极高机械性能的钨镍铁重合金及其生产方法

文档序号:3284414阅读:1839来源:国知局
专利名称:极高机械性能的钨镍铁重合金及其生产方法
技术领域
本发明涉及极高机械性能的钨镍铁重合金及其生产方法。
该技术领域的专业人员已知,意欲用来制造平衡锤,振动吸收屏与X、α、β、γ射线吸收屏,以及高穿透能力的砲弹,其材料必须具有相当大的密度。
鉴于此原故,生产这些东西要借助于所谓“重”合金的合金。该类合金主要含有钨,钨均质分散在通常由结合元素,例如镍和铁所形成的金属基体中。在大多数情况下,这类合金含有90-98%(重量比)的钨,比重为15.6-18。该类合金主要用粉末冶金法制造,即其各组分均以粉末状态使用,并压制成适宜的形状,烧结并稳定化,以赋予其机械密实性,并可能经受加工和热处理,以使其具有适合其用途的机械性能强度、延伸率和硬度。
该类合金的技术规范,举例来说,在美国专利NO.3979234中作了规定,该专利叙述了一种生产W-Ni-Fe合金的方法,包括-制备一种含有85-96%(重量比)钨,余量为镍和铁且Ni/Fe重量比为5.5-8.2的粉末均匀混合物,-将该混合物压制成压制件形状,-在还原气氛中于至少1200℃,并低于出现液相的温度下烧结足够长的时间,以产生一种密度至少为理论密度95%的产品,-将产品在高于液相产生温度0.1与20℃之间的温度下,加热一段足以使液相产生而不足以使产品变形的时间,-将产品在真空中于700-1420℃加热足够时间,使之脱气,以及-将产品机械加工到所需尺寸,该工序可至少经过一道加工来进行以提高产品强度。
在这些条件下所得到的,譬如是一种产品,它在一种使表面积减少31%的加工作业之后,极限抗拉强度RM为1220MPa,屈服强度R0.2为1180MPa,延伸率E为7.8%,而且洛氏C级硬度为HRc41。这些性质足以适合某些用途,但对于载荷水平高的用途而言,这是明显不够的,因为目前对极限抗拉强度等级的要求是大于1600MPa,并可高达2000MPa。
本发明涉及一类重合金,其比重在15.6和18之间,含有80-99%(重量比)的钨和镍、铁(Ni/Fe重量比大于或等于1.5),并可选择性地含有其它元素如钼、钛、铝、锰、钴及铼,该类合金具有极高的机械性能,尤其极限抗拉强度至高可达2000Pa,延伸率至少为1%。
本发明的这类合金,其特征在于,其组织中α相呈蝶翅状,位错晶胞尺寸为0.01-1μm,结合剂γ相的平均自由程小于15μm。
本技术领域的专业人员已知,钨-镍-铁合金有一种由纯钨球节所形成的组织,在烧结工序中球节或多或少地球化,构成α相,该球节由该合金的三元素组成的γ相所包围,γ相在球节间起结合作用。
申请人发现,要达到极高的机械性能,钨合金必须具有特殊的织织。
因此,从形态学的角度来看,如果在由这类合金制得的试样上观察垂直于加工方向的表面,会发现-α相不再为球化的形状,而稍呈楕球形,并在长轴的一端附近成对连接在一起,长轴间成锐角,上述排列较普遍地被称为“蝶翅”,以及-结合γ相的平均自由程尤其随极限抗拉强度的提高而成比例地减小。因此,平均自由程小于15μm时,极限抗拉强度达1600MPa以上。
本文中所用的平均自由程一词,系指一定方向上分隔两个顺次γ相区的平均距离。
从显微组织的角度来看,如果取薄蘑片,会在α相中发现有尺寸为0.01-1μm的位错晶胞存在,它随材料机械性能的提高而成比例地减少。与材料机械性能的提高相一致,晶胞互相之间相对的混乱取向也被观察到,据认为,正是那些晶胞使该类合金具有发生变形时所必需的塑性。此外,在表面平行于加工方向的试样上所进行的观察还揭示了随机械性能提高而成比例变得更为明显的纤维织构。上述纤维以其特定取向为特征,该种取向按密勒指数,对于试样中心部的极点{110}相当于〈110〉方向然而,机械性能的提高超过1500MPa水平会发生α相的多边形化。作为附带的情况,有关γ相的析出网在α相球节邻接区域中发展。
本发明还涉及一种生产合金的方法,所生产的合金具有这样一种组织,在该组织中可按需要调节所需的机械性能值,尤其可使断裂强度接近2000MPa。
为达到上面所述,考虑到α相通常具有脆性,但弹性极限高,申请人改进了该类合金的处理,使之有可能促进α相的塑性变形。
该方法包含已知的工艺步骤并由下列步骤组成
-使用各合金元素的粉末,每种粉末均具有1-15μm的FISHER直径,-将上述粉末以相当于所需合金组成的比例加以混合,-将上述粉末混合物压成压制件的形状,-在1490-1650℃下将压制件烧结2-5小时,-在真空中于1000-1300℃处理烧结过的压制件,以及-使所得到的压制件至少经受一道加工。
但是,表征该方法的是,经真空处理后,压制件经受至少三个操作周期,每个周期包含一个加工步骤并后随热处理。
因此,本发明由顺次的周期所组成,周期数目与所要获得的与有关机械性能最高值相当的组织成比例地增加。从而,三个循环即可使其达到1400-1450MPa的极限抗拉强度水平,而在四个循环结束时,达到接近1850MPa的值。每个循环依次包括一个加工步骤,例如用锻造法进行的加工步骤,以便将烧结压制件表面积的减小程度提高10-50%,以及随其之后将压制件放入加热到低于1300℃的炉中,在惰性气氛中持续4-20小时所进行的退火。
在开始两个周期中,以加工程度小于后随周期而温度高于后随周期为佳。在第四个周期中,例如在进行热处理之前,至少在锻造设备中进行连续的两道加工,以达到适当的加工度。
本发明可用附图来阐明,附图中涉及一种含有93%(重量)钨5%(重量)镍和2%(重量)铁的合金,其中

