧化膜I确定地形成为有机酸金属膜2。注意,通过与上述相同的反应在第二电极35b(参考图4A)的顶表面上也形成有机酸金属膜2。接下来,如图4D所示,使用传送单元23a(参考图3)将第一电子元件30和第二电子元件40传送到第二室24。如图4D所示,第二室24包括紫外灯24b和平台24c。将第一电子元件30和第二电子元件40放置在平台24c上,使得电极35a和电极35b面朝上。因此,第一电极35a和第二电极35b的顶表面暴露于由紫外灯24b产生的紫外光。紫外灯24b的光源不做特别限定。然而,为了有效地分解在有机酸金属膜2中的甲酸铜,优选地,每个紫外灯24b都是具有比能够分解甲酸铜的波长更短的波长的准分子灯,例如,具有172nm的波长的准分子灯。注意,具有该波长的紫外光也称为真空紫外(VUV)光。如图4E所示,使用上述紫外光照射有机酸金属膜2。有机酸金属膜2因此根据下面的化学式(3)而被分解。Cu (HCOO) 2 — Cu+C0+C02+H2...(3)通过该反应,如图4F所示,在第一电极35a的顶表面中形成包含非晶态的非晶铜或微晶铜的铜变质层3。紫外光的照射时间不做特别限定。在本实施方案中,紫外光的照射时间为约5分钟至15分钟。此外,为了促进由化学式(3)表示的分解反应,优选地,在约室温(20°C )至约150°C的温度下对第一电极35a进行加热。非晶或微晶变质层3的再结晶温度为130°C。因此,当在高于130°C的温度下进行该过程时,变质层3再结晶。因此,优选地,在紫外光照射期间第一电极35a的加热温度低于为非晶或微晶铜的再结晶温度130°C的温度,例如,约120°C。在每个第二电极35b的顶表面中,通过与图4A至图4F所示的相同的过程形成铜的变质层3。之后,如图4G所示第一电子元件30和第二电子元件40被传送到倒装芯片接合器25 (参考图3)。在倒装芯片接合器25中,将第一电极35a和第二电极35b彼此对准,然后将第一电极35a和第二电极35b加热至100°C,并且使用5gf至IOgf每电极的负载来对第一电极35a和第二电极35b进行压制以进行临时接合。图4H是在此过程完成后的放大的横截面图。如图4H所示刚在临时接合之后第一电极35a和第二电极35b的变质层3并没有彼此熔合。优选地,在临时接合之前,第一电极35a和第二电极35b的变质层3的表面被暴露于紫外光,以分解和去除在变质层3的表面上的有机物质从而清洁表面。注意,可以通过使变质层3暴露于取代紫外光的氧等离子体而使有机物质被氧化且去除。通过以这种方式去除有机物质,可以防止由于有机物质而使第一电极35a和第二电极35b之间的接合强度降低。为了促进清洁,在紫外光或氧等离子体照射期间第一电极35a和第二电极35b可以被加热到比室温更高的温度。然而,为了防止变质层3的再结晶,优选地,第一电极35a和第二电极35b的加热温度的上限被设置为低于变质层3中的非晶或微晶铜的再结晶温度130°C,例如设置为约120°C。接下来,如图41所示彼此临时地接合的第一电子元件30和第二电子元件40被传送到第三室26中。如图41所示,在第三室26包括在放置有第一电子元件30和第二电子元件40的平台26c以及设置成与平台26c相对的压制板26b。压制单元26a连接到压制板26b。通过来自压制单元26a的负载,对位于压制板26b和平台26c之间的第一电子元件30和第二电子元件40进行压制。压制负荷不做特别限定。然而,在第一实施方案中,每个电极的压制负荷为例如IOgf。同时,第一电子元件30和第二电子元件40被加热到比变质层3的再结晶温度高的温度150°C至250°C,进行约10分钟至30分钟。通过引入平台26c中的未示出的加热器进行加热。图4J是刚以上述方式开始压制之后第一电极35a和第二电极35b的横截面图。如图4J所示,在第一电极35a和第二电极35b的顶表面中的变质层3是软的,因此可以容易地利用比图1的负荷小的负荷来使变质层3变形。因此变质层3变得紧密接触而没有间隙。特别地,在氧化膜I (参考图4B)为热氧化膜的情况下,变质层3足够厚并且能够容易地变形。这可以在第一电极35a和第二电极35b之间实现更好的紧密接触。
