一种抛光工件射流抛光材料去除函数的优化方法

文档序号:3367944阅读:312来源:国知局
专利名称:一种抛光工件射流抛光材料去除函数的优化方法
技术领域
本发明涉及一种新型的射流抛光材料去除函数优化方法,属于光刻物镜光学制造 技术领域。
背景技术
微电子专用关键设备是微电子技术的重要支撑,光刻物镜是微电子专用设备分布 重复投影光刻的关键核心部分,其性能直接决定了光刻微细图形传递能力,与微电子器件 超大规模化直接相关。光刻物镜光学元件的质量要求比其他高精度光学元件质量要高一个 数量级,例如,曲率半径小于或等于1 μ m,面形误差小于或等于λ/20 λ/100,rms均方根 值小于或等于λ/100 λ/300等,对光学元件外径、中心厚、曲率半径、破坏层、偏心、粗糙 度、面形PV值、RMS值等精度方面都提出极为苛刻的要求,对现有光学加工条件和技术提出 了极为严峻的挑战。射流抛光技术是光刻物镜加工过程中的一种技术,该技术由荷兰Delft 大学的Oliver W. Fahnle和Hedser van Brug等人最先提出。在光学加工中,材料去除函数定义为是一个不做移动的抛光模在单位时间内对 工件材料的去除量分布函数,射流抛光材料去除函数则是在单位时间内喷嘴定点对待抛 光工件抛光的去除量分布。材料去除函数是抛光工艺控制模型的基础,研究能正确表达 材料去除的抛光模型对实现抛光过程的精确控制具有重要的意义。国内外大量研究资 料表明(RonaldAspden, Ralph McDonough, Francis R. Nitchie. “Computer assisted opticalsurfacing”,App 1. Opt.,11 (12),2739-2747,1972.),抛光去除函数的轮廓是影响 抛光结果的重要因素,它直接关系到面形误差能否最终收敛及收敛的程度。在常规射流抛光待抛光工件时,材料去除量呈环状结构分布,以中心顶点为圆心 的同一径向位置处,沿圆周的去除量近似相等,抛光区中心部分材料去除量不是最大,抛光 区域整个面形呈W形状分布,如图2所示,材料去除函数则成M形状分布。而理想的材料去 除函数应该尽可能满足以下特点是一个旋转对称的、连续的光滑函数;中心具有最大去 除量,函数具有单个峰值并随半径的增大而减小至零;在最大半径以外,去除函数不具有材 料去除能力;在边缘处和中心峰值处,函数的斜率为零。理想的去除函数有利于抛光过程中的迭代收敛,从而提高抛光精度,为了获得理 想的去除函数,国内外学者采用了很多方法对射流抛光去除函数进行优化,目前已有的方
法主要有三种。第一种现有射流抛光去除函数优化方法及其缺点喷嘴以一定的角度斜冲击工件表面(SilviaΜ. Booij, Hedser vanBrug, Mandeep Singh, Joseph J. M. Braat. "Nanometer accurate shaping withFluid Jet Polishing,,, SPIE,4451 :222-232, 2001),这种方法能实现去除函数中心具有最大去除量,但去除函数并 不是中心对称的,如图3所示,由于喷管倾斜朝着一个方向喷射,造成这个方向有一道长的 彗星状拖尾。第二种现有射流抛光去除函数优化方法及其缺点
现有一种优化方法是从喷嘴机构的设计出发,将喷嘴内部加工成带有螺纹形状 的旋转结构,使得射流体从喷嘴出射时具有沿周向的速度分布(S.M.Booij,H. van Brug, and 0. W. Fahnle, "Computational model forprediction of shaping with FJP and experimental validation" . presented atOptical Society ofAmerica, 2002),这禾中方法 能实现去除函数中心具有最大去除量,但去除函数不是中心对称的,不是呈理想的高斯型 分布。第三种现有射流抛光去除函数优化方法及其缺点现有还有一种方法是使喷嘴以一定夹角绕旋转轴旋转或对去除函数进行叠来实 现优化去除函数(Hui Fang, Peiji Guo, Jingchi Yu. "Optimization of the material removal in fluid j et polishing”· Opt. Eng.,45 (5),053401 :1-6,2006),这种优化方法 keko公司在其产品上已有应用,能获得较理想的去除函数,但这种方法机械结构复杂,对 角度控制和旋转控制精度要求很高,在实际抛光中,成本高且不易控制。综上所述,射流抛光技术是光刻物镜加工的一种技术,目前对射流抛光去除函数 的优化方法虽然有几种,但都各有优缺点。采用斜冲击射流或喷嘴结构优化方法对去除函 数优化不能得到理想的去除函数,采用喷嘴倾斜绕旋转轴旋转方法优化去除函数机械结构 复杂,对角度控制和旋转控制精度要求很高。

