专利名称:用于涡轮机部件的耐腐蚀且耐磨的防护结构的制作方法
技术领域:
本公开大体上涉及用于涡轮机部件的采用涂层、包覆层或部分替换物(section replacement)形式的耐腐蚀、耐冲击和耐磨损的防护结构。本公开大体上涉及制造这种用于涡轮机部件的耐腐蚀、耐冲击和耐磨损的防护结构的方法。
背景技术:
已经发现,采用涂层、包覆层或部分替换物形式的耐腐蚀、耐冲击和耐磨损的防护结构可用于涡轮发动机中的各种应用,这些防护结构包括钴基合金如Stellite和Haynes 25(L605)。例如,常常在叶片顶部沉积磨料、耐磨的包覆层。通常使用这种包覆层来降低重要部件的磨损速度。在涡轮叶片的前缘设有其它防护结构,以减少由于在操作时可能进入涡轮机的周围固体散粒(如灰尘、沙子等)所引起的腐蚀。其它类型的耐磨防护结构还可以涂层、包覆层或部分替换物的形式设在操作时易于磨损的涡轮发动机零部件上。例如,可在与相邻结构如盘柱或涡轮壳体架发生摩擦的叶片鸠尾榫和喷嘴的耐磨面板上设置涂层、包覆层或部分替换物。
采用涂层、包覆层或部分替换物形式的耐腐蚀防护结构还可应用于受到液滴腐蚀困扰的涡轮机部件上。在蒸汽涡轮机中,水滴在对应于涡轮机的最低压部分的最后转子级中形成。水滴可能凝聚在固定式的叶片翼型如喷嘴上,在此处其凝聚成薄膜或小液流并迁移到喷嘴的后缘。最终,蒸汽流将薄膜和/或小液流以水滴的形式从固定叶片翼型中去除。这些水滴以与旋转叶片的周向速度近似相等的速度来冲击后级的旋转叶片。水滴的冲击在叶片材料表面产生冲击接触压力,导致叶片材料的逐渐腐蚀。蒸汽涡轮机部件的腐蚀可导致功率损失,降低涡轮效率,并限制叶片部件的寿命。
总之,通过对包含大约11至18重量百分比的铬的铁合金进行锻造,可形成低压蒸汽涡轮机的最后几排叶片。采用涂层、包覆层或部分替换物形式的防护结构由钴基合金形成,例如那些可从DeloroStellite公司买到的商标为Stellite的合金。虽然这些防护结构提供对碱金属的抗腐蚀性,但是其腐蚀仍然会导致不合适的、不可恢复的效率损失。防护结构在涡轮叶片上的应用还导致因接合处的应力腐蚀裂纹而引起的可靠性问题,产生空洞或裂纹形式的缺陷,并由于重量增加而减少寿命。
因此,在本领域中持续存在对改进的耐腐蚀、耐冲击和耐磨损的防护结构的需求。
发明内容
本文公开了一种包括基底和在基底上形成的防护结构的涡轮机部件,其中该防护结构包括α-β相钛合金、β相钛合金或近β相钛合金。
本文还公开了一种为涡轮机部件提供防护结构的工艺方法,其包括在涡轮机部件上附着上防护结构;其中这种防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
本文还公开了一种为涡轮机部件提供防护结构的工艺方法,其包括在涡轮机部件的将由防护结构保护的区域附着上扩散缓冲层,其中该扩散缓冲层选自纯金属或合金,这些纯金属或合金不会由于与耐腐蚀性结构和/或基底的相互作用而形成脆性的和/或低熔点的相;以及将防护结构附着在扩散缓冲层上,其中通过电镀、等离子体沉积、粉末涂覆、溅射、电子束沉积、等离子热喷涂、钎焊、共挤压、爆炸熔粘、热等静压、共锻造、锻造、熔焊、共轧制、摩擦焊或者包括至少其中一种前述工艺方法的组合,来实现扩散缓冲层和防护结构的附着;其中防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
本文公开了一种包括β相钛合金或近β相钛合金的涡轮机部件。
本文还公开了一种涡轮机部件,其包括基底;附着在基底上的扩散缓冲层;以及附着在扩散缓冲层的与基底相接触的表面相对的表面上的防护结构,其中这种防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
