专利名称:低温精馏对生产氨的应用的制作方法
技术领域:
本发明一般地涉及氨的生产,更具体而言,涉及从鼓风炉生产合成氨气体和低温精馏的应用,以便能利用这些合成气体生产氨。
在鼓风炉运行中,用空气部分地氧化焦炭,利用得到的还原性气体还原铁矿石生产铁。现代鼓风炉的运行包括使用富集氧的空气并加入煤和天然气之类的其它烃类。鼓风炉的废气包含一些发热量,一般被用作动力和蒸汽发电的燃料。在实际应用这些气体时,特别是从期望降低电网供电成本的观点,希望更好地利用这种气体。
因此,本发明的目的是提供一种有效地利用鼓风炉废气生产氨的方法。
概括地说,本发明适合将鼓风炉与采用低温精馏的氨生产设备有效地结合起来实现一体化。低温精馏能改善鼓风炉的运行并能利用鼓风炉的废气生产氨。
本领域的技术人员在阅读本发明的公开内容以后,会清楚本发明的上述目的和其它目的以及优点,本发明的上述目的和其它目的以及优点,是由本发明的一个方面达到的,本发明的这个方面是一种采用低温精馏生产氨的方法,其中包括(A)采用低温精馏在低温空气分离设备中分离空气生产氧;(B)将来自低温空气分离设备的氧与空气混合制成鼓入空气,其中包含约22%至50%(mol)的氧,其余部分主要由氮组成;(C)将鼓入空气加入鼓风炉,使鼓入空气中的氧与鼓风炉中的烃燃烧,生成包含氮、一氧化碳和氢的鼓风炉废气;(D)使一氧化碳与蒸汽反应,生产二氧化碳和附加的氢,从鼓风炉废气中除去二氧化碳,生成包含氮和氢的强化鼓风废气(fortified blast furnace gas);(E)将强化鼓风炉废气加入低温精馏设备,在其中分离强化鼓风炉废气,生成包含氢和氮的合成氨气体,其比例为3∶1;和(F)将来自低温精馏设备的合成氨气体加入氨生产设备,使合成氨气体中的氢和氮在其中反应生成氨。
本发明的另一个方面是
生产氨的设备,其中包括(A)低温空气分离设备和将进料空气加入低温空气分离设备的装置;(B)鼓风炉、将来自低温空气分离设备的氧加入鼓风炉的装置和将燃料加入鼓风炉的装置;(C)水煤气转换反应段、将来自鼓风炉的鼓风炉废气加入水煤气转换反应段的装置和将蒸汽加入水煤气转换反应段的装置;(D)二氧化碳除去单元和将来自水煤气转换反应段的气体加入二氧化碳除去单元的装置;(E)低温精馏设备和将来自二氧化碳除去单元的气体加入低温精馏设备的装置;和(F)氨生产设备、将来自低温精馏设备的气体加入氨生产设备的装置和从氨生产设备回收氨的装置。
本文所用的术语“铁矿石”系指一种或多种铁的氧化物,例如氧化铁和氧化亚铁。
本文所用的术语“塔”系指蒸馏或精馏塔或区,即接触塔或接触区,为了进行流体混合物的分离,其中液相和蒸汽相是逆流接触的,例如蒸汽相和液相在安装在塔和/或充填设备例如规整的或无规充填的设备内在竖直方向上有一定间隔的一系列塔盘或塔板上接触。
本文所用的术语“低温精馏设备”系指一种分离设备,其中设备的至少一部分运行是在开氏温度(K)最高150度下进行的。
本文所用的术语“低温空气分离设备”系指包括至少一个塔的低温精馏设备,在其中分离进料空气,生产产品氧和产品氮中的至少一种。
图1是本发明方法的一个优选实施方案简化的方框流程示意图,其中二氧化碳的除去是采用变压吸附设备进行的。
图2是本发明方法的另一个优选实施方案简化的方框流程示意图,其中二氧化碳的除去是采用热碳酸钾系统进行的。
将参照附图详细地叙述本发明。