此外,在该过程中,由于在比变质层3的再结晶温度高的温度下加热变质层3,所以铜的晶体生长且同时变质层3的边界部分彼此熔合。结果,如图4K所示,变质层3转变成铜晶体层3x,据此所述第一电极35a和第二电极35b彼此机械地、牢固地接合。在此,在通过使非晶或微晶铜结晶形成的晶体层3x中,铜晶粒的尺寸小于第一电极35a和第二电极35b的晶粒尺寸。在本实施方案的情况下,在第一电极35a和第二电极35b中的铜晶粒36具有约5 μ m的平均直径,而在晶体层3x中的铜晶粒3y具有约I μ m至3 μ m的较小平均直径。此外,在某些情况下,在第一电极35a和晶体层3x之间的界面中,在电极35a和晶体层3x中的铜晶粒的取向变得不连续。在第二电极35b和晶体层3x之间的界面中也发生这种状况。注意,可以在第一电极35a和第二电极35b以上述方式接合之前,通过将第一电极35a和第二电极35b的顶表面暴露于包含有机酸例如甲酸的气体来预先移除在第一电极35a和第二电极35b的表面中的氧化膜。这可以抑制在第一电极35a和第二电极35b之间的接合界面中形成氧化膜,从而避免由于该氧化膜导致的对第一电极35a和第二电极35b的接合的抑制。此外,为了进一步降低在接合面中形成氧化膜的风险,第一电极35a和第二电极35b可以在被配置为具有排除氧的气氛的第三室26内进行接合。这种气氛可以是如惰性气体气氛或真空气氛。注意,在第三室26内的气氛可以是包含有机酸例如甲酸的气氛。有机酸可以防止在第一电极35a和第二电极35b之间的接合界面中形成氧化膜。由此,完成了制造根据第一实施方案的电子器件的方法的基本过程。图5是以上述方式制造的电子器件59的横截面图。根据本实施方案,第一电极35a和第二电极35b经由具有较低的再结晶温度和比结晶的铜软的铜的变质层3来接合。因此,与没有形成变质层3的情况相比,可以降低施加到第一电极35a和第二电极35b的加热温度和负载,并且可以在较短的时间内使第一电极35a和第二电极35b接合。这可以减少在第一电极35a和第二电极35b的接合过程中第一电子元件30和第二电子元件40所受到的热损伤和机械损伤。此外,由于第一电极35a和第二电极35b可以在短的时间内接合,所以在制造相同器件的情况下,可以提高制造电子器件的工艺的生产量并且降低功率消耗,从而降低环境负担。此外,可以在干燥气氛中形成有机酸的金属膜2和变质层3。因此,没有必要制备湿式的制造装置,并且可以通过简单的工艺制造电子器件。注意,第一实施方案不限于上述描述。例如,变质层3可以形成在上述的第一电极35a和第二电极35b 二者中。然而,变质层3也可以仅在第一电极35a中或仅在第二电极35b中形成。此外,尽管第一电子元件30是电路板并且第二电子元件40是半导体器件, 但是待接合的电子元件并不限于这种组合。例如,作为电路板的第一电子元件也可以彼此接合。或者,作为半导体元件的第二电子元件也可以彼此接合。这在下面的实施方案中的情况中也是如此。此外,在图3的实施例中,所有的室21、24和26以及倒装芯片接合器25通过传送单元23a至23c来连接。然而,所有的室21、24和26以及倒装芯片接合器25不一定是连接的。例如,在第一电子元件30和第二电子元件40在倒装芯片接合器24中暂时被彼此接合之后并且在被传送到第三室26之前,第一电子元件30和第二电子元件40可以暴露于空气。当其暴露时间不超过10小时时,在第一电子元件30和第二电子元件40之间的接合强度不会降低,从而避免对电子元件的可靠性的影响。(第二实施方案)在第一实施方案中,氧化膜I (图4B)用于形成非晶或微晶铜的变质层3 (图4F)。在第二实施方案中,使用机械加工来使变质层变得比第一实施方案中的变质层更厚。