图1以透视图显示了可利用本公开的防护结构进行处理的示例性涡轮机部件;图2是显示用于不同α-β相或β相钛合金的有效弹性应变百分比对延伸率百分比的图,这些钛合金可用作涡轮机部件中的防护结构或防护层;和图3是代表性α-β相或β相钛合金与Stellite 6B的耐腐蚀性能的比较图。
具体实施例方式
应该注意,本文所用的用语“第一”、“第二”等并不表示任何次序或重要性,而是用于将一个元件与另一元件区别开来,而用语“这”、“一”并不表示数量限制,而是表示至少一个所引用物件的存在。而且,本文所公开的所有范围都包含端点,且可独立地组合起来。
本文所公开的是用于涡轮机部件表面的涂层、包覆层或部分替换物(以后称防护结构),这些表面易受磨损、腐蚀和/或冲击损伤。磨损、腐蚀和冲击损伤是由于散粒(例如水滴)冲击涡轮机部件而造成的。防护结构通常包括α-β相钛合金、近β相钛合金或β相钛合金,并可提供抗腐蚀性能,耐磨性能和/或抗冲击性能。这种α-β相钛合金、β相钛合金或近β相钛合金具有富钛的体心立方结构是可取的,这种结构具有Pearson内部立方结构模型(Pearson symbol cubicinternal)2(cI2)或空间群Im3m。本文所用用语“耐腐蚀”、“耐磨”或“耐冲击”是可互换的,并意指由于固体或液体散粒冲击而引起的基底材料如涡轮机部件的损耗或损伤。
防护结构应用于处于初级和次级空气和蒸汽流路中的那些涡轮机部件,这些流路包括热燃气流路、蒸汽流路和水流路。这些防护结构还可应用于燃料流路中的区域。附着有防护结构的优选涡轮机部件是固定的和/或旋转的翼型。附着有防护结构的其它涡轮机部件的示例是密封件、涡轮壳体、分流器等。可附着上这些防护结构的涡轮机部件存在于任一种发电涡轮机中,例如燃气涡轮机、水力发电涡轮机、蒸汽涡轮机等,或者可以是用于在飞机、机车或船舶中产生推力的涡轮机。在涡轮机部件的易受腐蚀、磨损或冲击的那些区域上可以选择性地形成防护结构。或者,还可将防护结构设在处于热燃气流路、蒸汽流路和水流路中的部件(以后称为基底)的所有表面上。在另一实施例中,整个基底或基底的部分可由β相钛合金或近β相钛合金制成。已经发现,防护结构有利地吸收了与液体和/或散粒冲击有关的能量,并且与其它涂层不同的是,它可阻止伴随的疲劳损坏。
基底通常由高强度合金和/或高温合金形成。基底包括已知在抗拉强度、蠕变强度、抗氧化作用和耐腐蚀性等方面具有高应力和/或高温性能的合金,例如镍基合金、钴基合金、铁基合金、钛基合金等。还可对根据本公开的各种实施例的用作基底的其它结构合金进行处理。基底合金可制造成浇铸或浇铸-锻造的结构。或者,基底合金还可由粉末固结而成,此时可进一步加工所得粉末冶金结构。防护结构通过冶金结合或机械结合在基底的表面上,从而减轻了由于固体或液体散粒腐蚀、冲击和/或磨损而引起的损伤。
在基底由超合金材料形成的情况下,超合金是镍基、铁基或钴基合金,其中超合金中的镍、铁或钴是在重量上为最多的单种元素。示例性的镍基超合金包括至少大约40重量百分比(wt%)的镍(Ni),以及至少一种来自钴(Co)、铬(Cr)、铝(Al)、钨(W)、钼(Mo)、钛(Ti)和铁(Fe)等金属的成分。镍基超合金的示例包括商标为Inconel、Nimonic、Rene(例如Rene80-、Rene95、Rene142和ReneN5合金)和Udimet的合金,以及定向固化的单晶超合金。示例性的钴基超合金包括至少大约30wt%的钴,以及至少一种来自镍、铬、铝、钨、钼、钛和铁等金属组的成分。钴基超合金的示例包括商标为Haynes、Nozzaloy、Stelhite和Ultimet的合金。
