专利名称:一种包覆层厚度可控钨包覆铜纳米复合粉体的制备方法
技术领域:
本发明属于钨包覆铜复合粉体制备技术领域,具体涉及一种包覆层厚度可控的钨 包覆铜纳米复合粉体的制备方法。
背景技术:
包覆粉(coatedpowder)是由一层异种成分包覆在颗粒表面而形成的复合粉。近年 来,粉体包覆技术的研究已取得了一定的进展,金属包覆粉体的制备和应用受到了关注。两 种或两种以上的粉体颗粒经表面包覆或复合处理,可以得到一种高性能复合粉体材料。复 合粉体不仅具有单一粉体的性能,还具有复合协同多功能、克服两种粉体各自缺点、改变单 一粒子表面性质、增大两种或多种组分的接触面积等作用。铜基体颗粒与钨包覆层结合而成的纳米包覆粉体既具有钨的耐高温、高强度、高 密度等特性,又具有铜的高导电导热性、好的塑性。这种纳米包覆复合粉体由于比表能大大 提升,具有微米级超细粉体所不具备的优良烧结性能。此外,在粉末冶金领域,纳米尺度包 覆粉体压制烧结成的金属复合材料的强度及拉伸性能相比普通粉体制成的样品成十倍的 提升,并且兼具质地成分分布均勻无缺陷等优点,其产品将广泛的应用于航天、电子、机械、 电器等各个工业部门。目前国内尚无制备包覆层厚度可控纳米包覆粉体的成熟技术。同时,随着现代化 工业的高速发展和资源危机,更加迫切需要寻找更加经济和可操作的手段来制备先进的纳 米铜钨包覆粉体来满足不同领域应用的更高要求。
发明内容
本发明的目的是提供一种包覆层厚度可控钨包覆铜纳米复合粉体的制备方法,解 决了现有钨包覆铜包覆粉体包覆层厚度无法精确控制,包覆不完全,包覆层厚度均勻性差 的问题。本发明所提供的技术方案是,一种包覆层厚度可控钨包覆铜纳米复合粉体的制备 方法,需制备质量为M的钨包覆铜复合粉体,包覆层的厚度为H,其操作步骤如下
步骤1,根据以下公式计算出所需W03的质量mi
其中,M为所需制备钨包覆铜复合粉体的质量,x为钨在钨包覆铜复合粉体中所占 的质量百分比,k1=l. 2为修正系数; 所述W03的粒度为1. 5um ; 步骤2,计算所需CuO的质量m2 氧化铜的质量:m2 = 0. 345mi ; 步骤3,Cuff04的制备
将质量为m2的CuO粉体与质量为mi的W03粉体均勻混合,再将混合后的粉体置于炉中进行烧结,升温速度保持在5 15°C /min,当炉内温度达到900°C保温30分钟后就形成浅黄 色的CuW04粉体,然后随炉冷却至室温; 步骤4,研磨
对步骤3制备得到的CuW04粉体进行研磨; 步骤5,还原
在研磨后的CuW04粉体中加入质量为m3的CuO粉体,将两种粉体均勻混合后置于氢气 还原炉中,向炉内通入氢气,通气速率为33L/min,再以每分钟5 10摄氏度的升温速度,升 温至360°C保温10分钟,再以每分钟3飞摄氏度的速度升温至800°C,保温30min,停止通氢 气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即得到钨包覆铜纳米 复合粉体;
其中,m3=MX (1. 77y-0. 5221);
M为所需制备钨包覆铜复合粉体的质量,y为铜在钨包覆铜复合粉体中所占的质量百 分比;