发明内容
本发明的目的是解决现有技术射流抛光去除函数优化方法的技术问题,为此而提 出一种抛光工件射流抛光材料去除函数的优化方法。为了实现本发明的目的,本发明提出一种抛光工件射流抛光材料去除函数的优化 方法的技术方案是利用含有喷嘴、待抛光工件、抛光液容器及计算单元的射流抛光设备,实 现所述方法包括步骤如下步骤Sl 检测待抛光工件的初始面形,获得抛光前的面形数据;步骤S2 使用一个盛满抛光液的容器,待抛光工件置放于抛光液容器中;步骤S3 调节喷嘴的出口与待抛光工件的表面之间的距离,使喷嘴的出口淹没在 抛光液中;步骤S4 在单位时间内,利用喷嘴定点对待抛光工件进行全淹没射流抛光,得到 去除待抛光工件材料的去除量分布;步骤S5 利用干涉仪检测单位时间内喷嘴在定点抛光区域去除待抛光工件材料 的去除量分布,生成抛光去除材料后的待抛光工件的面形数据,利用计算单元将待抛光工 件的抛光前的面形数据减去抛光去除材料后待抛光工件的面形,获得材料去除函数分布;步骤S6 显示材料去除函数分布,抛光去除材料后的待抛光工件获得呈旋转近似 对称的、连续的、光滑的、中间有最大去除量的高斯函数形状的材料去除函数的优化分布。本发明与现有技术相比的优点在于(1).本发明的方法能获得一个旋转对称的连续的光滑函数;中心具有最大去除 量,函数具有单个峰值并随半径的增大而减小至零;在最大半径以外,去除函数不具有抛光 材料去除能力;在边缘处和中心峰值处,函数的斜率为零。(2).本发明采用全淹没射流抛光优化了去除待抛光工件的材料去除函数,本发明
4结构简单,操作方便,过程容易控制,抛光过程去除稳定、可控,成本低,去除函数理想。对射 流抛光误差的收敛和去除精度的提高具有重要的意义,在射流抛光技术中具有广泛的应用 前景。


图1为本发明射流抛光去除函数的优化方法所用的全淹没射流抛光系统示意图;图IA为本发明去除函数的优化方法的步骤流程图;图2为现有技术没有优化的射流抛光材料去除函数曲线图;图3为现有技术提到的斜冲击射流优化的去除函数曲线图;图4为本发明中全淹没射流抛光材料去除函数优化方法所得到的材料去除分布 和去除轮廓曲线图;图5为本发明中全淹没射流抛光材料去除函数优化方法所得到的材料去除函数 曲线。
具体实施例方式为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照 附图,对本发明进一步详细说明。如图1示出本发明的材料去除函数优化方法,是利用含有射流喷嘴1、光学元器件 待抛光工件2、容器3及计算单元等的射流抛光设备,实现本发明抛光工件射流抛光材料去 除函数的优化方法,如图IA示出的步骤如下步骤Sl 检测待抛光工件2的初始面形,获得抛光前的面形数据;步骤S2 使用一个盛满抛光液的容器3,待抛光工件2置放于抛光液容器3中;步骤S3 调节喷嘴1的出口与待抛光工件2的表面之间的距离,使喷嘴1的出口 淹没在抛光液中;步骤S4 在单位时间内,利用喷嘴1定点对待抛光工件2进行全淹没射流抛光,得 到去除待抛光工件2材料的去除量分布;步骤S5 利用干涉仪检测单位时间内喷嘴1在定点抛光区域去除待抛光工件2材 料的去除量分布,生成抛光去除材料后的待抛光工件2的面形数据,利用计算单元将待抛 光工件2的抛光前的面形数据减去抛光去除材料后待抛光工件2的面形,获得材料去除函 数分布;步骤S6 显示材料去除函数分布,抛光去除材料后的待抛光工件2获得呈旋转近 似对称的、连续的、光滑的、中间有最大去除量的高斯函数形状的材料去除函数的优化分布。喷嘴1是固定在射流抛光设备上的,喷嘴1为射流喷嘴,喷嘴1可以选用柱形喷 嘴,例如LECHLER品牌的柱形喷嘴等,或选用其他喷嘴,在此不再赘述,容器3选用不锈钢容 器,容器3也是固定在射流抛光设备的工作平台上,射流抛光设备采用IRP600抛光机,或选 用其他抛光机,在此不再赘述。在抛光前,用Zygo干涉仪检测待抛光工件2的初始面形,获 得抛光前的面形数据。然后使用一个盛满抛光液的不锈钢容器3,抛光液为抛光磨料颗粒和 水的混合溶液,如氧化铈颗粒和水的混合溶液,在此不再赘述。