现在看附图1,进料空气1主要由氮和氧以及空气中含有的其它正常成分例如氩组成,将进料空气加入低温空气分离设备101中,在其中采用低温精馏分离空气生产氧。低温空气分离设备101可以是任一种有效的低温空气分离设备。优选的低温空气分离设备101是双塔设备,其中包括一个压力较高的塔和一个压力较低的塔,二个塔的关系是进行热交换,其中进料空气在压力较高的塔内通过低温精馏初步分离成富氧的流体和富氮的流体,然后将这些流体加入压力较低的塔,它们在其中进行低温精馏,最后分离成产品氧和产品氮。低温空气分离设备也可采用其它的塔,例如氢侧臂塔(argon sidearm column),在其中可生产产品氩。
以气流4从低温空气分离设备101中排出氮,气流4可全部或部分地回收,或释放到大气中。以气流6从低温空气分离设备中排出产品氧,其氧浓度为富氧空气的氧浓度设至较高的纯度,即一般为40%-99.9%(mol)。从低温空气分离设备排出的氧与来自气流7的空气混合,形成富氧的空气或鼓入空气8。鼓入空气的氧浓度一般为22%-50%(mol),其余部分主要由氮组成。
鼓入空气8在炉子103中一般加热到温度1500-2200°F,并将得到的热鼓入空气10与烃12一起加入鼓风炉104,烃12可以是煤、油或天然气。还将包括铁矿石、焦炭和助熔剂的炉料14加入鼓风炉104中。鼓入空气中的氧与鼓风炉内的烃燃料反应,生成热和还原性气体,气体在炉中向上流动时,还原性气体将铁矿石转化成铁。熔融的铁和炉渣以线13从鼓风炉104的底部排出,一般称作鼓风炉废气的气体,其中包含氮、一氧化碳、二氧化碳和氢,集中在鼓风炉104的上部,以气流15从鼓风炉104中排出。
本发明的一个重要方面是,在鼓入空气的氧含量超过空气的氧含量时鼓入空气还包含大量的氮,优先至少约50%(mol)。这收到二个有利的效果。使鼓风炉的运行与惯例没有明显的区别,其中的空气是氧的唯一来源,也是下游生产氨的过程中的用氮的来源。
现在回头看图1,将鼓风炉废气15的一部分17加入炉子103中,废气在其中燃烧,提供热量加热鼓入空气。可利用另一部分19作为其它设备的燃料。将鼓风炉废气15的其余部分16加入洗涤塔107的下部。以液流18将水加入洗涤塔107的上部,水沿洗涤塔107向下与向上流动的鼓风炉废气相对流动。在此过程中,将鼓风炉废气中的颗粒杂质洗入向下流动的水中,鼓风炉废气一般被冷却到温度40-150°F。以液流20从洗涤塔107中排出洗水。
被冷却的鼓风炉废气,以气流22从洗涤塔107的上部排出,加入压缩机110,在其中一般压缩到压力为100-500PSia。所得压缩的鼓风炉废气以气流24与压力基本相同的蒸汽混合,形成水煤气转换反应气流28。以气流26将蒸汽加入压缩的鼓风炉废气流24中,其加入速度以使水煤气转换反应气流28中水与一氧化碳的比例为2-5为准。在将它们混合成气流28之前,优选将气流24和26各乍加热到约600°F。
将水煤气转换反应气流28加入转换反应段114,转换反应段114优选包括高温和较低温度的转换反应器,在每个转换反应器后都与热交换器串联。当水煤气转换反应混合物流过转换反应器时,一氧化碳和与蒸汽发生放热反应,生成二氧化碳和氢。得到的鼓风炉废气包含氮、二氧化碳和氢,然后以气流30将其从水煤气转换反应器114加入高压吸附系统118,变压吸附系统包括一个或多个吸附剂颗粒床,优选吸附剂颗粒吸附二氧二碳。在这些吸附剂材料中包括活性碳和沸石。
当鼓风炉废气通过变压吸附系统118时,二氧化碳优选被吸附到吸附剂上而从鼓风炉废气中除去。所得到的强化鼓风炉废气包含氮和氢,以气流32从变压吸附系统中排出。
