切削工具的制作方法
【专利摘要】提供一种被覆层的密接性和耐崩裂性优异的切削工具。一种切削工具(1),其具备包含氮化硅质烧结体的基体(2),和在基体(2)的表面从基体(2)侧按顺序层叠有如下层的被覆层(3):包含平均结晶宽度为0.1~0.4μm的TiN的第一层(4);包含平均结晶宽度为0.01~1.5μm的A12O3层的第二层(5);包含平均结晶宽度为0.01~0.1μm且平均结晶宽度比第一层(4)的平均结晶宽度小的TiN构成的第三层(6);包含平均结晶宽度为0.01~1.5μm的A12O3层的第四层(7)。
【专利说明】切削工具
【技术领域】
[0001]本发明涉及切削工具,特别是涉及具有耐缺损性优异的被覆层的切削工具。
【背景技术】
[0002]被广泛用于金属和印刷基板等的切削加工的切削工具,已知有在超硬合金、金属陶瓷和陶瓷等的基体的表面形成有以单层或多层构成的被覆层的切削工具。作为该被覆层,多使用层叠有TiC(碳化钛)层、TiN(氮化钛)层、TiCN(碳氮化钛)层和A1203(氧化铝)层等的化学蒸镀(CVD)膜。
[0003]例如,在专利文献I中公开有一种切削用刀具,其是在超硬合金基体的表面,按顺序被覆有TiCN层、Al2O3层、TiCN层。
[0004]另外,在专利文献2中记述的构成是:在氮化硅基体的表面被覆硬质被覆层,使硬质被覆层的第一层为包含含有结晶粒径I?30nm的粒状晶的柱状结晶的氮化钛层。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献1:特开2003-213455号公报
[0008]专利文献2:特开10-015707号公报
[0009]但是,上述专利文献I所述的反复层叠了 TiCN(TiN)层和Al2O3层的被覆层的构成,或像专利文献2这样在包含氮化硅质烧结体的基体的正上方成膜的TiN层的结晶形态,即使为在与基体邻接的部分使粒状结晶和柱状结晶混合而成的构成,被覆层的密接性也有不充分的情况,另外,在切削中存在Al2O3层发生裂纹,被覆层崩裂的情况。
【发明内容】
[0010]本发明为了解决上述课题而完成的,其目的在于,提供一种具备附着力高且耐缺损性高的被覆层的切削工具。
[0011]本发明的切削工具,具备包含氮化硅质烧结体的基体,和在该基体的表面从该基体侧按如下顺序层叠而成的被覆层:
[0012]包含平均结晶宽度为0.1?0.4μ m的TiN的第一层;
[0013]包含平均结晶宽度为0.01?1.5μπι的Al2O3的第二层;
[0014]包含平均结晶宽度为0.01?0.1 μ m且平均结晶宽度比所述第一层的平均结晶宽度小的TiN的第三层;
[0015]包含平均结晶宽度为0.01?1.5μπι的Al2O3的第四层。
[0016]本发明的切削工具,通过在包含氮化硅质烧结体的基体的表面设置被覆层,并且该被覆层按顺序层叠包含TiN的第一层、包含Al2O3层的第二层、包含TiN层的第三层、包含Al2O3层的第四层,并且使其按规定的平均结晶宽度构成,从而成为附着力高,耐缺损性高的被覆层,切削工具的耐磨耗性和耐缺损性提高。【专利附图】
【附图说明】
[0017]本发明的一个实施方式的切削工具的含有被覆层的截面的扫描电子显微镜(SEM)照片。
【具体实施方式】
[0018]图1是作为切削工具的优选例的切削工具I的含有被覆层3的截面的扫描型电子显微镜(SEM)照片。
[0019]如图1所示,切削工具I具备包含氮化硅质烧结体的基体2,和在该基体2的表面从该基体2侧,按如下顺序层叠的被覆层3:以平均结晶宽度为0.1?0.4 μ m构成的TiN的第一层4 ;以平均结晶宽度为0.01?1.5μπι的Al2O3构成的第二层5 ;以平均结晶宽度为0.01?0.1 μ m且平均结晶宽度比第一层4的平均结晶宽度小的TiN构成的第三层6 ;以平均结晶宽度为0.01?1.5μπι的Al2O3构成的第四层7。平均结晶宽度的优选的范围是,第一层4为0.2?0.3 μ m,第二层5为0.4?1.0 μ m,第三层6为0.01?0.05 μ m,第四层7为 0.3 ?1.0 μ m。