将待抛光工件2置放于抛光液的容器3中,调节喷嘴1的出口距待抛光工件2表面的距离,使喷嘴1的出口淹没在抛光 液中。最后启动射流抛光设备,如IRP600抛光机,控制喷嘴1出射的抛光液在单位时间内 定点对待抛光工件2进行材料去除抛光。单位时间(即时间为1秒)抛光后,取下待抛光 工件2,通过Zygo干涉仪检测单位时间内喷嘴定点对待抛光工件2的抛光后的面形,获得抛 光材料去除后的面形数据。待抛光工件2的抛光前的面形数据减去单位时间内抛光后的面 形数据,即获得射流抛光材料去除函数分布。此外,在去除函数获得的过程中,由于单位时 间内的去除量比较小,对干涉仪精度要求高,去除函数不好准确提取,可以控制在一定时间 内,如60秒或其他时间,采用上述的方法获得初始面形和抛光后的面形相减的数据,再除 以60秒或其他时间值,即获得单位时间内的材料去除函数分布。喷嘴1的出口距待抛光工件2表面的距离4调解在喷嘴1 口径的5至6倍左右, 当大于所述的距离4时,抛光的材料去除率低,影响抛光效率;当小于所述的距离4时,一方 面去除函数得不到很好的优化,另一方面抛光的材料去除率低。喷嘴1的出口淹没深度5 不能过大,否则由于液体压力会减小喷嘴射流的出口速度,影响材料的去除,喷嘴1的出口 淹没深度5调节在10-30mm左右。如图4示出是本发明在单位时间内,喷嘴定点对待抛光工件2进行材料抛光去除, 通过Zygo干涉仪检测到的待抛光工件2的去除面形形状和去除轮廓曲线分布,从图可以看 出,在抛光区域中间处,材料有最大去除量,材料去除分布近似呈旋转对称的分布。如图5示出是采用本发明的优化方法,从图5示出的Zygo干涉仪检测数据提取到 的射流抛光材料去除函数分布。从图可以看出,本发明的优化方法获得的去除函数呈近似 旋转对称的连续的光滑函数;中心具有最大去除量,函数具有单个峰值并随半径的增大而 减小至零;在最大半径以外,去除函数不具有抛光材料去除能力;在边缘处和中心峰值处, 函数的斜率为零。相比图2和图3示出的去除函数,本发明的去除函数到达优化的目的。以上所述,仅为本发明中的具体实施方式
,但本发明的保护范围并不局限于此,任 何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在 本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。
权利要求
1. 一种抛光工件射流抛光材料去除函数的优化方法,其特征在于利用含有喷嘴、待 抛光工件、抛光液容器及计算单元的射流抛光设备,实现所述方法包括步骤如下 步骤Sl 检测待抛光工件的初始面形,获得抛光前的面形数据; 步骤S2 使用一个盛满抛光液的容器,待抛光工件置放于抛光液容器中; 步骤S3 调节喷嘴的出口与待抛光工件的表面之间的距离,使喷嘴的出口淹没在抛光 液中;步骤S4 在单位时间内,利用喷嘴定点对待抛光工件进行全淹没射流抛光,得到去除 待抛光工件材料的去除量分布;步骤S5 利用干涉仪检测单位时间内喷嘴在定点抛光区域去除待抛光工件材料的去 除量分布,生成抛光去除材料后的待抛光工件的面形数据,利用计算单元将待抛光工件的 抛光前的面形数据减去抛光去除材料后待抛光工件的面形,获得材料去除函数分布;步骤S6 显示材料去除函数分布,抛光去除材料后的待抛光工件获得呈旋转近似对称 的、连续的、光滑的、中间有最大去除量的高斯函数形状的材料去除函数的优化分布。
全文摘要
本发明是一种抛光工件射流抛光材料去除函数的优化方法,利用射流抛光系统,检测待抛光工件抛光前的面形数据;待抛光工件置放于盛满抛光液的容器中;调节喷嘴的出口与待抛光工件的表面之间的距离,使喷嘴的出口淹没在抛光液中;在单位时间内,利用喷嘴定点对待抛光工件进行全淹没射流抛光,得到去除待抛光工件材料的去除量分布;利用干涉仪检测单位时间内喷嘴在定点抛光区域去除待抛光工件材料的去除量分布,生成抛光去除材料后的待抛光工件的面形数据,利用计算单元将待抛光工件的抛光前的面形数据减去抛光去除材料后待抛光工件的面形,获得显示材料去除函数的优化分布。
文档编号B24C1/08GK102120313SQ20101058683
公开日2011年7月13日 申请日期2010年12月9日 优先权日2010年12月9日
发明者万勇建, 伍凡, 施春燕, 范斌, 袁家虎, 雷柏平 申请人:中国科学院光电技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1