图1以透视图显示了可利用本说明书的防护结构进行处理的示例性基底。应该注意基底的工作原理和一般结构是众所周知的,因此不在这里重复。如图1所示,示例性基底是一般在低压蒸汽涡轮机的最后级中使用的蒸汽涡轮叶片10。叶片10通常包括鸠尾榫部分12和翼型部分14。鸠尾榫部分通过插销等而安装在转轴(未示出)上。虽然图纸显示了单个叶片,但是发动机通常具有多个安装在转轴上的叶片。叶片在固定式涡轮壳体所限定的区域内旋转。
在一个实施例中,α-β相钛合金、近β相钛合金或β相钛合金的防护结构可应用于涡轮机中的任一基底或任何基底组合上。在一个实施例中,在基底易受腐蚀、磨损和/或冲击的那些区域上形成防护结构,例如在操作时受到水滴冲击的区域等。在一个示例性实施例中,α-β相钛合金、近β相钛合金或β相钛合金的防护结构最好应用于翼型部分14的前缘16周围。已经发现,在低压蒸汽涡轮机的后级中,前缘16是最易受到水滴腐蚀的。
如果需要,可将防护结构只应用于基底的一部分上。例如在涡轮机操作过程中,固体和/或液体散粒会冲击形成涡轮机的各种部件的表面,并通过腐蚀、冲击和/或磨损而损伤这些表面。通过为这些表面附着防护结构,该防护结构可缓冲冲击散粒所造成的损伤,从而减轻腐蚀、冲击和/或磨损。通过防护结构的较大的有效弹性应变,可以完全地或部分地回复冲击散粒所造成的变形,其中有效弹性应变被定义为屈服应力对杨氏模量之比。
在一个实施例中,通常需要防护结构在变形之后展示优越的可回复性应变。在另一实施例中,防护结构在大变形时展示很小或微不足道的加工硬化。优越的可回复性应变有助于冲击散粒所引起的大变形的回复,因此就减轻了腐蚀、冲击和/或磨损的损伤。在一个实施例中,α-β相钛合金、近β相钛合金或β相钛合金的防护结构展示大于或等于大约4%的延伸率是可取的,其中延伸率被定义为在合金的拉伸测试过程中测量部分的增加长度对最初长度之比。有效弹性应变大于或等于大约0.7%是可取的。在另一实施例中,α-β相-钛合金、近β相钛合金或β相钛合金的防护结构展示大于或等于大约6%的延伸率,且有效弹性应变大于或等于大约0.75是可取的。在又一实施例中,α-β相-钛合金、近β相钛合金或β相钛合金的防护结构展示大于或等于大约8%的延伸率,且有效弹性应变大于或等于大约0.6是可取的。有效弹性应变被定义为屈服应力对杨氏模量之比。杨氏模量采用在合金拉伸测试过程中在应变趋零时的值。
涡轮机部件中所用α-β相钛合金、近β相钛合金或β相钛合金的防护结构有利地几乎没有或没有由于固体和/或液体散粒冲击所引起的硬化效应是可取的。在涡轮机部件中所使用的α-β相钛合金、近β相钛合金或β相钛合金的防护结构还回复与冲击散粒相关的变形是可取的,并通过其优越的可回复性应变来抵抗腐蚀受损。
图2是显示了用于不同α-β相钛合金、近β相钛合金或β相钛合金的有效弹性应变百分比对延伸率百分比的图表,这些钛合金可用作涡轮机部件中的防护结构。通常需要α-β相钛合金、近β相钛合金或β相钛合金的防护结构包括基于防护结构总体积的至少10体积百分比的β相。更可取的是,α-β相钛合金、近β相钛合金或β相钛合金的防护结构包括基于防护结构总体积的至少30体积百分比的β相。
图2中显示了α-β相钛合金、近β相钛合金和β相钛合金的示例。这些示例包括包含经过时效或固溶处理加时效处理(STA)的Ti-6Al-4V的α-β相钛合金;包含Ti-3Al-8V-6Cr-4Zr-4Mo(也称为β-C)的亚稳态β钛合金;包含Ti-10V-2Fe-3Al(也称为钛10-2-3)的近β相钛合金;包含Ti-5Al-2Sn-4Mo-2Zn-4Cr(也称为Ti-17)的近β相钛合金;包含Ti-15V-3Cr-3Sn-3Al(STA)的β相钛合金;包含Ti-6Al-6V-2Sn(STA或退火)的α-β相钛合金;包含经过两次退火(二次退火)的Ti-6Al-2Sn-4Zr-2Mo的α相钛合金;包含Ti-5.8Al-4Sn-3.5Zr-0.7Nb的近α相钛合金;包含经过时效处理的Ti-15V-3Cr-3Sn-3Al(也称为钛15-3-3-3)的β相钛合金;包含Ti-6Al-2Sn-4Zr-6Mo(也称为钛6-2-4-6)的α-β相钛合金;包含Ti-4Al-4Mo-2Sn的近α相钛合金;包含Ti-5.5Al-3Sn-3Zr-0.5Nb的近α相钛合金;包含Ti-6Al-6V-2Sn(也称为钛6-6-2)的α-β相钛合金;包含Ti-4Al-4Mo-2Sn的近α相钛合金;包含Ti-6Al-7Nb的α-β相钛合金;包含Ti-6Al-2Sn-4Zr-2Mo(也称为钛6-2-4-2)的近α相钛合金;包含Ti-6Al-2Cr-2Mo-2Zr-2Sn(也称为Ti62222)的β相钛合金;包含Ti-15Mo-3Al-2.7Nb-0.25Si的β相钛合金等,或者包含至少一种前述钛合金的组合。
在一个实施例中,在一种提供防护结构的方法中,可取的是,至少一种近β相钛合金通常包括为总组分的大约30到60重量百分比(wt%)的钒族元素,其余基本上为钛。钒族元素是钒、铌和/或钽。近β相钛合金还可包括小于或等于近β相钛合金总重量的大约20wt%的锆、铪和/或钪。可添加到这种近β相钛合金组分中的其它合适的元素和杂质是铬、钼、锰、铁、钴、镍或者包括至少一种前述元素的组合。如果需要,还可将氧选择性地添加到这种近β相钛合金组分中。
可取的是,这种近β相钛合金具有小于或等于大约80×109帕斯卡(80GPa)的杨氏模量。在另一实施例中,这种近β相钛合金具有小于或等于大约65GPa的杨氏模量是可取的。在又一实施例中,这种近β相钛合金具有小于或等于大约60GPa的杨氏模量是可取的。这种近β相钛合金具有大于或等于大约750×106帕斯卡(750MPa)的抗拉强度是可取的。在一个实施例中,这种近β相钛合金具有大于或等于大约800MPa的抗拉强度是可取的。在另一实施例中,这种近β相钛合金具有大于或等于大约900MPa的抗拉强度是可取的。在又一实施例中,这种近β相钛合金具有大于或等于大约1,500MPa的抗拉强度是可取的。
这种近β相钛合金在室温下展示出超塑性是可取的。在一个实施例中,这种近β相钛合金可回复大于或等于大约2%的应变,而在另一实施例中,这种近β相钛合金可回复大于或等于大约2.5%的应变。这种近β相钛合金还展示超塑性,并且允许在室温下进行大于或等于大约95%的冷加工。这种近β相钛合金的一个具体示例是GumMetal。
在一个实施例中,包含α-β相钛合金、β相钛合金或近β相钛合金的防护结构可作为涂层而施加在涡轮机部件上。通过诸如电镀、等离子体沉积、粉末涂覆、溅射、电子束沉积以及等离子热喷涂等方法来施加涂层。
在另一实施例中,α-β相钛合金、β相钛合金或近β相钛合金的防护结构可预成形为包覆层,而后通过冶金结合方式附着在涡轮机部件上。具体的冶金结合方法将取决于α-β相钛合金、β相钛合金或近β相钛合金的组分和基底的合金组分。将预成形的包覆层附着在涡轮机部件上的适当方法的示例为钎焊、共挤压、爆炸熔粘、热等静压(HIP)、锻造、熔焊、摩擦焊等,或者包括至少其中一种前述工艺方法的组合。
基于所需的回复性应变性能、延展性和/或塑性变形下的加工硬化程度,来选择防护结构的合金元素和组分。在一个实施例中,所选择的用于形成冶金结合的工艺提供了基底和防护结构之间的最少互扩散。已经发现,某些类型的互扩散可能产生脆性金属间化合物,其可能削弱在两种材料之间的这样形成的结合。为了提高除耐磨损、耐冲击和/或耐腐蚀以外的机械强度,可在附着上防护结构之前,将可选的扩散缓冲层附着在基底上。防护结构则附着在扩散缓冲层的与基底相接触的表面相对的表面上。扩散缓冲层的特征在于,钛、镍和主要基底元素的高溶解度、以及低熔点的或脆性的金属间反应化合物的形成会受到限制。可在扩散缓冲层中使用的金属的合适示例为钒、铌、铪、钽、锆,或包括至少一种前述金属的组合。