上述步骤3和步骤5中所使用CuO粉体的粒度是根据所需制备钨包覆铜复合粉体的包 覆层厚度H来选择的如果6nm彡H< 10nm,则选择3um的CuO粒度;如果10nm彡H < 15nm, 则选择6um的CuO粒度;如果15nm彡H < 20nm,则选择9um的CuO粒度;如果20nm彡H < 28nm,则选择12um的CuO粒度;如果28nm ^ H ^ 32nm,则选择15um的CuO粒度。其中,步骤3中将CuO粉体与W03粉体通过行星球磨机进行均勻混合,球磨机转速 400r / min,球磨时间 180min。其中,步骤4中在CuW04粉体加入无水乙醇同方向研磨至无水乙醇完全挥发,再将 Cuff04粉体在50°C的条件下,烘干45分钟。其中,步骤5中将CuW04粉体和CuO粉体通过行星球磨机进行均勻混合,球磨机转 速为400r/min,球磨时间60min。本发明的有益效果是,第一,通过本发明工艺制备出的钨包覆铜纳米粉体粒度达 到4(T60纳米粉体尺度;第二,本发明可以在纳米数量级精确控制W包覆层的厚度,从而可 以满足不同钨铜比例含量的应用要求;第三,该纳米包覆粉体具有优良的烧结性能,这为粉 末冶金制备钨铜复合材料打下了基础。
图1是本发明实施例1制备出包覆层厚度为8nm钨包覆铜纳米复合粉体颗粒的 透射电镜照片图2是本发明实施例2制备出包覆层厚度为12nm钨包覆铜纳米复合粉体颗粒的透射 电镜照片图3是本发明实施例3制备出包覆层厚度为18nm钨包覆铜纳米复合粉体颗粒的透射 电镜照片图4是本发明实施例4制备出包覆层厚度为28nm钨包覆铜纳米复合粉体颗粒的透射 电镜照片图。
具体实施例方式
本发明公开了一种包覆层厚度可控钨包覆铜纳米复合粉体的制备方法,需制备质 量为M的钨包覆铜复合粉体,包覆层的厚度为H,其操作步骤如下 步骤1,计算三氧化钨(W03)的质量mi
选择粒度为1. 5um的三氧化钨;依据需制备钨包覆铜复合粉体的质量M,以及钨在钨包 覆铜复合粉体中所占的质量百分比x,计算出所需钨的质量,然后按化学分子式W03,根据钨 原子质量在三氧化钨中的比例(79. 29%)和上述计算得到钨的质量,计算出理论上所需三 氧化钨(W03)的质量,实际操作过程中,钨发生损耗,为此,取修正系数k1=l. 2,对三氧化钨 的质量值进行修正,即所需的三氧化钨的质量为
步骤2,计算出所需第一部分氧化铜(CuO)的质量m2 由步骤1计算得到的三氧化钨的质量,按反应方程式 W03+Cu0 = Cuff04
计算氧化铜的质量m2 = 0. 345mi ;
其中,CuO粉体的粒度根据所需制备钨包覆铜复合粉体的包覆层厚度H来决定的如果 6nm彡H < 10nm,则选择3um的CuO粒度;如果10nm彡H < 15nm,则选择6um的CuO粒度; 如果15nm彡H < 20nm,则选择9um的CuO粒度;如果20nm彡H < 28nm,则选择12um的CuO 粒度;如果28nm彡H彡32nm,则选择15um的CuO粒度;CuO粉体粒度的选择是经过大量反 复实验得出的,如果制得包覆层厚度H越厚,则选择的氧化铜粉体的粒度越大; 步骤3,高纯度钨酸铜(CuW04)的制备
将CuO粉体与W03粉体按计算好的质量通过行星球磨机均勻混合,球磨机转速 400r / min,球磨时间180min ;将混合均勻的粉体置于马弗炉中进行烧结,CuW04开始生成 温度为550 575°C,升温速度保持在5 15°C /min,随温度升高反应速度加快,Cuff04含量 不断增加,当炉内温度达到900°C将完全转化为钨酸铜,在炉内温度达到900°C继续保温30 分钟后就形成浅黄色的CuW04粉体(纯度为99. 8%),然后随炉冷却至室温; 步骤4,研磨
由于步骤3化学反应生成的钨酸铜存在少量团聚,每次制备好的钨酸铜都需要进行研 磨。研磨时,将钨酸铜放入玻璃研钵,每次放入量不超过研钵容积的三分之一,再按每50g 钨酸铜加入10ml无水乙醇的标准加入无水乙醇,同方向研磨至无水乙醇完全挥发,再连研 钵一起放入烘箱,于50°C下,烘干45分钟; 步骤5,还原