图6A至图6D是在根据第二实施方案的制造过程中的电子器件的横截面图。在图6A至图6D中,与第一实施方案中描述的元件相同的元件使用相同的附图标记,并且在下面省略其说明。首先,如图6A所不,通过金刚石刀头70切削第一电极35a的表面以在第一电极35a的表面中形成非晶或微晶铜的变质层73。在本实施方案中,在金刚石刀头70旋转的圆周速度为例如15米/秒至20米/秒且金刚石刀头70沿着衬底的横向方向移动约20 μ m每转的条件下对第一电极35a的表面进行切削。该机械加工破坏第一电极35a的表面中的铜晶体。因此,如图6B所示,在距第一电极35a的表面IOOnm至200nm的范围内的深度中形成不具有结晶结构的铜的变质层73。如图6C所示,利用相同的方法,在第二电极35b的表面层中形成铜的变质层73。然后,进行在第一实施方案中描述的图4A至图4F的过程以获得在图6D中示出的横截面结构。如图6D所不,在第一电极35a和第二电极35b中的每一个电极中,在通过上述机械加工获得的变质层73上形成通过UV照射而由有机酸金属膜2获得的变质层3(参考图4E)。此后,进行第一实施方案的图41至图4K的过程以完成图5中示出的电子器件的
基本结构。根据如上所述的本实施方案,通过利用机械加工形成铜的变质层73,可以使整个变质层73变得比第一实施方案中的由氧化膜I形成铜的变质层3更厚。因此,在第一电极35a和第二电极35b接合的过程中变质层可以更加灵活地变形。由于这种软的变质层3和73,第一电极35a和第二电极35b可以以更好的方式紧密接触。接下来,描述本实施方案的实验结果。进行本实验是为了检验在本实施方案中制造的电子器件59(参考图5)的芯片剪切强度。芯片剪切强度定义为当第一电极35a和第二电极35b从第一电极35a和第二电极35b之间的界面剥落时,沿着衬底的横向方向上施加到第二电子元件40的最大力。在图7中示出实验结果。在图7中, 横轴表示在图4J的过程中的第一电极35a和第二电极35b的加热温度。图7中的纵轴表示上述的芯片剪切强度。图7中的曲线A表示在本实施方案中获得的实验结果。图7中的曲线B表示只进行了图6A示出的机械加工并且在没有形成由图6D的氧化膜I所获得的变质层3的情况下的实验结果。图7中的曲线C表示第一电极35a和第二电极35b直接接合而没有进行机械加工(图6A)且没有形成变质层3 (图6D)的对比例的实验结果。上述芯片剪切强度取决于第一电极35a和第二电极35b之间的界面的状态。例如,在芯片剪切强度小至约O克/芯片至3000克/芯片的区域I中,在第一电极35a和第二电极35b之间存在界面的清晰,因此在第一电极35a和第二电极35b之间的接合强度低。在芯片剪切强度为3000克/芯片至7000克/芯片的区域II中,电极之间的界面消失,并且第一电极35a和第二电极35b基本上熔合。然而,在区域II中电极的芯片剪切强度没有高到足以使电极被认为完全地熔合的强度。因此,在电极之间形成了前述晶体层3χ0另一方面,在剪切强度为约7000克/芯片至12000克/芯片的区域III中,第一电极35a和第二电极35b基本上完全熔合,并且其间不存在晶体层3x。如图7所示,比较在相同接合温度下的曲线,对比例的图C的芯片剪切强度最小。对于仅进行机械加工的曲线B,芯片剪切强度高于对比例,但在175°C的接合温度下不够闻。另一方面,在本实施方案中的曲线A中,在175°C的接合温度下的芯片剪切强度是仅进行机械加工的情况下的芯片剪切强度的约两倍。因此,可以证实在本实施方案中的机械加工和UV照射的结合对在约175°C的较低接合温度下的结合强度的增加是有效的。由于以该方式在约175°C的低接合温度下的结合强度足够高,所以在本实施方案中可以在没有被加热到高温的条件下使第一电极35a和第二电极35b接合。因此,第一电子元件30和第二电子元件40较不可能被热损坏。