当基底由钛合金形成时,扩散缓冲层的形成是所需的。已经发现,某些钛合金的防护结构在与基底材料的界面处会形成非所需的相。扩散缓冲层的采用基本上防止了互扩散和非所需相的形成。
在一个实施例中,一种为基底提供防护结构的工艺方法包括,在由防护结构保护的基底区域上附着上扩散缓冲层,其中扩散缓冲层选自纯金属或合金,这些纯金属或合金不会由于与防护结构和/或基底的相互作用而形成脆性的和/或低熔点的相。防护结构通过在低于约950℃的温度下且减面率大于或等于大约2∶1下进行共挤压而附着在扩散缓冲层上。
在另一实施例中,一种为基底提供防护结构的工艺方法包括,在由防护结构保护的基底区域附着扩散缓冲层。扩散缓冲层选自纯金属或合金,这些纯金属或合金不会由于与防护结构和/或基底的相互作用而形成脆性的和/或低熔点的相。扩散缓冲层可作为涂层或包覆层而应用到基底上。通过诸如电镀、等离子体沉积、粉末涂覆、溅射、电子束沉积和等离子热喷涂的方法,可将扩散缓冲层作为涂层来施加。通过诸如钎焊、共挤压、爆炸熔粘、热等静压(HIP)、共锻造、共轧制、熔焊、摩擦焊等,或者包括至少其中一种前述工艺方法的组合,可将扩散缓冲层作为包覆层来施加。
通过选自钎焊、焊接、热喷涂、激光表面处理、热轧、冷轧、等离子体沉积、锻造、爆炸焊接、熔焊、摩擦焊和喷镀的工艺方法,可将防护结构附着在扩散缓冲层上。
现在将参考用于将防护结构附着在基底上的示例性工艺方法。通过扩散结合工艺方法如热等静压(HIP)工艺,可将防护结构附着在基底上。用于将防护结构附着在钢或镍基合金形成的基底上的示例性HIP工艺采用了优选低于950℃的温度和大于138MPa的压力。更优选的是,HIP工艺方法采用大约700℃到大约900℃的温度以及大约138MPa到大约276MPa的压力。
在示例性的共挤压工艺中,优选的温度和减面率比例优选采用低于950℃的温度以及等于或大于2∶1的减面率。更优选的是,共挤压工艺采用大约700℃到大约900℃的温度以及2∶1到8∶1的减面率。或者,防护结构可以直接地沉积在基底表面上以形成一体式涂层。
防护结构的厚度选择成可为那些易受腐蚀、磨损和/或冲击的表面提供所需的弹性和柔性。在一个实施例中,防护结构的厚度为大约1×10-3到大约5厘米,而在另一实施例中优选为大约0.1到大约1厘米。
在一个实施例中,通过在基底的易腐蚀区域进行化学改性工艺,来实现防护结构。化学改性工艺可用于改变易腐蚀区域的化学性质,使其在均匀化热处理之后具有与所公开合金相似的组分。该工艺方法选自激光表面处理、等离子体沉积、溅射、钎焊和热喷涂。该工艺方法之后是均匀化热处理如退火,以控制易腐蚀区域上的组分。在完成均匀化热处理之后,防护结构可具有与所公开合金相似的化学性质和抗腐蚀性能。
在另一实施例中,防护结构可经受可选的表面处理,例如施加来自离子或激光源的高能射束或其它机械手段如喷丸处理或抛光。例如,为了有选择性地增加所需量的某些金属,可使防护结构的所选区域经受离子注入。离子注入可将β相稳定剂添加至钛合金基底或防护结构中。合适β相稳定剂的示例为钒、铌、钽、钼、铬、铜等,或包括至少一种前述β相稳定剂的组合。还可有利地使用局部处理来产生富β相钛合金。
作为一种选择,在表面处理之后,可使防护结构经受热处理工艺或时效处理工艺。热处理工艺最好包括将涡轮机部件暴露在大约815℃到大约1010℃的温度下并持续大约4小时。时效处理工艺最好包括将部件加热到大约480℃到大约815℃下持续大约12小时。在这里还可采用热处理工艺和时效处理工艺的组合。
部分替换物或插入物还可在尺寸上设置成可防止或修复由于腐蚀、磨损和/或冲击基底所造成的损伤。通过其中一种前述工艺方法,可将插入物附着在基底的受影响部分上。虽然已经参考将防护结构附着在带有或不带扩散缓冲层的基底上来进行了介绍,但是还应注意到,插入物也可由α-β相钛合金、近β相钛合金或β相钛合金制成。通过这种方式,基底的修复和损伤保护可通过将插入物附着在基底上来实现。
