天然气动力缸体的浇注方法
【专利摘要】本发明公开了一种天然气动力缸体的浇注方法,用于解决现有浇注方法获得的铸件补缩性差,铸造缺陷多的问题。本发明的天然气动力缸体的浇注方法,浇注的温度为1330℃-1350℃。本发明的浇注方法有利于铸件补缩和减少其他铸造缺陷。
【专利说明】天然气动力缸体的浇注方法
【技术领域】
[0001]本发明属于天然气动力缸体【技术领域】,具体涉及一种天然气动力缸体的浇注方法。
【背景技术】
[0002]现有技术中,天然气的压缩方式主要采用管道释然汽轮机和离心式天然气压缩机进行压缩。 [0003]目前国内、外的天然气压缩机主要分为高速大功率往复活塞式压缩机和低速往复式压缩机。其中,高速大功率往复活塞式压缩机,转速η达到1000r/min、功率P达到6000kW,主要用于天然气的集输增压、储气库注气,是天然气勘探开发、储存必不可少的设备。动力缸是天然气压缩机在压缩天然气的过程中提供动力的主要部件,动力缸的质量直接决定着天然气压缩机的工效。
[0004]目前的天然气动力缸体制造工艺技术都是采用先实施整体式缸体浇注,然后进行后期机加工的方式生产。具体的工艺步骤为:先按照设计图纸的要求制作铸造用模具;然后采用铸铁的方式进行浇注;浇注完成后对动力缸体进行清理;然后进行内外加工;对表面进行硬化处理等后续加工处理。
[0005]现有的天然气动力浇注方法补缩性差,铸造缺陷多的问题。
【发明内容】
[0006]本发明为解决现有技术存在的缺陷,而提供一种天然气动力缸体的浇注方法,浇注的铸件具有补缩性能好的特点,减少铸造缺陷,本浇注方法特别适用于结构复杂,铸件壁较薄的浇注。
[0007]为解决上述技术问题,本发明所采用的技术方案是:
天然气动力缸体的浇注方法,其特征在于,浇注时铁水的温度为1330°C — 1350°C。
[0008]进一步地,所述浇注过程中使用的铁水是经过蠕化处理的铁水。
[0009]进一步地,所述蠕化处理的步骤为;
(1)将蠕化剂加入到蠕化装置的一侧,孕育剂加入到蠕化装置的另一侧;
(2)将熔炼好的铁水冲入到装有孕育剂一侧的蠕化装置中;
(3 )扒去浮在铁水表面的渣子,并检测是否蠕化成功,蠕化成功则进行浇注。
[0010]进一步地,上述步骤(2)中铁水冲入时候的温度为1430°C — 1460°C。
[0011]进一步地,所述蠕化剂与铁水的质量比为9:750— 800,所述的孕育剂与铁水的质量比为 11:750-800 ο
[0012]进一步地,所述的蠕化剂为重稀土蠕化剂,孕育剂为锶硅孕育剂。
[0013]进一步地,浇注时铁水的重量百分比组成为:碳3.55—3.65 %,硅2.1—2.3 %,锰 0.5—0.6 %,磷 0—0.06 %,硫0— 0.02 %,铬 0.15 — 0.25%,铜 0.5—0.7%,钥 0.15—0.25%,镁 0.007—0.009%,铼 0.025—0.030% ,其余为铁。[0014]与现有技术相比,本发明具有以下有益效果:
本发明的将浇注的温度控制在1330°C—1350°C,该温度范围内铁水的密度与铸件凝固后的密度近似相等有利于铸件补缩和减少其他铸造缺陷。浇注的时候温度高于1350°C会导致砂芯易烧结而无法清砂,造成铸件报废。温度低于1330°C易产生气孔缺陷。
[0015]本发明浇注的铁水是经过蠕化处理,在该工艺条件下蠕化合格率高达100%,蠕化率级别达到蠕85以上,提高了蠕化的合格率和蠕化质量,使得各项性能指标均符合JB/T4403-1999《蠕墨铸铁件》相关要求。提高了蠕化的合格率。
[0016]本发明浇注方法获得的动力缸体单铸试棒抗拉强度为350~400MPa,本体强度为340~380MPa,石墨分布形态为螺虫状石墨,基体组织为铁素体额和珠光体。提闻了动力缸体的力学性能,满足了对动力缸体的需求。