[0020]这时,所谓平均结晶宽度,是指被覆层3的结晶中与该结晶生长的方向垂直的方向的结晶的宽度w的平均值,在SHM照片所拍摄的视野,沿着与结晶生长的方向垂直的方向,即与基体2的表面平行的方向引出直线(图1所示的直线L),使该直线的长度除以其横穿粒界的数量,所得到的值作为平均结晶宽度。
[0021]构成基体2的氮化硅质烧结体,因为氮化硅结晶包含针状结晶,所以在基体2的表面形成有比较大的凹凸。因此,在基体2的正上方,包含形成容易成为柱状结晶而难以从基体2的表面被拔掉的形状的TiN的第一层4。其次,为了使被覆层3的耐磨耗性提高,在第一层4的表面形成包含Al2O3的第二层5。然后,在第二层5的表面形成包含比第一层4的平均结晶宽度小的、以0.01?0.1 μ m的平均结晶宽度构成的TiN的第三层6。该第三层6,缓和后述的第四层7所受的冲击,抑制在第四层7和第二层5的Al2O3层发生裂纹。此外,在第三层6的表面,为了提高被覆层3的耐磨耗性而层叠包含Al2O3的第四层7。
[0022]根据上述被覆层3的构成,成为基体2和被覆层3的附着力高且耐缺损性高的被覆层3,切削工具I的耐磨耗性和耐缺损性提高。
[0023]另外,TiN层和Al2O3层因为结晶形态不同,所以成为各层间的密接性有变差的倾向,但是根据本实施方式,增加了各层的功能,同时极力减少了 TiN层和Al2O3层的界面。而且,通过成为构成第一层4的结晶的平均结晶宽度比构成第三层6的结晶的平均结晶宽度大的柱状结晶,能够使之与基体2的密接性提高。另外,第三层6能够抑制初期缺损,并且能够维持与第二层5的密接性。还有,各层的厚度,除了耐磨耗性和耐缺损性以外,还被控制在能够维持各层的密接力的范围。
[0024]在此,为了兼顾切削工具I的耐磨耗性和耐缺损性而优选第一层4的厚度为0.7?1.3 μ m,第二层5的厚度为0.5?1.2 μ m,第三层6的厚度为0.1?0.3 μ m,第四层7的厚度为0.5?1.2 μ m。
[0025]另外,为了提高被覆层3的密接性而优选第一层4包含长宽比为3?10的柱状结晶。另一方面,出于能够缓和第二层5和第四层7所受的冲击的观点而优选第三层6包含粒状结晶。关于柱状结晶和粒状结晶的区别,在本发明中以结晶的最长长度与相对于和其正交的方向的结晶的长度的比(长宽比)计,小于2的定义为粒状结晶,长宽比在2以上的定义为柱状结晶。
[0026]还有,第二层5的Al2O3层和第四层7的Al2O3层以粒状结晶构成。另外,粒状结晶的平均结晶宽度,也通过与柱状结晶的平均结晶宽度的测量方法相同的方法和以相同的方向测量。
[0027]此外,出于被覆层的密接力强化和耐磨耗性提高的观点而优选第一层4的柱状结晶的平均结晶宽度wl,和构成基体2的氮化硅粒子的平均结晶粒径ws的比(wl/ws)为0.05 ~0.5。
[0028]另一方面,出于一并提高耐磨耗性和耐缺损性的观点而优选:作为基体2的氮化硅质烧结体,含有Mg的氧化物和稀土元素的氧化物,并且基体2的内部区域11中的Mg的氧化物和稀土元素的氧化物的总含量,以MgO和Re2O3换算的合计量计为0.5~3.5质量%。还有,作为稀土元素(Re),是指Y或镧系元素的各元素,特别是从耐崩裂性提高这一点,而优选含有La作为Re。
