专利名称:一种微米级的片状纳米银粉及制备方法
技术领域:
本发明涉及一种微米级片状纳米银粉及制备方法,具体涉及采用界面法制备微米级且由聚对苯二胺分子层包裹的片状纳米银粉,属于贵金属纳米材料制备技术领域。
背景技术:
银具有强导热性和导电性,已被广泛地应用于催化、传感等领域。作为一种具有特殊的尺寸和形状依赖性的贵金属,银纳米结构的研究为调控其性质及性能提供强有力的支持。因此,开展银纳米材料的合成具有十分重要的意义。目前,关于片状纳米银粉的研究已引起广泛重视。一方面,片状纳米银粉具有较大的比表面积和良好的抗氧化能力;另一方面,片状纳米银粉是一种特殊的各向异性纳米结构,在生物传感领域中有重要应用。尽管关于片状纳米银粉制备的报道较多,但该银粉最长外形尺寸大多在IOOnm左右或以下。事实上,最长外形尺寸达到微米级的片状纳米银粉是一种更为极端的各向异性纳米结构,不仅具有极大的比表面积和优越的抗氧化能力, 而且展现出值得关注的物理和化学性质,在增强拉曼等领域有着良好的应用前景(J Phys Chem C,2010,114,44%)。然而,目前关于此类材料制备的报道较少(物理化学学报,2009, 25,1405 ;CrystalGrowth&Design,2006, 6,215 ;Crystal Growth&Design,2004, 4,1371)。 其中,有采用如η型半导体砷化锗、锡片、铜锭、铜箔等作衬底,基于电子转移反应实现此类银片的制备(Small, 2007, 3,1964 ;Chemistry of Materials, 2007,19, 5845 ;Crystal Growth&Design,2008,8, 3616 ;J Phys Chem B,2005,109,13985 ;Colloids Surf A,2009, 340,93);也有通过水热法或高温的有机溶剂,借助表面活性剂分散、诱导合成制备银片 (Crystal Growth&Design,2006,6,2155 !Crystal Growth&Design, 2007, 7, 900 ;J Phys Chem C,2009,113,867)。Dong等以九步控制实现微米级的银片制备(Colloids SurfA, 2007,303,226)。最近,Eychmuller等采用&PdCl4作添加剂实现此类材料的合成(J Phys Chem C,2010,114,44%)。这些方法虽可制备此类片状纳米银粉,但存在明显不足1)金属衬底的使用使得银片与衬底结合紧密,阻碍其应用;2)采用高温提高了操作难度;3);多步工艺的引入导致工序复杂,耗时4)使用昂贵的钼化物、表面活性剂,会大幅提高操作成本, 或分离困难。因此,开发出一种工艺简单、原料易得、成本低廉的制备微米级片状纳米银粉的方法将是目前研究的方向和重点。
发明内容
本发明的目的在于针对现有技术的不足,提供一种工艺简单、原料易得、成本低廉的制备微米级片状纳米银粉的方法及其制备得到的微米级片状纳米银粉。一种微米级的片状纳米银粉颗粒的最长外形尺寸为10 30μπι,表面由聚对苯二胺分子层包裹。所述的片状纳米银粉颗粒外形呈锯齿状。
3
所述的聚对苯二胺分子层厚度< 10nm。一种微米级的片状纳米银粉的制备方法,在硝酸银溶液中,加入对苯二胺苯溶液, 静置反应,分离,干燥得到微米级且由聚对苯二胺分子层包裹的片状纳米银粉。具体步骤如下(1)对苯二胺苯溶液的制备将对苯二胺加入到苯中,其中对苯二胺浓度为1 8wt%,搅拌12 3 后,抽滤, 得到对苯二胺苯溶液;(2)硝酸银水溶液的制备将硝酸银加到去离子水中,得到浓度在0. OlM IM的硝酸银的水溶液;(3)微米级片状纳米银粉的合成将步骤(1)中配备的对苯二胺苯溶液加入到步骤O)中配备的硝酸银水溶液中, 密封,二者体积比为1 1,在温度10 40°C下,静置反应2 Mh,抽滤后,依次用去离子水和无水乙醇洗涤,30-50°C下干燥,即得到由聚对苯二胺分子层包裹的微米级片状纳米银粉。本发明的优良效果是本发明借助界面法,以对苯二胺还原银离子实现纳米银片制备。此前也有学者采用如吡咯、苯胺等作还原剂,以油/水界面法制备纳米贵金属,但未能获得片状纳米材料(如 Polymer,2007,48,2007 ;Chemical Communication,2009,3615)。 本方法中选择的对苯二胺较吡咯和苯胺等具有低氧化电位,易被氧化形成聚合物,并及时附着在界面诱导形成的片状银{111}晶面上,诱导片状银在平面二维方向生长,实现微米级的片状银制备。界面法是一种在以油性溶剂和水形成的界面上反应的方法。本发明采用界面法可一步制备微米级的片状纳米银粉,所制得的片状纳米银粉颗粒达到微米级,最长外形尺寸约在10 30μπι之间;其表面由聚对苯二胺分子层包裹,可有效避免银片表面的氧化,且制备过程中无需额外的添加剂、高温和金属底物,工艺简单,成本低,利于应用。