气流32可包含最高达500ppm的二氧化碳,也包含一些水。将气流32加入甲烷化段120,气体在其中被预热,然后加入甲烷转化器。在甲烷转化器中,所有残留的一氧化碳和二氧化碳都与氢反应生成甲烷。以气流36将来自甲烷化部分120的气体混合物加入干燥器123中除去水。以气流40将得到的强化鼓风炉废气从干燥器123排出,并与循环气流58合并形成气流42,将其加入低温精馏设备126。优先低温精馏设备126包括一个热交换器,进料在其中被部分冷凝,然后进行相分离。然而该设备可将热交换和相分离与进一步的塔分离结合起来。在低温精馏设备126中,由低温精馏设备将进料42分离成包含氢与氮的比例约3∶1的合成氨气体46以及非常少量的氩和甲烷,剩余的氮43氮浓度为约98%(mol),其余部分是氩、甲烷和氢,不纯的氢48氢浓度一般为10-50%(mol)。
以气流46将合成氨气体从低温精馏设备126加入氨生产设备129。
在氨设备129中,将制备的合成氨气体和循环合成气体压缩、加热,然后加入氨转化器中。在转化器中氢与氮反应生成氨。由于是放热反应,有热量产生。利用这些热量生产蒸汽。氨的单程转化率为15-30%。在冷却转化器出口气体时又产生一部分蒸汽。出口气体通过与转化器的进料气体进行热交换和随后用冷却水进一步冷却。最后再采用冷冻装置将其冷却,分离液氨产品。来自这个分离器的气体包含未转化的氢、氮和不活泼的气体(氢和甲烷)。将这种气体的一小部分从环路中排出,以防不活泼气体的积累。本发明的有利方面之一是,在生产合成氨气体的设备126中除去大部分不活泼的气体(95%以上的甲烷和85%以上的氩)。所以,进入合成氨环路的不活泼气体量非常少,因而需排出的气体量也非常少。由于合成氨环路中不活泼的气体浓度低,也提高了氨的单程转化率。剩下的气体(除去排出的气体后)被称作前面所述的循环合成气体。将液态氨产品调节到较低的压力,释放被溶解的气体。将这些气体与排出的气体合并,并通过冷冻从其中除去氨。由干燥器除去这些气体中的任何水分。这些干燥的气体构成循环气流50,被送往低温精馏设备126。
将来自设备126的不纯氢气48加入压缩机134中,将所得的压缩气流56与来自设备129的循环气流50合并,构成加入低温精馏设备126的前述循环气流58,循环气流50包含约60%至90%(mol)的氢。压力为约250psia。以液流52从设备129中回收产品氨,以气流54从设备129中排出作为氨生产的副产品生成的蒸汽,气流54可全部或部分地回收。
剩下的氮以气流43从低温精馏设备126中排出。气流43的主要部分44通过变压吸附设备118,在其中用于再生被二氧化碳饱和的吸附剂,将二氧化碳从吸附剂上解吸到剩余氮气流中。气流43的一小部分45通过干燥器123,在其中用于再生被水饱和的吸附剂,将水从吸附剂上解吸到剩余氮气流中,然后作为气流38排出。可将得到的废氮气流31从设备118排出,或如图1所示将其加入催化氧化反应器136中,气流33中的氧与残留的一氧化碳在其中反应生成二氧化碳,然后将剩余氮气流以气流35排放。
本发明的一个重要方面是,再生二氧化碳除去系统所用的氮来自于低温氮-氢分离设备,而不是来自空气分离设备。要求空气分离设备的氮纯度高于气流43的纯度,换句话说,空气分离设备的氮能将氧引入二氧化碳除去系统,从而最终引入强化鼓风炉废气中,消耗其中用于生产氨的氢。能够证明这些氧的存在是有害的,本发明采用二个单独的低温精馏设备避免了这些可能的危害。
图2示出本发明的另一个实施方案,其中二氧化碳除去系统是吸收剂系统,例如热碳酸钾系统而不是变压吸附系统。对于共同的设备,图2中的序号与图1相同,且不再详细地说明这些共同的设备。
现在来看图2,将来自水煤气转换反应段114的鼓风炉废气流30加入酸性气体除去系统117,该系统包括来自热碳酸钾溶液作为溶剂的吸收塔和解吸塔。在吸收塔中该溶剂从气体混合物30中除去二氧化碳,在解吸塔中该溶剂来用来自气流44中的蒸汽和剩余氮再生,以气流34排放所产生的二氧化碳与剩余氮的混合物。气流32的强化鼓风炉废气可包含约500ppm的二氧化碳,将其加入甲烷化段120,气体在其中被预热,然后加入甲烷转化器中。在甲烷转化器中,所有残留的一氧化碳和二氧化碳与氢反应生成甲烷。以气流36将来自甲烷转化段120的气体混合物加入干燥器123中,从气体混合物中除去水,并以气流40从干燥器123中排出所得到的强化鼓风炉废气。干燥器123用剩余氦气流45再生,以气流38从干燥器123中排放氦和水的混合物。这个实施方案中的剩余氮包含作为杂质的氢和甲烷。