为了满足钨铜组员的一定配比要求,在研磨后的CuW04粉体中预加质量为!113的氧化铜 (也就是第二部分氧化铜,其粒度的选择与步骤2相同),将两种粉体通过行星球磨机混合, 球磨转速为400r/min,球磨时间为60min ;混合后铺平放入矩形陶瓷坩埚盘,置于氢气还 原炉中,向炉内通入氢气,通气速率为33L/min,以每分钟5 10摄氏度的升温速度,升温至 360°C保温10分钟,再以每分钟3飞摄氏度的速度升温至800°C,保温30min,停止通氢气, 以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即得到钨包覆铜纳米复 合粉体;其中,m3的计算公式为
M为所需制备钨包覆铜复合粉体的质量,y为铜在钨包覆铜复合粉体中所占的质量百 分比,80%是根据化学式CuO,铜原子质量在氧化铜中的比例。本发明的特点在于,所制备钨包覆铜粉体颗粒达到纳米尺寸、粉体的包覆层厚度 可控,覆盖完全,厚度均勻,同时,可以制备不同配比要求的钨包覆铜纳米粉体,操作简单易 行,经济高效。实施例1
需制取100g包覆层厚度为8nm的钨包覆铜复合粉体,其中,钨在钨包覆铜复合粉体中 所占的质量百分比x=50%,铜在钨包覆铜复合粉体中所占的质量百分比y=50% ; 步骤1,计算所需三氧化钨(W03)的质量mi
选择粒度为1.5um三氧化钨。依据需制备钨包覆铜复合粉体的质量M=100g,以及该包 覆粉体中钨和铜的质量百分比W50CU50,计算出所需钨的质量50g,然后按下列化学分子式 W03,根据钨原子质量在三氧化钨中的比例(79. 29%)和上述计算得到的钨的质量50g,计算 出理论上所需三氧化钨(W03)的质量63. 06g,实际操作过程中,钨发生损耗,为此,取修正系 数k1=l. 2,对三氧化钨的质量值进行修正,即所需的三氧化钨的质量为mi=75. 672g ; 步骤2,计算所需氧化铜的质量m2
由步骤1计算得到的三氧化钨的质量75. 672g,按反应方程式 W03+Cu0 = Cuff04
计算氧化铜的质量m2=0. 345mi=26. llg ; 步骤3,高纯度钨酸铜(CuW04)的制备
将质量为26. llg、粒度为3um的CuO粉体与75. 672g、粒度为1. 5um的W03粉体通过行 星球磨机均勻混合,球磨机转速400r / min,球磨时间180min ;将混合均勻的粉体置于马弗 炉中进行烧结,升温速度为5°C/min,当炉内温度达到900°C继续保温30分钟后可形成浅黄 色的纯CuW04粉体(纯度为99. 8%),然后随炉冷却至室温。步骤4,研磨
将制得101. 78g钨酸铜放入玻璃研钵,加入20ml无水乙醇,同方向研磨至无水乙醇完 全挥发,再连研钵一起放入烘箱,于50°C下,烘干45分钟; 步骤5,还原制备纳米包覆粉体
将研磨后的CuW04粉体中加入36. 3g、粒度为3um的氧化铜粉体,将两种粉体通过行星球磨机混合,球磨转速为400r/min,球磨时间为60min,混合后铺平放入矩形陶瓷坩埚盘, 置于氢气还原炉中,向炉内通入氢气,通气速率为33L/min,以每分钟5摄氏度的升温速度, 升温至360°C保温10分钟,再以每分钟3摄氏度的速度升温至800°C,保温30min,停止通氢 气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即制得100g钨包覆铜 纳米复合粉体。制备得到的钨包覆铜纳米复合粉体,如图1所示,黑色铜基体在一层厚约8nm的钨 包覆层内,且覆盖完全,厚度均勻,钨包覆铜复合粉体的粒度为40飞0纳米。实施例2
需制取200g包覆层厚度为12nm的钨包覆铜复合粉体,其中,钨在钨包覆铜复合粉体中 所占的质量百分比x=40%,铜在钨包覆铜复合粉体中所占的质量百分比y=60% ; 步骤1,计算所需三氧化钨(W03)的质量mi