[0017]本发明的蠕化处理过程的铁水能够保证符合RUT340蠕化处理前对铁水的质量要求,保证了天然气动力缸体的力学性能要求。
【具体实施方式】
[0018]下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所用实施例,都属于本发明的保护范围。
[0019]天然气动力缸体的浇注方法,浇注时铁水的温度为1330°C — 1350°C,有利于铸件补缩和减少其他铸造缺陷。因为温度过高会导致砂芯易烧结而无法清砂,造成铸件报废。温度过低易产生气孔缺陷。
[0020]进一步地,所述浇注过程中使用的铁水是经过蠕化处理的铁水。
[0021]进一步地,所述蠕化处理的步骤为;
(1)将蠕化剂加入到蠕化装置的一侧,孕育剂加入到蠕化装置的另一侧;
(2)将熔炼好的铁水冲入到装有孕育剂一侧的蠕化装置中;
(3)扒去浮在铁水表面的渣子,并检测是否蠕化成功,蠕化成功则进行浇注取。取三角试样检测,检测是否蠕化成功;若蠕化成功,则准备浇注;蠕化不成功则补加入蠕化剂再进行检测,若蠕化成功,则准备进行浇注,若不成功报废铁水重新进行熔炼和蠕化处理。三角试验检测,本领域的技术人员都能明白和理解,在此不在你赘述。
[0022]进一步地,步骤(2)中铁水冲入时候的温度为1450°C — 1460°C。
[0023]进一步地,所述蠕化剂与铁水的质量比为9:750— 800,所述的孕育剂与铁水的质量比为 11:750-800 ο
[0024]进一步地,所述的蠕化剂为重稀土蠕化剂,具有蠕化率稳定,入量范围宽,抗衰退能力强的特点;孕育剂为锶硅孕育剂,它能够提高强度、调整硬度、细化共晶团、减少偏析、促进组织均匀化、明显减少白口倾向等,综合使用性能良好。重稀土蠕化剂、锶硅孕育剂本领域的技术人员都能明白和理解,例如重稀土蠕化剂为龙南龙钇重稀土科技股份有限公司生产的型号为YSBM — 2的蠕化剂,锶硅孕育剂为荆州市紫荆特种炉料有限公司生产的高效复合锶硅孕育剂(SRC)。
[0025]冲入法是目前应用最为广泛的球化处理方法,冲入法使用的球化处理包有平底式,凹坑式和堤坝式三种蠕化装置。堤坝式是最为常用的一种,堤坝内的面积和坝高由处理满包铁液时所需要的球化剂及覆盖材料的量而定。
[0026]作为一种优选的方式,本发明采用堤坝式蠕化装置。
[0027]本发明浇注的铁水是经过蠕化处理,在该工艺条件下蠕化合格率高达100%,蠕化率级别达到蠕85以上,提高了蠕化的合格率和蠕化质量,使得各项性能指标均符合JB/T4403-1999《蠕墨铸铁件》相关要求。提高了蠕化的合格率。
[0028]本发明浇注方法获得的动力缸体单铸试棒抗拉强度为350~400MPa,本体强度为340~380MPa,石墨分布形态为螺虫状石墨,基体组织为铁素体额和珠光体。提闻了动力缸体的力学性能,满足了对动力缸体的需求。
[0029]进一步地,浇注时铁水的重量百分比组成为:碳3.55—3.65 %,硅2.1—2.3 %,锰 0.5—0.6 %,磷 0—0.06 %,硫0—0.02 %,铬 0.15 — 0.25%,铜 0.5—0.7%,钥 0.15—0.25%,镁 0.007—0.009%,铼 0.025—0.030% ,其余为铁。
[0030]本发明的蠕化处理过程中的铁水能够保证质量符合RuT340蠕化处理前对铁水的质量要求,保证了天然气动力缸体的力学性能要求。
[0031]蠕化处理中冲入的铁水的制作方法,包含以下步骤:
(1)准备如下重量份数的原料:Q12本溪生铁1250份、废钢250份、回炉铁700份、铬铁4份、钥铁6份、铜9份、硅铁9份;
(2)先将钥铁、烙铁加入熔炼容器的炉底,再加入Q12本溪生铁、废钢、回炉铁、硅铁进行熔化;先加入熔点较高的钥铁、烙铁保证其能够完全熔化,以免后加入熔点较低铜、硅铁烧损。
[0032](3)待熔炼容器中的炉料完全熔化后升温至13101:—13901:拔净炉渣;