(第三实施方案)如图3所不,在第一实施方案中使用用于暴露于有机酸的第一室21和用于UV照射的第二室24。另一方面,在本实施方案中,给出一种第一电子元件30和第二电子元件40可以在单个室中被暴露于有机酸和紫外光的电子器件制造装置的描述。图8是根据本实施方案的电子器件制造装置的横截面图。如图8所示,本实施方案的电子器件制造装置60包括室29和容纳在室29中的平台29f。在平台29f上方设置有由耐热玻璃制成的窗29c。室29通过该窗29c而被分割两个隔室。在这两个隔室中,在窗29c上方的隔室用作为容纳紫外灯29a的容置部29b。另一方面,在窗29c下方的隔室设置有连接到有机酸供给单元22的气体入口 29d和气体出口 29e。平台29f包括未示出的加热器,并且能够使第一电子元件30和第二电子元件40加热到预定温度。在电子器件制造装置60中,第一电子元件30和第二电子元件40中的每一个都暴露于通过气体入口 29d供给的有机酸如甲酸以形成有机酸金属膜2 (参考图4C)。此外,使用来自紫外灯29a的紫外光照射有机酸的金属膜2以形成非晶或微晶铜的变质层3(参考图4F)。以该方式,在本实施方案中,第一电子兀件30和第二电子兀件40中的每一个都可以在单个室29中暴露于紫外光和有机酸。因此本实施方案的装置结构可以比第一实施方案的装置结构更简单。此外,以该方式,仅使用单个室29消除了类似于在第一实施方案中那样将第一电子元件30等从用于暴露于有机酸的第一室21传送到用于紫外照射的第二室24的需要,因此可以减少传送时间。此外,容置部29b通过窗29c与平台29f分开。这可以消除来自平台29f的辐射热可能损坏紫外灯29a的风险。因此平台29f的温度可以设定为高于不存在窗29c的情况下的温度。因此可以在宽的温度范围内用紫外光照射第一电子元件30和第二电子元件40。注意,平台29f可以设置有未示出的升降机构,使得第一电子元件30和紫外灯部29a之间的距离或者第二电子元件40和紫外灯29a之间的距离是可调节的。在这种情况下,通过调节上述的距离以使照射第一电子元件30和第二电子元件40的紫外光的强度最大化,可以利用紫外光对电子元件30和电子元件40进行有效地照射。(第四实施方案)在第四实施方案中,通过以如下方式临时接合材料来将第一电子元件30和第二电子元件40彼此固定。图9是在第四实施方案中使用的电子器件制造装置的俯视图。如图9所示,本实施方案的电子器件制造装置50包括第一室51和第二室52。穿过第一室51和第二室52插入有一对传送导轨54。在传送导轨54上设置有沿着导轨54的延伸方向可移动的平台55。第一室51包括在其侧面上的紫外灯56,并且被连接到有机酸供给单元22。注意,在第一室51和第二室52中的每一个的侧面上设置有可以通过其进出平台55的未示出的阀。该阀保持第一室51和第二室52内的气密性。图10是在图9中示出的电子器件制造装置的横截面图。如图10所示,第二室52包括压制板58和压制单元57。压制单元57是可伸缩的。压制板58通过压制单元57的伸缩运动而上下移动。在第一室51和第二室52之间设置有连接单元53。连接单元53的内部是气密的。因此,放置在平台55上的电子元件可以在不暴露于空气中的情况下从第一室51移动到第
二室 52。在下文中,给出使用制造装置50制造电子器件的方法的描述。图1lA至图1lG是示出在制造过程中的根据本实施方案的电子器件的横截面图。在图1lA至图1lG中,与第一实施方案中描述的元件相同的元件使用与第一实施方案的附图标记相同的附图标记,并且在下面省略其说明。首先,在图1lA所示制造第一电子元件30之后,如图1lB所示将临时接合材料61附接到第一电子元件30的表面。临时接合材料61的材料不做特别限定,但优选地为通过加热挥发、熔化或分解以产生粘性的材料。这种材料的实例包括具有约2000的分子量的聚乙二醇(PEG2000)。聚乙二醇具有约50°C的熔点并且在室温下为固体。