[0029]另外,在基体2中,从与被覆层3(第一层4)的界面(以下,有称为表面的情况。)朝向基体2的内部,存在后述的界面区域9、中间区域10和内部区域11。界面区域9的Re的含量(Res)相对于内部区域11的Re含量(Rei)的比率(ResAei)为0.1~0.8。另外,存在于界面区域9的正下方的中间区域10的Re的含量(Rem)相对于所述Rei的比率(Res/Rei)为0.05~0.3。通过该界面区域9和中间区域10的存在,能够提高耐磨耗性。此外,出于能够抑制被覆层3的崩裂这一点而优选比率(Rem/Res)为0.3~0.85。在此,从提高基体2与被覆层3的密接性这一点出发,优选界面区域9的范围是距基体2的表面0.5~2 μ m的深度,中间区域10的范围存在于距界面区域9的终端2~5 μ m的深度(距基体2的表面2.5~7μπι的深度)。比中间区域10的终端深的位置为内部区域11,但在测量内部区域11的组成等时,在距表面500 μ m以上的深度的位置进行测量。
[0030]此外,出于提高基体2和被覆层3的密接性的观点,优选界面区域9中的Mg的含量(Mgs),相对于基体2的内部区域11中的Mg含量(Mgi)的比率(Mgs/Mgi)为0.1~0.3,并且中间区域10中的Mg的含量(Mgni)相对于Mgi的比率(MgnZMgi)为0.1~0.3。另外,出于被覆层的密接力强化和耐磨耗性的观点,优选在第一层4的TiN层中,Si含量(Si1)相对于基体2的内部区域11中的Si含量(Sii)的比率(Si1ZiSii)为0.05~0.5的比率进行扩散。另外,出于提高被覆层3的密接性的观点而优选界面区域9中的Si的含量Sis,相对于内部区域11的Si的含量Sii的比率(SisZiSii)为0.65~0.9。另外,出于耐磨耗性的观点,优选在中间区域10中,Si含量相对于内部区域11未发生变化。各元素的含量的测量,可以通过电子射线微分析(EPMA)的面分析或线分析进行测量。
[0031]另外,在第四层7的表面,优选层叠有第五层8,该第五层8包含以平均结晶宽度为0.01~0.7 μ m、特别是0.2~0.5 μ m且厚度为0.1~1.0 μ m,特别是0.2~0.7 μ m构成的TiCxN1-X (O≤X≤I),特别是X = I的TiC0
[0032]此外,优选构成第一层4的TiN结晶的平均结晶宽度,比构成第三层6的TiN结晶的平均结晶宽度大1.5~15倍。由此,能够提高基体2和被覆层3的密接性,并且能够提高被覆层3的耐崩裂性。
[0033](制造方法)[0034]对于上述切削工具的制造方法的一个实施方式进行说明。
[0035]作为起始原料,混合平均粒径0.2?0.8 μ m的氮化硅(Si3N4)粉末,平均粒径
1.0?1.7 μ m的稀土元素(Re)化合物(氢氧化镧(La(OH)2)、氧化钇(Y2O3)、氧化镱(Yb2O3)、氧化饵(Er2O3)、氧化铈(Ce2O3)的任意一种)粉末,和平均粒径0.2?0.8 μ m的氧化铝(Al2O3)粉末,和平均粒径1.8?4.0 μ m的氢氧化镁(Mg(OH)2)粉末,通过压制成形,浇铸成形、挤出成形、冷等静水压压制成形等的公知的成形方法,形成为规定的工具形状。
[0036]对该成形体脱脂之后,放置在烧成钵内时,使用放置Si3N4粉末、Si粉末、SiO2粉末中的至少一种和Mg (OH) 2粉末的混合粉末并加盖,在将其置于碳制的圆筒内的状态下载置于烧成炉内。然后,将烧成炉内置换成I个气压(IOlkPa)的氮气,以5?15°C/分钟的升温速度升温至1200°C,其后,以I?5°C /分钟升温至1840?1880°C,之后,在1900?19500C>5?10气压(505kPa?1013kPa)的氮气气氛中保持I?4小时而进行炉冷。然后,根据期望,以1500?1700°C、2?5小时、170?220MPa的条件实施热等静压烧成(HIP处理)而得到氮化硅质烧结体。然后,根据期望对于烧结体的表面实施厚度磨削加工(两头加工和外周加工),并且对刀刃部实施珩磨加工。