图1为本发明实施例1所得到的微米级片状纳米银粉的扫描电镜照片。图2为本发明实施例1所得到的微米级片状纳米银粉的透射电镜照片(低倍数)。图3为本发明实施例1所得到的微米级片状纳米银粉的透射电镜照片(高倍数, 如图中白圈所示)。图4为本发明实施例1所得到的微米级片状纳米银粉的红外光谱图。 具体实施例下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。实施例1(1)在一个50ml的锥形瓶中,将1. 7g对苯二胺加入至40ml苯中搅拌12h。抽滤分离,移取細1滤液至20ml试管中,密封保存。(2)将1. 69g的硝酸银溶于50ml去离子水中,得到浓度为0. 2M的硝酸银溶液,取 4ml溶液至20ml试管中,密封保存。(3)将(1)中配备的細1对苯二胺苯溶液移至⑵中配备的細1硝酸银水溶液中,密封,25°C下反应12h。抽滤分离,分别用去离子水和无水乙醇洗涤,35°C下干燥,即得到所述片状纳米银粉,其颗粒最长外形尺寸在15 25 μ m之间,表面包裹的聚对苯二胺层厚度约为8nm。实施例2(1)在一个50ml的锥形瓶中,将2. 5g对苯二胺加入至40ml苯中搅拌12h。抽滤分离,移取細1滤液至20ml试管中,密封保存。(2)将0. 169g的硝酸银溶于50ml去离子水中,得到浓度为0. 02M的硝酸银溶液, 取細1溶液至20ml试管中,密封保存。(3)将(1)中配备的細1对苯二胺苯溶液移至⑵中配备的細1硝酸银水溶液中, 密封,25°C下反应12h。抽滤分离,分别用去离子水和无水乙醇洗涤,35°C下干燥,即得到所需尺度及聚对苯二胺包裹的片状纳米银粉,其颗粒最长外形尺寸在10 18μπι之间,表面包裹的聚对苯二胺层厚度约为9nm。实施例3(1)在一个50ml的锥形瓶中,将1. 5g对苯二胺加入至40ml苯中搅拌12h。抽滤分离,移取細1滤液至20ml试管中,密封保存。(2)将1. 69g的硝酸银溶于50ml去离子水中,得到浓度为0. 2M的硝酸银溶液,取 4ml溶液至20ml试管中,密封保存。(3)将(1)中配备的細1对苯二胺苯溶液移至⑵中配备的細1硝酸银水溶液中, 密封,30°C下反应池。抽滤分离,分别用去离子水和无水乙醇洗涤,45°C下干燥,即得到所需尺度及聚对苯二胺包裹的片状纳米银粉,其颗粒最长外形尺寸在18 30 μ m之间,表面包裹的聚对苯二胺层厚度约为8nm。
权利要求
1.一种微米级的片状纳米银粉,其特征在于,所述的片状纳米银粉颗粒的最长外形尺寸达到10 30 μ m,表面由聚对苯二胺分子层包裹。
2.根据权利要求1所述的微米级的片状纳米银粉,其特征在于,所述的片状纳米银粉颗粒外形呈锯齿状。
3.根据权利要求1所述的微米级的片状纳米银粉,其特征在于,所述的聚对苯二胺分子层厚度< 10nm。
4.一种微米级的片状纳米银粉的制备方法,其特征在于,在硝酸银溶液中,加入对苯二胺苯溶液,静置反应,分离,干燥得到微米级且由聚对苯二胺分子层包裹的片状纳米银粉。
5.根据权利要求4所述的制备方法,其特征在于,具体步骤如下(1)对苯二胺苯溶液的制备将对苯二胺加入到苯中,其中对苯二胺浓度为1 8wt %,搅拌12 3 后,抽滤,得到对苯二胺苯溶液;(2)硝酸银水溶液的制备将硝酸银加到去离子水中,得到浓度在0. OlM IM的硝酸银的水溶液;(3)微米级片状纳米银粉的合成将步骤(1)中配备的对苯二胺苯溶液加入到步骤( 中配备的硝酸银水溶液中,密封, 二者体积比为1 1,在温度10 40°C下,静置反应2 Mh,抽滤后,依次用去离子水和无水乙醇洗涤,30-50°C下干燥,即得到聚对苯二胺分子层包裹的微米级片状纳米银粉。
全文摘要
本发明涉及一种微米级的片状纳米银粉及制备方法。所得片状纳米银粉颗粒的最长外形尺寸在10~30μm之间,呈锯齿状,表面由<10nm厚的聚对苯二胺分子层包裹。本发明采用界面法制备微米级的片状纳米银粉,将硝酸银溶解在去离子水中,加入对苯二胺苯溶液,形成苯/水界面体系。体系在15~35℃温度下,静置反应,得到所述的片状纳米银粉。本发明方法及工艺过程简单,且无需高温及添加剂,工艺成本低廉,利于应用。
文档编号B22F9/24GK102161103SQ20111004979
公开日2011年8月24日 申请日期2011年3月2日 优先权日2011年3月2日
发明者张理源, 彭兵, 杨卫春, 杨志辉, 柴立元, 桑培伦, 王海鹰, 闵小波 申请人:中南大学