图1、2及3示出分别具有极限抗拉强度1100、1540及1850MPa的试样横截面在放大200倍时的组织。
图4、5及6示出由相同试样得到的抗拉强度时,有关断口分别放大1000、1000及2600倍时的显微组织形貌,以及图7、8及9示出电子显微镜下分别放大35000、30000及60000倍观察薄磨片所见的显微组织,显示了使其可能达到所需性能的α相的特定状态。
图1示出了白色钨α相的球状组织,以及平均自由程接近20μm的结合γ相。
图2示出平均自由程减到约10-14μm时形成蝶翅。
图3中,在图2中所见的趋势增强,平均自由程在3-7μm范围内。
图4中,合金断裂基本上发生在球节间和γ相的顶部(CuPular)。
图5及6中的试样比图4中所示者具有更高的机械性能,可以看到,整个断口型式变为穿球节(transnodular)。偶见有球节间的断裂起始。在α相显微组织范围内,亚组织状态有所发展。
图7示出尺寸为0.4-0.8μm的重新排列的晶胞复原组织。
图8示出多边形化步骤,该步骤是达到最高性能所必需的。
图9示出最高性能的典型组织,伴有0.05-0.01μm的位错微晶胞发展。
本发明可以参照下列使用该方法的实施例来阐明将FISHER直径为1.4-10μm的各元素状态粉末加以混合,以制得具有下列组成的产物(重量比)W93%-Ni5%-Fe2%。
经在230MPa压力下等静压压制后,将直径90mm、长500mm的压制件在隧道炉中于1490℃温度下烧结5小时,然后在部分真空中于加热到900-1300℃的炉中保持25小时。
这样制得的产品再按本发明所述进行处理。周期处理进行的特定条件,以及在不同处理周期中所达到的机械性能Rm(极限抗拉强度)、R0、2(延伸率为0.2%的屈服强度)、E(延伸率)、VH30(维氏硬度)及RHc(洛氏硬度)列于下表

因此可见,周期数增多时断裂强度大大提高,延伸率保持得足够允许合金变形。
权利要求
1.机械性能极高的重合金,其比重为15.6-18,含有80-99%(重量比)构成α相的球节状钨及Ni/Fe重量比大于或等于2的镍和铁,镍和铁起结合作用并构成γ相,并且可含选择性元素如钼、钛、铝、锰、钴、及铼,其特征在于,钨α相呈蝶翅形,其位错晶胞尺寸为0.01-1μm,而结合γ相具有小于15μm的平均自由程。
2.权利要求1所述的合金,其特征在于,α相具有〈110〉方向的纤维织构。
3.权利要求1所述的合金,其特征在于,极限抗拉强度水平大于1500MPa时,α相多边形化。
4.权利要求1所述的合金,其特征在于,γ相在邻接α相球节区形成析出网。
5.生产权利要求1所述合金的方法,包括-使用1-15μmFISHER直径的各元素的粉末,-将所述粉末以相当于所需合金组成的比例混合,-将粉末压成压制件形状,-在1490-1650℃的温度下将压制件烧结2-5小时,-在真空中将烧结过的压制件在1000-1300℃下处理,以及-使压制件至少经受一道加工,其特征在于,压制件经真空处理后,至少使其经受三个操作周期,每个周期包括一个加工步骤和后随的热处理。
6.权利要求5所述的方法,其特征在于,在开始的两个周期中,加工度小于后随的周期,热处理温度高于后随的周期。
7.权利要求6所述的方法,其特征在于,在第四个周期中,加工操作至少进行两道。
全文摘要
本发明涉及机械性能极高的钨镍铁重合金及其生产方法。
文档编号C22C27/04GK1033651SQ88107568
公开日1989年7月5日 申请日期1988年10月20日 优先权日1987年10月23日
发明者居伊·尼古拉 申请人:西蒙·鲍库茨
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1