[0037]然后,在其表面通过化学气相蒸镀(CVD)法成膜被覆层。作为反应气体组成,调整氯化钛(TiCl4)气体0.1?10体积%、氮(N2)气10?60体积%、余量为由氢(H2)气构成的混合气体并导入反应室内,在使成膜温度为950?1100°C、10?90kPa的条件下成膜第一层(TiN层)。这时,通过调整第一层的成膜温度和气压,能够控制基体和第一层的界面附近的各元素的扩散比例。
[0038]这时,作为成膜第一层(TiN层)之前的升温成膜装置时的室内的气氛,在以80?200kPa气压填充有Ar和He等的稀有气体的气氛中升温,使成膜温度为1000?1100°C,以50?80kPa的条件成膜第一层(TiN层),由此能够将基体和被覆层的界面中的Mg、Re和Si的各元素的浓度分布控制在规定的范围。还有,TiN结晶成为柱状或粒状,可以通过使成膜温度和混合气体的压力变化来进行调整。
[0039]接着,成膜第二层(Al2O3层)。作为Al2O3层的成膜方法,使用氯化铝(AlCl3)气为3?20体积%,氯化氢(HCl)气为0.5?10体积%,二氧化碳(CO2)气为0.01?20体积%,余量由氢(H2)气构成的混合气,优选为960?1100°C,5?25kPa,根据这一条件,基本上生成K-Al2O3,但也有生成C1-Al2O3的情况。
[0040]此外,作为反应气体组成,调整氯化钛(TiCl4)气0.1?10体积%,氮(N2)气10?60体积余量为由氢(H2)气构成的混合气并导入反应室内,在成膜温度为800?950°C,10?30kPa的条件下成膜第三层(TiN层)。然后,接着成膜第四层(Al2O3层)。作为Al2O3层的成膜方法,使用氯化铝(AlCl3)气为3?20体积%,氯化氢(HCl)气为0.5?10体积%,二氧化碳素(CO2)气为0.01?20.0体积%,余量为由氢(H2)气所构成的混合气,优选为950?1100。。,5?25kPa,根据这一条件,也生成κ -Al2O3,但也有生成a -Al2O3的情况。
[0041]其后,在最表面,例如作为反应气组成,以体积%计,调整氯化钛(TiCl4)气0.1?10体积%,二氧化碳素(CO2)气0.01?10体积%,余量为由氢(H2)气所构成的混合气并导入反应室内,在成膜温度为780?1100°C,5?25kPa的条件下成膜包含TiC的第五层,得到在氮化硅质烧结体的表面成膜有被覆层的切削工具。[0042]然后,根据期望,对于形成的被覆层3表面的至少刀刃部进行研磨加工。通过此研磨加工,刀刃部被加工得平滑,成为可抑制被削材的熔敷,耐缺损性更优异的工具。
[0043]【实施例】
[0044](实施例1)
[0045]作为起始原料,按照作为平均粒径1.2 μ m的Re元素化合物的氢氧化镧(La (OH) 2)粉末为1.76质量%,平均粒径0.7 μ m的氧化铝(Al2O3)粉末为0.4质量%,平均粒径2.5 μ m的氢氧化镁(Mg(OH)2)粉末为0.72质量%,余量为平均粒径0.3 μ m的氮化硅(Si3N4)粉末的比例进行调合,添加粘合剂和溶剂之后,以研磨机粉碎、混合72小时。之后进行干燥而除去溶剂,制作造粒粉末,以98MPa的压力将该造粒粉末压制成形为SNGN120412的切削工具形状。
[0046]脱脂后,将该成形体放置在烧成钵内时,将Si3N4粉末和Si粉末和Mg (OH) 2粉末的混合粉末作为铺垫粉末,以填充在成形体的周围的状态载置成形体并加盖,在将其置于碳制的圆筒内的状态下载置在烧成炉内。然后,使烧成炉内转换为氮IOlkPa (I个大气压),以升温速度10°C /分钟升温至1200°C,其后,以2V /分钟升温至1860°C。之后,以1920°C、在氮909kPa(9个大气压)气氛下保持2小时进行炉冷。之后,在1600°C,2小时,196MPa的条件下进行热等静压烧成(HIP),再对于该烧结体的表面进行0.3_厚度磨削加工(两头加工和外周加工),得到氮化硅质烧结体。对于氮化硅质烧结体的截面,使用扫描电子显微镜(SEM),以5000倍进行组织观察,通过图像分析测量氮化硅粒子的平均粒径时,为0.6 μ m。