然而,当被加热至部分熔化时,聚乙二醇可以粘附到第一电子元件30。此外,代替聚乙二醇,临时接合材料61还可以是聚丙二醇、丁基卡必醇乙酸酯、聚酯和多羟基聚醚中的任一种。或者,临时接合材料61可以由聚磺酸和乙酸乙烯酯中的任一个与乙烯组成的共聚物。此外,临时接合材料61可以是在约100°C至200°C温度下挥发的乙酸酐、琥珀酸酐和甲基丙烯酸酯中的任一种。此外,临时接合材料61可以是在约100°C的温度下容易分解的甲基丙烯酸甲酯或甲基丙烯酸乙酯。鉴于生产率,优选的是在通过切割而从晶片切割出第一电子元件30之前施加临时接合材料61。此后,如图1lC所示,使用未示出的倒装芯片接合器将第二电子元件40放置到第一电子兀件30之上,并且使第一电极35a和第二电极35b彼此对准。然后,使用来自倒装芯片接合器的热,将第二电子元件40在120°C下加热15秒,例如,以使临时接合材料61熔化。因此,使第一电子元件30和第二电子元件40临时接合,同时在第一电极35a和第二电极35b之间产生间隙。接下来,如图1lD所示,将第一电子元件30和第二电子元件40放置到平台55上并传送到第一室51中。然后将包含有机酸如甲酸的气体通过气体入口 51a引入到第一室51内。因此,使第一电极35a和第二电极35b的顶表面暴露于有机酸。因此,自然氧化膜和有机酸在第一电极35a和第二电极35b的表面中相互反应以形成有机酸的金属膜2(参考图4C)。接下来,停止引入包含有机酸的气体并且将在室51中的气体从气体出口 51b排出。然后,如图1lE所示,使用由在第一电极35a和第二电极35b的侧面设置的紫外灯56产生的紫外光照射第一电极35a和35b的顶表面,从而在第一电极35a和第二电极35b顶表面中形成铜的变质层3 (参考图4F)。在本实施方案中,如上所述,在第一室51的侧面上设置有紫外灯56。因此,由紫外灯56产生的紫外光进入第一电极35a和第二电极35b之间的间隙,因此可以使用紫外光确定地照射第一电极35a和第二电极35b的顶表面。注意,平台55可以包括未示出的旋转机构和升降机构,通过驱动这些机构,可以使用紫外光均勻地照射第一电极35a和第二电极35b的顶表面。接下来,如图1lF所示,平台55沿着传送导轨54移动以使第一电子元件30和第二电子元件40在第二室52中移动。然后,通过压制板58对第二电子元件40进行压制,同时在比变质层3 (参考图4H)的再结晶温度130°C低的温度下对第一电极35a和第二电极35b进行加热。因此,第一电极35a和第二电极35b被临时地接合。注意,该加热可以通过引入压制板58或平台55中的未示出的加热器来进行。之后,在使压制板58保持处于压制状态的同时,升高加热器的加热温度以将第一电子元件30和第二电子元件40°C加热至170°C,从而挥发和去除临时接合材料61的聚乙二醇。如图1IG所示,在通过压制板58继续压制的同时,将第一电子元件30和第二电子元件40加热至150°C至250°C。保持该状态约30分钟以使变质层3 (参考图4H)结晶,由此使第一电极35a和第二电极35b接合。因此,完成了图5不出的电子器件59。根据上述本实施方案,在第一电子元件30和第二电子元件40临时接合的同时,使第一电子元件30和第二电子元件40暴露于有机酸和紫外光。因此,相比第一电子元件30和第二电子元件40分别经受有机酸或紫外光的情况,可以更加有效地制造电子器件。此外,由于连接单元53的内部(参考图10)是保持气密的,所以可以防止铜变质层3在从第一室51到第二室52的过程中暴露于空气。因此,可以抑制变质层3的再氧化,从而防止由于氧化而导致的在第一电极35a和第二电极35b之间的接合强度降低。虽然在上文中使用通过加热而挥发的材料作为临时接合材料61,但是也可以使用环氧树脂糊料或环氧基树脂膜作为临时接合材料61。在这种情况下,临时接合材料61不通过加热挥发,而是可以作为底部填充树脂的一部分来保留。