如上所述,整个基底可由β相钛合金或近β相钛合金制成。基底可制造成浇铸或浇铸-锻造的结构。或者,基底合金还可由粉末固结而成,其中可进一步锻造加工所得粉末冶金结构。这种制造工艺可将β相钛合金或近β相钛合金制成所需形状。使这种形状经受热处理、退火、固溶处理等,从而赋予该形状所需的性能。此后,可将该形状机械加工成其最终形式。或者,可以首先将所需形状机械加工成其最终形式,然后进行热处理、退火、固溶处理等。在一个实施例中,可将包含α-β相钛合金、近β相钛合金或β相钛合金的前述防护结构附着在包含β相钛合金或近β相钛合金的基底上。
以下示例显示了本文所公开的防护结构的某些实施例的组分和制造方法,这些示例是示例性而非限制性的。
示例这个示例用于展示包括有含β相钛合金的防护结构所提供的抗腐蚀性和耐磨性。在这个示例中,特别包含Ti-5Al-2Sn-2Zr-4Mo-4Cr(Ti17);Ti-6Al-2Cr-2Mo-2Zr-2Sn(也称为Ti62222);和Ti-15Mo-3Al-2.7Nb-0.25Si的三种含β相钛合金在模拟水滴腐蚀环境中与Stellite6B进行比较。
使这种防护结构经受750英尺/秒端速下的水冲击。图3中显示了测试结果。从图3中可以看出,含β相钛合金展示了与Stellite 6B所提供的性能相当的抗腐蚀防护性能。
虽然已经参照示例性实施例介绍了本发明,但是本领域的技术人员可以理解,在不脱离本发明范围的条件下,可进行各种改动,或者用等效物来替代其元素。另外,在不脱离本发明实质范围的条件下,可进行多种修改以使特定情况或材料与本发明的讲述内容相适应。因此,本发明并不限于所构思的用于实现本发明的最佳模式中所公开的这些具体实施例。
权利要求
1.一种涡轮机部件,其包括基底;和在所述基底上形成的防护结构,其中所述防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
2.根据权利要求1所述的涡轮机部件,其特征在于,所述α-β相钛合金、近β相钛合金或β相钛合金包含基于所述防护结构总体积的至少10%的体积百分比的β相。
3.根据权利要求1或2所述的涡轮机部件,其特征在于,所述α-β相钛合金、近β相钛合金或β相钛合金展示出大于或等于大约4%的延伸率以及大于或等于大约0.7%的有效弹性应变。
4.根据权利要求1或3所述的涡轮机部件,其特征在于,所述α-β相钛合金、近β相钛合金或β相钛合金包含基于所述防护结构总体积的至少30%的体积百分比的β相。
5.根据权利要求4所述的涡轮机部件,其特征在于,所述近β相钛合金包含基于所述近β合金总重量的大约30到大约60%的重量百分比的钒族元素,其余基本上为钛,其中所述钒族元素包含钒、铌和/或钽。
6.根据权利要求4或5所述的涡轮机部件,其特征在于,所述近β相钛合金具有小于或等于大约80GPa的杨氏模量、大于或等于大约750MPa的抗拉强度,或者大于或等于大约2%的应变。
7.根据权利要求4,5或6所述的涡轮机部件,其特征在于,所述近β相钛合金可允许在室温下进行大于或等于大约95%的冷加工。
8.根据权利要求1所述的涡轮机部件,其特征在于,所述基底包括来自蒸汽涡轮机、燃气涡轮机或水力发电涡轮机中的部件。
9.根据权利要求1所述的涡轮机部件,其特征在于,所述基底包括翼型、密封件、涡轮壳体或分流器。
10.根据权利要求1所述的涡轮机部件,其特征在于,在所述基底的一部分上形成所述防护结构,其中所述基底包括铁基合金、镍基合金、钴基合金或钛基合金。
11.根据权利要求1所述的涡轮机部件,其特征在于,所述涡轮机部件还包括附着在所述防护结构和所述基底之间的扩散缓冲层。