[0047]其次,在其表面通过化学气相蒸镀(CVD)法成膜被覆层。成膜条件使用表1的条件。还有,关于试样N0.1的被覆层的成膜条件,第一层的TiN层使用表1的TiN2的混合气体组成,以成膜温度为1010°C,气压为30kPa进行成膜;第二层的Al2O3层使用表1的Al2O3I混合气体组成,以成膜温度为1005°C,气压为9kPa进行成膜;第三层的TiN层使用表1的TiNl的混合气体组成,以成膜温度为880°C,气压为16kPa进行成膜;第四层的Al2O3层使用表1的Al2032的混合气组成,以成膜温度为1005°C,气压为9kPa进行成膜;第五层的TiC层,使用表1的TiC的混合气体组成,以成膜温度为1010°C,气压为15kPa进行成膜。在试样N0.2~17中,使用表1的TiN2的条件成膜第一层的TiN层,使用表1的Al2O3I的条件成膜第二层的Al2O3层,使用表1的TiNl的条件成膜第三层的TiN层,使用表1的Al2032的条件成膜第四层的Al2O3层,使用表1的TiC、TiCN或TiN2的任意一个条件成膜第五层。然后,从前刀面侧对于被覆层3的表面进行30秒的电刷加工,制作试样N0.1~17的切削工具。[0048]【表1】
【权利要求】
1.一种切削工具,其特征在于,具备包含氮化硅质烧结体的基体,和在该基体的表面从该基体侧按顺序层叠有下述层的被覆层: 平均结晶宽度为0.1~0.4μ m的包含TiN的第一层; 平均结晶宽度为0.01~1.5 μ m的包含Al2O3的第二层; 平均结晶宽度为0.01~0.1 μ m,且平均结晶宽度比所述第一层的平均结晶宽度小的包含TiN的第三层;以及 平均结晶宽度为0.01~1.5μπι的包含Al2O3的第四层。
2.根据权利要求1所述的切削工具,其中,所述第一层的厚度为0.7~1.3 μ m,所述第二层的厚度为0.5~L 2 μ m,所述第三层的厚度为0.1~0.3 μ m,所述第四层的厚度为0.5 ~1.2 μ m0
3.根据权利要求1或2所述的切削工具,其中,所述第一层包含长宽比为3~10的柱状结晶,并且所述第三层包含长宽比为2以下的粒状结晶。
4.根据权利要求1至3中任一项所述的切削工具,其中,作为所述基体的氮化硅质烧结体含有Mg的氧化物和稀土元素Re的氧化物,并且所述基体的表面中的Mg和稀土元素的氧化物,以MgO和Re2O3换算总含量计为0.5~3.5质量%。
5.根据权利要求1至4中任一项所述的切削工具,其中,在所述第四层的表面,层叠有以0.01~0.3μπι的平均结晶宽度且0.1~0.5μπι的厚度构成的TiCxNhM,其中,O ^ X ^ I。`
6.根据权利要求1至5中任一项所述的切削工具,其中,构成所述第一层的TiN的平均结晶宽度,比构成所述第三层的TiN的平均结晶宽度大1.5~15倍。
7.根据权利要求3所述的切削工具,其中,所述第一层的柱状结晶的平均结晶宽度wl,和构成所述基体的氮化娃粒子的平均结晶粒径ws的比即wl/ws为0.05~0.5。
8.根据权利要求1至7中任一项所述的切削工具,其中,所述基体中,从所述基体和所述被覆层的界面朝向所述基体的内部,存在界面区域、中间区域和内部区域,相对于所述内部区域中的Re含量Rei,所述界面区域中的Re的含量Res的比率即Re^Rei为0.1~0.8,并且所述中间区域的Re的含量Rem相对于所述Rei的比率即ResAei为0.05~0.3。
【文档编号】B23B27/14GK103501940SQ201280019113
【公开日】2014年1月8日 申请日期:2012年3月30日 优先权日:2011年4月28日
【发明者】渡边孝 申请人:京瓷株式会社