选择粒度为1. 5um的三氧化钨。依据需制备钨包覆铜复合粉体的质量M=200g,以及该 包覆粉体中钨和铜的质量百分比W40CU60,计算出所需钨的质量80g,然后按下列化学分子 式W03,根据钨原子质量在三氧化钨中的比例(79. 29%)和上述计算得到的钨的质量80g,计 算出理论上所需三氧化钨(W03)的质量100. 9g,实际操作过程中,钨发生损耗,为此,取修正 系数k1=l. 2,对三氧化钨的质量值进行修正,即所需的三氧化钨的质量为mi=121g。步骤2,计算所需氧化铜(CuO)的质量m2
由步骤1计算得到的三氧化钨的质量121g,按反应方程式 W03+Cu0 = Cuff04
计算氧化铜的质量m2=0. 345mi=41. 74g ; 步骤3,高纯度钨酸铜(CuW04)的制备
将质量为41. 74g、粒度为6um的CuO粉体与质量为121g、粒度为1. 5um的W03粉体通 过行星球磨机均勻混合,球磨机转速400r / min,球磨时间180min ;将混合均勻的粉体置于 马弗炉中进行烧结,升温速度为8°C/min,当炉内温度达到900°C继续保温30分钟后可形成 浅黄色的纯CuW04粉体(纯度为99. 8%),然后随炉冷却至室温; 步骤4,研磨
将制得162. 74g钨酸铜放入玻璃研钵,加入32. 5ml无水乙醇,同方向研磨至无水乙醇 完全挥发,再连研钵一起放入烘箱,于50°C下,烘干45分钟; 步骤5,还原制备纳米包覆粉体
将研磨后的CuW04粉体中加入107. 98g,粒度为6um的氧化铜粉体,将两种粉体通过 行星球磨机混合,球磨转速为400r/min,球磨时间为60min,混合后铺平放入矩形陶瓷坩埚 盘,置于氢气还原炉中,向炉内通入氢气,通气速率为33L/min,以每分钟8摄氏度的升温速 度,升温至360°C保温10分钟,再以每分钟4摄氏度的速度升温至800°C,保温30min,停止 通氢气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即制得200g钨包 覆铜纳米复合粉体。制备得到的钨包覆铜纳米复合粉体,如图2所示,黑色铜基体在一层厚约12nm的 钨包覆层内,且覆盖完全,厚度均勻,钨包覆铜复合粉体的粒度为40飞0纳米。实施例3
需制取500g包覆层厚度为18nm的钨包覆铜复合粉体,其中,钨在钨包覆铜复合粉体中所占的质量百分比x=30%,铜在钨包覆铜复合粉体中所占的质量百分比y=70% ; 步骤1,计算三氧化钨(W03)的质量叫
选择粒度为1. 5um的三氧化钨。依据需制备钨包覆铜复合粉体的质量M=500g,以及 该包覆粉体中钨和铜的质量百分比W30CU70,计算出所需钨的质量150g,然后按下列化 学分子式W03,根据钨原子质量在三氧化钨中的比例(79. 29%)和上述计算得到的钨的质 量150g,计算出理论上所需三氧化钨(W03)的质量189. 18g,实际操作过程中,钨发生损 耗,为此,取修正系数k1=l. 2,对三氧化钨的质量值进行修正,即所需的三氧化钨的质量为 m1=227g ;
步骤2,计算所需氧化铜的质量m2
由步骤1计算得到的三氧化钨的质量227g,按反应方程式 W03+Cu0 = Cuff04
计算氧化铜的质量m2=0. 345mi=78. 315g ; 步骤3,高纯度钨酸铜(CuW04)的制备
将质量为78. 315g、粒度为9um的CuO粉体与质量为227g、粒度为1. 5um的W03粉体通 过行星球磨机均勻混合,球磨机转速400r / min,球磨时间180min ;将混合均勻的粉体置于 马弗炉中进行烧结,升温速度为12°C /min,在炉内温度达到900°C继续保温30分钟后可形 成浅黄色的纯CuW04粉体(纯度为99. 8%),然后随炉冷却至室温; 步骤4,研磨