(第五实施方案)在第四实施方案中,使用如图9和图10所示的第一室51和第二室52。与之相比,在本实施方案中给出将这两个室的功能合成一体的电子器件制造装置的描述。图12是根据本实施方案的电子器件的制造装置的横截面图。在图12中,与第四实施方案中描述的元件相同的元件使用与第四实施方案的附图标记相同的附图标记,并且省略其说明。制造装置80包括设置有紫外灯56、压制单元57和压制板58的室53。室53通过气体入口 53a而从有机酸性供给单元22供给有包含有有机酸如甲酸的气体。此外,在室53中设置有在其上放置有第一电子元件30的平台81c。据此,可以在单个制造装置80中进行诸如有机酸的供给、紫外光的照射和使第二电子元件40压靠第一电子元件30的多个过程,因此可以简化装置的构造。(第六实施方案)在第一实施方案中,第一电极35a和第二电极35b是由铜制成的。在本实施方案中,在电极35a、35b上预先形成锡层。图13A至图13E是制造根据第六实施方案的电子器件的过程的横截面图。在图13A至图13E中,与第一实施方案中描述的元件相同的元件使用与第一实施方案的附图标记相同的附图标记,并且省略其说明。首先,如图13A所示,通过镀覆至2 μ m至5 μ m的厚度在每个第一电极35a的顶表面上形成低熔点金属层如锡层66。当锡层66被置于空气中时,在锡层66的表面中形成包含SnO或SnO2的氧化膜67。接下来,如图13B所示,使锡层66的顶表面暴露于有机酸。在此,使用甲酸作为有机酸。然后,氧化膜67与甲酸在约120°C的温度下反应约30分钟。因此,在锡层66的表面中形成的自然氧化膜67根据下面的化学式(4)或化学式(5)进行反应。Sn0+2HC00H — Sn (HCOO) 2+Η20...(4)Sn02+2HC00H — Sn (HCOO) 2+H2+02...(5)通过这些反应,在第一电极35a的顶表面上形成包含锡酸盐的有机酸金属膜68。注意,由于在该过程中的加热,在由铜制成的第一电极35a和锡层66之间的界面中形成由锡和铜制得的金属间化合物(Cu6Sn5)层66a。接下来, 通过紫外光对有机酸金属膜68的表面进行紫外光照射。因此,有机酸金属膜68按照下面的反应式(6)被分解。Sn (HCOO) 2 — Sn+C0+C02+H2. .(6)如图13C所示,通过上述反应产生的锡形成不具有晶体结构的非晶或微晶锡的变质层69。针对第二电极35b也进行与上述过程类似的过程,从而在第二电极35b的顶表面上形成锡的变质层69。接下来,如图13D所示,在通过未示出的倒装芯片接合器使第一电子元件30和第二电子元件40对准之后,对第一电子元件30和第二电子元件40进行加热和相互压靠。此处,在150°C的温度下对第一电子元件30和第二电子元件40进行压制和加热5分钟。因此,如图13E所不变质层69结晶化并且锡层66彼此熔合,从而使第一电极35a和第二电极35b彼此接合。注意,由于在该过程中的加热而导致金属间化合物层66a变厚。按照这种方式完成了图5中所示的电子器件59的基本结构。根据本实施方案,通过低熔点金属锡的变质层69使第一电极35a和第二电极35b接合。因此,相比使用铜的变质层3(参考图4J),可以在较短的时间内以较低的温度使第一电极35a和第二电极35b彼此接合。这可以进一步减少对第一电子元件30和第二电子元件40的损坏。注意,本实施方案不限于上述实施例。虽然在上述中锡层66形成第一电极35a和第二电极35b 二者上,但是锡层66可以仅形成在第一电极35a上或仅形成在第二电极35b上。根据上述实施方案,使用紫外光照射暴露于有机酸的第一电极的顶表面以形成由非晶层或微晶体层等组成的变质层。然后使用介于第一电极和第二电极之间的变质层而使第一电极和第二电极接合。 相比晶体层,变质层具有较低的再结晶温度并且较软。因此可以降低在第一和第二实施方案中的接合过程中的施加的温度和负荷,从而减少对第一电子元件和第二电子元件的损坏。