(4)炉前检验,调整成分;由于回炉铁的成分有一定波动,因此需要进行检验以满足工艺要求。通过多功能热分析仪主要检验碳含量以及硅含量,保证含碳量位于3.55% — 3.65%,若偏高补加废钢,偏低使用增碳剂;保证硅含量在1.6—1.8%,根据硅含量调整硅铁的加入量。
[0033](5)温度升至1310°C — 1390°C加入铜;继续升温至1450°C — 1460°C后出炉。
[0034]通过该步骤熔炼的铁水重量组成为:碳3.55—3.65 %,硅1.6 — 1.8%,锰0.5—0.6 %,磷 0—0.06 %,硫 0—0.02 %,铬 0.15—0.25%,铜 0.5—0.7%,钥 0.15—0.25%,镁0.007—0.009%,铼0.025—0.030% ,其余为铁。由于在蠕化处理过程中孕育剂中含有硅,因此蠕化处理之后的的铁水重量组成为:碳3.55— 3.65 %,硅1.6 — 1.8%,锰0.5—0.6 %,磷 0—0.06 %,硫 0—0.02 %,铬 0.15—0.25%,铜 0.5—0.7%,钥 0.15—0.25%,镁0.007—0.009%,铼 0.025—0.030% ,其余为铁。
[0035]进一步地,上述步骤(5)将温度升至1310°C — 1390°C加入铜,升温至1450°C —1460°C后保温5 —10 分钟再出炉。有利于铁液杂质的净化和炉渣的上浮,并通过扒渣除去炉渣。若时间过短则不利于净化和炉渣的上浮,过长则会增加生铁和相应合金的烧损,并影响铁水的质量。
[0036]本发明可以采用感应电炉进行熔炼铁水,也可以选用其他电炉进行熔炼,在此不再赘述。
[0037]实施例一
本实施例的天然气动力缸体的浇注方法,浇注温度为1330°C。[0038]实施例二
本实施例的天然气动力缸体的浇注方法,浇注温度为1350°C。
[0039]实施例三 本实施例的天然气动力缸体的浇注方法,浇注温度为1340°C。
【权利要求】
1.天然气动力缸体的浇注方法,其特征在于,浇注时铁水的温度为1330°C— 1350°C。
2.根据权利要求1所述的天然气动力缸体的浇注方法,其特征在于,所述浇注过程中使用的铁水是经过蠕化处理的铁水。
3.根据权利要求2所述的天然气动力缸体的浇注方法,其特征在于,所述蠕化处理的步骤为; (1)将蠕化剂加入到蠕化装置的一侧,孕育剂加入到蠕化装置的另一侧; (2)将熔炼好的铁水冲入到装有孕育剂一侧的蠕化装置中; (3 )扒去浮在铁水表面的渣子,并检测是否蠕化成功,蠕化成功则进行浇注。
4.根据权利要求3所述的天然气动力缸体的浇注方法,其特征在于,步骤(2)中铁水冲入时候的温度为1430°C — 1460°C。
5.根据权利要求4所述的天然气动力缸体的浇注方法,其特征在于,所述蠕化剂与铁水的质量比为9:750— 800,所述的孕育剂与铁水的质量比为11:750— 800。
6.根据权利要求5所述的天然气动力缸体的浇注方法,其特征在于,所述的蠕化剂为重稀土蠕化剂,孕育剂为锶硅孕育剂。
7.根据权利要求1所述的天然气动力缸体的浇注方法,其特征在于,浇注时铁水的重量百分比组成为:碳 3.55—3.65 %,硅 2.1—2.3%,锰 0.5—0.6 %,磷 O—0.06 %,硫0—,0.02 %,铬 0.15—0.25%,铜 0.5—0 .7%,钥 0.15—0.25%,镁 0.007—0.009%,铼 0.025—,0.030% ,其余为铁。
【文档编号】B22D1/00GK103540831SQ201310569863
【公开日】2014年1月29日 申请日期:2013年11月13日 优先权日:2013年11月13日
【发明者】李振波, 刘锐, 张前, 李荣飞, 张钰, 廖渝隆, 朱文武, 吴中麒, 谭昭金, 杨鹏, 刘明星, 姜超, 谭学木, 段悦洪, 李胜, 钟明春, 李健, 凌波 申请人:中国石油集团济柴动力总厂成都压缩机厂