将制得305. 32g钨酸铜放入玻璃研钵,加入61ml无水乙醇,同方向研磨至无水乙醇完 全挥发,再连研钵一起放入烘箱,于50°C下,烘干45分钟; 步骤5,还原制备纳米包覆粉体
将研磨后的CuW04粉体中加入358. 45g,粒度9um的氧化铜粉体,将两种粉体通过行星 球磨机混合,球磨转速为400r/min,球磨时间为60min,混合后铺平放入矩形陶瓷坩埚盘, 置于氢气还原炉中,向炉内通入氢气,通气速率为33L/min,以每分钟8摄氏度的升温速度, 升温至360°C保温10分钟,再以每分钟4摄氏度的速度升温至800°C,保温30min,停止通氢 气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即制得500g钨包覆铜 纳米复合粉体。制备得到的钨包覆铜纳米复合粉体,如图3所示,黑色铜基体在一层厚约18nm的 钨包覆层内,且覆盖完全,厚度均勻,钨包覆铜复合粉体的粒度为40飞0纳米。实施例4
需制取1000g包覆层厚度为28nm的钨包覆铜复合粉体,其中,钨在钨包覆铜复合粉体 中所占的质量百分比x=20%,铜在钨包覆铜复合粉体中所占的质量百分比y=80% ; 步骤1,计算三氧化钨(W03)的质量mi
选择粒度为1.5um的三氧化钨。依据需制备钨包覆铜复合粉体的质量M=1000g,以 及该包覆粉体中钨和铜的质量百分比W20CU80,计算出所需钨的质量200g,然后按下列化 学分子式W03,根据钨原子质量在三氧化钨中的比例(79. 29%)和上述计算得到的钨的质 量200g,计算出理论上所需三氧化钨(W03)的质量252. 24g,实际操作过程中,钨发生损 耗,为此,取修正系数k1=l. 2,对三氧化钨的质量值进行修正,即所需的三氧化钨的质量为 m1=302. 69g ;步骤2,计算所需氧化铜质量m2
由步骤1计算得到的三氧化钨的质量302. 69g,按反应方程式 W03+Cu0 = Cuff04
计算氧化铜的质量m2=0. 34511^=104. 43g ; 步骤3,高纯度钨酸铜(CuW04)的制备
将质量为104. 43g、粒度为15um的CuO粉体与302. 69g、粒度为1. 5um的W03粉体通过 行星球磨机均勻混合,球磨机转速400r / min,球磨时间180min ;将混合均勻的粉体置于马 弗炉中进行烧结,升温速度为15°C /min,在炉内温度达到900°C继续保温30分钟后可形成 浅黄色的纯CuW04粉体(纯度为99. 8%),然后随炉冷却至室温; 步骤4,研磨
将制得407. 12g钨酸铜放入玻璃研钵,加入81. 4ml无水乙醇,同方向研磨至无水乙醇 完全挥发,再连研钵一起放入烘箱,于50°C下,烘干45分钟; 步骤5,还原制备纳米包覆粉体
将研磨后的CuW04粉体中加入894g、粒度为15um的氧化铜粉体,将两种粉体通过行星 球磨机混合,转速为400r/min,球磨时间为60min,混合后铺平放入矩形陶瓷坩埚盘,置于 氢气还原炉中,向炉内通入氢气,通气速率为33L/min,以每分钟10摄氏度的升温速度,升 温至360°C保温10分钟,再以每分钟5摄氏度的速度升温至800°C,保温30min,停止通氢 气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即制得1000g钨包覆 铜纳米复合粉体。 制备得到的钨包覆铜纳米复合粉体,如图4所示,黑色铜基体在一层厚约28nm的 钨包覆层内,且覆盖完全,厚度均勻,钨包覆铜复合粉体的粒度为40飞0纳米。