12.一种为涡轮机部件提供防护结构的工艺方法,其包括在涡轮机部件上附着上防护结构;其中所述防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
13.根据权利要求12所述的工艺方法,其特征在于,通过在大约700℃到大约950℃的温度和大约138到大约276MPa的压力下进行的固态压制工艺,来实现所述防护结构的附着工艺方法,其中所述固态压制工艺包括扩散结合、共挤压、共轧制、热等静压或共锻造。
14.根据权利要求12所述的工艺方法,其特征在于,所述防护结构是涂层,其中通过电镀、等离子体沉积、粉末涂覆、溅射、电子束沉积、等离子喷涂或者包括至少其中一种前述工艺方法的组合,来施加所述涂层。
15.根据权利要求12,13或14所述的工艺方法,其特征在于,所述防护结构包括包覆层,其中通过钎焊、爆炸熔粘、喷镀、锻造、熔焊、摩擦焊或者包括至少其中一种前述工艺方法的组合,来施加所述包覆层。
16.根据权利要求12,13,14或15所述的工艺方法,其特征在于,所述工艺方法还包括,使涡轮机部件经受选自时效处理工艺和热处理工艺的处理。
17.根据权利要求12,13,14,15或16所述的工艺方法,其特征在于,所述工艺方法还包括,使所述防护结构在所述附着之后经受离子源或激光源的高能射束的处理。
18.根据权利要求12,13,14,15,16或17所述的工艺方法,其特征在于,所述工艺方法还包括,使所述防护结构在所述附着之后经受喷丸处理、抛光或离子注入处理,其中所述离子注入包括将β相稳定剂添加到所述防护结构中。
19.根据权利要求18所述的工艺方法,其特征在于,所述β稳定剂为钒、铌、钽、钼、铬、铜,或者包括有至少一种前述β相稳定剂的组合。
20.根据权利要求12所述的工艺方法,其特征在于,所述涡轮机部件包括翼型、密封件、涡轮壳体或分流器。
21.一种为涡轮机部件提供防护结构的工艺方法,其包括在所述涡轮机部件的机那个由防护结构保护的区域附着上扩散缓冲层,其中所述扩散缓冲层选自纯金属或合金,所述纯金属或合金不会由于与所述防护结构的相互作用而形成脆性的和/或低熔点的相;以及将防护结构附着在所述扩散缓冲层上,其中通过电镀、等离子体沉积、粉末涂覆、溅射、电子束沉积、等离子热喷涂、钎焊、共挤压、爆炸熔粘、热等静压、共锻造、锻造、熔焊、共轧制、摩擦焊,或者包括至少其中一种前述工艺方法的组合,来实现所述扩散缓冲层和所述防护结构的附着;其中所述防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
22.一种涡轮机部件,其包括包含β相钛合金或近β相钛合金的基底。
23.根据权利要求22所述的涡轮机部件,其特征在于,所述涡轮机部件包括翼型、密封件、涡轮壳体或分流器。
24.一种涡轮机部件,其包括基底;附着在所述基底上的扩散缓冲层;和附着在所述扩散缓冲层的与所述基底接触的表面相对的表面上的防护结构,其中所述防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
全文摘要
本发明公开了一种包括基底和在基底上形成的防护结构的涡轮机部件,其中该防护结构包括α-β相钛合金、β相钛合金或近β相钛合金。本发明还公开了一种用于为涡轮机部件提供防护结构的工艺方法,该工艺方法包括将防护结构附着在涡轮机部件上;其中该防护结构包括α-β相钛合金、近β相钛合金或β相钛合金。
文档编号C22F1/18GK1757792SQ200510108530
公开日2006年4月12日 申请日期2005年9月30日 优先权日2004年9月30日
发明者M·F·X·吉利奥蒂, C·U·哈德维克, L·蒋, D·M·利普金, S·V·坦布 申请人:通用电气公司