虽然参照一些优选的实施方案详细地说明了本发明,但本领域的技术人员会认识到在权利要求的内容和范围内,本发明还有其他一些实施方案。例如不需用低温空气分离设备为鼓风炉专门供氧,而是把生产的氧通入管道,管道不仅能将氧加入鼓风炉中,而且还能送到其它使用地点。进入低温空气分离设备的进料空气,可从将空气加入鼓风炉中所用的鼓风机得到。也可从低温精馏设备回收氩和/或甲烷,或将其加入氨生产设备,由于它们在氨生产过程中是不活泼的气体,所以可从氨生产设备中回收它们。
权利要求
1.一种采用低温精馏生产氨的方法,其中包括(A)采用低温精馏在低温空气分离设备中分离空气生产氧;(B)将来自低温空气分离设备的氧与空气混合制成鼓入空气,其中包含约22%至50%(mol)的氧,其余部分主要由氮组成;(C)将鼓入空气加入鼓风炉,使鼓入空气中的氧与鼓风炉中的烃燃烧,生成包含氮、一氧化碳和氢的鼓风炉废气;(D)使一氧化碳与蒸汽反应,生成二氧化碳和附加的氢,从鼓风炉废气中除去二氧化碳,生产包含氮和氢的强化鼓风废气;(E)将强化鼓风炉废气加入低温精馏设备,在其中分离强化鼓风炉废气,生成包含氢和氮的合成氨气体,其比例为3∶1;和(F)将来自低温精馏设备的合成氨气体加入氨生产设备,使合成氨气体中的氢和氮在其中反应生成氨。
2.权利要求1的方法,其中从鼓风炉废气中除去二氧化碳是通过将鼓风炉废气中的二氧化碳吸附到吸附剂上进行的。
3.权利要求1的方法,其中从鼓风炉废气中除去二氧化碳是通过将鼓风炉废气中的二氧化碳吸收到碳酸钾溶液中进行的。
4.权利要求1的方法,其中从鼓风炉废气中除去二氧化碳是通过将二氧化碳加到材料上进行的,其中还包括使来自低温精馏设备的剩余氮与该材料接触,使该材料中的二氧化碳进入剩余氮中。
5.权利要求1的方法,还包括将来自氨生产设备的循环气流加入低温精馏设备。
6.生产氨的设备,其中包括(A)低温空气分离设备和将进料空气加入低温空气分离设备的装置;(B)鼓风炉、将来自低温空气分离设备的氧加入鼓风炉的装置和将燃料加入鼓风炉的装置;(C)水煤气转换反应段、将来自鼓风炉的鼓风炉废气加入水煤气转换反应段的装置和将蒸汽加入水煤气转换反应段的装置;(D)二氧化碳除去单元和将来自水煤气转换反应段的气体加入二氧化碳除去单元的装置;(E)低温精馏设备和将来自二氧化碳除去单元的气体加入低温精馏设备的装置;和(F)氨生产设备、将来自低温精馏设备的气体加入氨生产设备的装置和从氨生产设备回收氨的装置。
7.权利要求6的设备,其中二氧化碳除去单元是变压吸附设备,在其中二氧化碳被吸附到吸附剂颗粒上。
8.权利要求6的设备,其中二氧化碳除去单元是热碳酸钾系统,在其中二氧化碳被吸收到碳酸钾溶剂中。
9.权利要求6的设备,还包括将来自低温精馏设备的气体加入二氧化碳除去单元。
10.权利要求6的设备,还包括将来自氨生产设备的气体加入低温精馏设备。
全文摘要
一个生产氨的系统,该系统使鼓风炉炼铁与生产氨一体化,其中低温精馏与二个能由鼓风炉废气生产用于生产氨的合成氨气体的系统连接。
文档编号C21B7/00GK1265375SQ0010268
公开日2000年9月6日 申请日期2000年2月24日 优先权日1999年2月25日
发明者M·M·沙, R·F·德尔尼维克 申请人:普拉塞尔技术有限公司