权利要求
1.一种制造电子器件的方法,所述方法包括: 使第一电子兀件的第一电极的顶表面暴露于有机酸; 利用紫外光照射所述第一电极的暴露于所述有机酸的所述顶表面;以及通过对所述第一电极和第二电子元件的第二电极进行加热和相互压制来接合所述第一电极和所述第二电极。
2.根据权利要求1所述的制造电子器件的方法,所述方法还包括: 使所述第二电极的顶表面暴露于所述有机酸;以及 利用紫外光照射所述第二电极的暴露于所述有机酸的所述顶表面。
3.根据权利要求1或2所述的制造电子器件的方法,所述方法还包括: 在接合所述第一电极和所述第二电极之前,使用临时性接合材料来临时地接合所述第一电子元件和所述第二电子元件。
4.根据权利要求3所述的制造电子器件的方法,其中 所述临时性接合材料是在接合所述第一电极和所述第二电极的过程中因加热而挥发、熔化或分解的材料。
5.根据权利要求1所述的制造电子器件的方法,所述方法还包括: 在使所述第一电极的所述顶表面暴露于所述有机酸之前,对所述第一电极的所述顶表面进行热氧化。
6.根据权利要求1所述的制造电子器件的方法,其中接合所述第一电极和所述第二电极在排除氧的气氛或包含有机酸的气氛中进行。
7.根据权利要求1所述的制造电子器件的方法,所述方法还包括: 在接合所述第一电极和所述第二电极之前,使所述第一电极的顶表面和所述第二电极的顶表面中的至少之一暴露于紫外光或氧等离子体。
8.根据权利要求1所述的制造电子器件的方法,其中 在接合所述第一电极和所述第二电极的过程中,将所述第一电极和所述第二电极加热到比变质层的再结晶温度高的温度,所述变质层是通过所述紫外光的照射而在所述第一电极的所述顶表面中形成的。
9.根据权利要求1所述的制造电子器件的方法,所述方法还包括: 在使所述第一电极的所述顶表面暴露于所述有机酸之前,对所述第一电极的所述顶表面进行切削。
10.一种电子器件,包括: 包括第一电极的第一电子元件;以及 包括接合到所述第一电极的第二电极的第二电子元件,其中 在所述第一电极和所述第二电极之间形成有晶体层。
11.根据权利要求10所述的电子器件,其中 所述晶体层的晶粒具有比所述第一电极和所述第二电极的晶粒的平均直径小的平均直径。
12.根据权利要求10或11所述的电子器件,其中所述第一电极、所述第二电极和所述晶体层由相同的材料制成。
13.根据权利要求12所述的电子器件,其中所述材料为铜。
14.一种电子器件制造装置,包括: 室; 平台,所述平台设置在所述室中并且在所述平台上放置有具有电极的电子元件;以及 紫外灯,所述紫外灯设置在所述室中并且配置为利用紫外光照射所述电极,其中 所述紫外灯设置在所述紫外灯能够利用所述紫外光照射所述电极的顶表面的位置处。
15.一种电子器件制造装置,包括: 第一室,在所述 第一室中,从包括在第一电子兀件中的第一电极和包括在第二电子兀件中的第二电极中的至少之一的表面移除氧化膜; 第二室,所述第二室连接到所述第一室,并且在所述第二室中利用紫外光照射所述第一电极和所述第二电极中的至少之一; 接合器,所述接合器连接到所述第二室并且配置为使所述第一电极和所述第二电极对准;以及 第三室,所述第三室连接到所述接合器,并且在所述第三室中对所述第一电子元件和所述第二电子元件进行加热和相互压靠。
全文摘要
本发明提供一种电子器件、制造方法和电子器件制造装置。根据本公开内容,所述制造方法包括使第一电子元件的第一电极的顶表面暴露于有机酸,利用紫外光照射第一电极的暴露于有机酸的顶表面,以及通过对第一电极和第二电子元件的第二电极进行加热和相互压制来接合第一电极和第二电极。
文档编号B23K20/26GK103212776SQ201210495330
公开日2013年7月24日 申请日期2012年11月28日 优先权日2012年1月20日
发明者酒井泰治, 今泉延弘 申请人:富士通株式会社