9
权利要求
一种包覆层厚度可控钨包覆铜纳米复合粉体的制备方法,其特征在于,需制备质量为M的钨包覆铜复合粉体,包覆层的厚度为H,其操作步骤如下步骤1,根据以下公式计算出所需WO3的质量m1 其中,M为所需制备钨包覆铜复合粉体的质量,x为钨在钨包覆铜复合粉体中所占的质量百分比,k1=1.2为修正系数; 所述WO3的粒度为1.5um;步骤2,计算所需CuO的质量m2氧化铜的质量m2=0.345 m1;步骤3,CuWO4的制备将质量为m2的CuO粉体与质量为m1的WO3粉体均匀混合,再将混合后的粉体置于炉中进行烧结,升温速度保持在5~15℃/min,当炉内温度达到900℃保温30分钟后就形成浅黄色的CuWO4粉体,然后随炉冷却至室温;步骤4,研磨对步骤3制备得到的CuWO4粉体进行研磨;步骤5,还原在研磨后的CuWO4粉体中加入质量为m3的CuO粉体,将两种粉体均匀混合后置于氢气还原炉中,向炉内通入氢气,通气速率为33L/min,再以每分钟5~10摄氏度的升温速度,升温至360℃保温10分钟,再以每分钟3~5摄氏度的速度升温至800℃,保温30min,停止通氢气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即得到钨包覆铜纳米复合粉体;其中,m3=M×(1.77y-0.5221);M为所需制备钨包覆铜复合粉体的质量,y为铜在钨包覆铜复合粉体中所占的质量百分比;上述步骤3和步骤5中所使用CuO粉体的粒度是根据所需制备钨包覆铜复合粉体的包覆层厚度H来选择的如果6nm≤H<10nm,则选择3um的CuO粒度;如果10nm≤H<15nm,则选择6um的CuO粒度;如果15nm≤H<20nm,则选择9um的CuO粒度;如果20nm≤H<28nm,则选择12 um的CuO粒度;如果28nm≤H≤32nm,则选择15um的CuO粒度。2010102098561100001dest_path_image001.jpg
2.根据权利要求1所述钨包覆铜纳米复合粉体的制备方法,其特征在于所述步骤3 中将CuO粉体与WO3粉体通过行星球磨机进行均勻混合,球磨机转速400r / min,球磨时间 180mino
3.根据权利要求1所述钨包覆铜纳米复合粉体的制备方法,其特征在于所述步骤4 中在CuWO4粉体加入无水乙醇同方向研磨至无水乙醇完全挥发,再将CuWO4粉体在50°C的 条件下,烘干45分钟。
4.根据权利要求1所述钨包覆铜纳米复合粉体的制备方法,其特征在于所述步骤5 中将CuWO4粉体和CuO粉体通过行星球磨机进行均勻混合,球磨机转速为400r/min,球磨时 间 60mino
全文摘要
本发明公开了一种包覆层厚度可控钨包覆铜纳米复合粉体的制备方法先将质量为m1的CuO粉体与质量为m2的WO3粉体均匀混合,混合后的粉体置于炉中进行烧结,再将研磨后的CuWO4粉体中加入质量为m3的CuO粉体,混合后置于氢气还原炉中,向炉内通入氢气,通气速率为33L/min,再以每分钟5~10摄氏度的升温速度,升温至360℃保温10分钟,再以每分钟3~5摄氏度的速度升温至800℃,保温30min,停止通氢气,以20L/min的速率通入氦气随炉冷却,冷却至室温后停止通氦气,即得到钨包覆铜纳米复合粉体。本发明制备工艺可以在纳米数量级精确控制W包覆层的厚度,从而可以满足不同钨铜比例含量的应用要求。
文档编号B22F9/22GK101850420SQ20101020985
公开日2010年10月6日 申请日期2010年6月25日 优先权日2010年6月25日
发明者李君强, 陈文革, 陶文俊 申请人:西安理工大学