专利名称:钢坯的连铸法和用于该方法的铸模的制作方法
技术领域:
本发明涉及用于具有较小的菱形变形的正方形钢坯或具有较小的侧面边缘变形的圆形钢坯的一种连铸法,以及用于此法的一种铸模。
为了连续铸造钢坯,把钢水51倒入一种铸模50中,该模具有一个基本上正方形的内截面,并相对于在该铸模上方的一个中间包作上下振动,如
图18所示,在铸模的内表面上形成一层凝固的壳52,而热量被用水冷却的铸模50的侧面表面吸收。随后把凝固的壳52逐渐拉出,在中间部分的钢水51也逐渐凝固,从而形成一块钢坯。
为了在铸模的内表面与凝固的壳52之间实现润滑,把菜子油(润滑剂的一个例子)由铸模50的上方一点一点地倒入,这些菜子油随后被碳化得到一种润滑剂。
然而,当以高速(例如3米/分钟)铸造钢坯时,由于在绕着钢坯的四个外边缘表面的凝固的壳52与铸模50之间的间隙不均匀,使得出现了凝固收缩的不同,产品的截面变成菱形的。在圆形的钢坯中,发生产品的侧面边缘的变形(比如椭圆形的截面)或出现凹进部分。由于这一原因,按照先有技术的连铸法只能在这种菱形变形不出现所容许的速度范围内进行,相对来说低的铸造速度和生产率低的问题仍留待解决。
另一方面,在连续铸造长方形截面的板坯的情况下,经审查的日本专利公开(Kokoku)No.57-11735提出了用于连铸的一种铸模,它是针对防止板坯的纵向裂纹和如咬住熔渣这样的损坏,这是靠在铸模的一部分内表面或整个内表面上均匀地设置大量宽度或直径不大于2.5毫米的凹进部分实现的。当把这一技术用于钢坯的连续铸造时已经发现,由于凹进部分的直径不大于2.5毫米,这些凹进部分逐渐被用做润滑剂的碳粉填满,无法进行稳定的连续铸造。
鉴于上述的技术背景,本发明的目的是提供一种钢坯的连铸方法,它能实现高速下的稳定铸造,而在连铸所生产的钢坯中不会出现菱形变形,以及用于这一方法的一种铸模。本发明的要点如下。
(1)一种钢坯的连铸方法,它靠由上部把钢水倒入在竖直方向上作振动的一个铸模中实现铸造,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的四个内边缘表面上形成凹进部分,每个凹进部分包括一个或多个横向凹槽或大量凹坑,从而使得铸模的每个内表面的冷却能力基本上均匀。
(2)一种钢坯的连铸方法,它靠由上部把钢水倒入在竖直方向上作振动的一个铸模中并加少量润滑剂而实现铸造,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置20)0毫米的距离以内的四个内边缘表面上形成凹进部分,每个凹进部分包括一个或多个横向凹槽或大量凹坑,从而使得铸模的每个内表面的冷却能力基本上均匀。
(3)一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上设置横向凹槽,它们的平均凹进深度至少为20微米,其宽度(W)满足下述公式(1)。
3毫米≤W≤(铸模的振动幅度)×2+10毫米(1)(4)一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上有间隙地设置大量凹坑,它们的平均凹进深度至少为20微米,其直径(D)满足下述公式(2)。
3毫米≤D≤(铸模的振动幅度)×2+10毫米(2)(5)一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于铸模的内表面是倾斜的,其倾斜的方式为它的内表面的距离在向下的方向上逐渐减小,并且在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上设置横向凹槽,它们的平均凹进深度至少为20微米,其宽度(W)满足下述公式(1)。
3毫米≤W≤(铸模的振动幅度)×2+10毫米(1)(6)一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于铸模的内表面是倾斜的,其倾斜的方式为它的内表面的距离在向下的方向上逐渐减小,并且在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上在它们之间有间隙地设置大量凹坑,它们的平均凹进深度至少为20微米,其直径(D)满足下述公式(2)。
3毫米≤D≤(铸模的振动幅度)×2+10毫米(2)(7)按照权利要求1或2的一种圆形钢坯的连铸方法,其特征在于铸模的内截面是圆形的,并且铸模的内表面是倾斜的,其倾斜的方式为它的直径在向下的方向上逐渐减小。
(8)按照权利要求3或4的一种圆形钢坯的铸模,其特征在于铸模的内截面是圆形的,并且铸模的内表面是倾斜的,其倾斜的方式为它的直径在向下的方向上逐渐减小。
图1(a)示出了钢坯的表面之间的热流量的差与菱形变形之间的关系,图1(b)示出了钢坯的菱形变形。
图2示出了平均空气间隙的深度与热流量之间的关系。
图3示出了横向凹槽,凹坑的深度与热流量之间的关系。
图4(a)示出了离开弯液面的距离与热流量之间的关系,图4(b)和图4(c)分别示出了在先有技术中和在本发明中凝固收缩的形状。
图5示出了凹槽或凹坑开始形成的位置与钢坯表面缺陷出现的比率之间的关系。
图6为一个示意图,示出了在模具表面上形成凹进部分的部分。
图7示出了平均空气间隙的深度与菱形变形的角度之间的关系。
图8示出了凹槽或凹坑的直径与菱形变形的角度之间的关系。
图9(a)为模具振动的示意图,图9(b)示出了该振动。
图10为按照本发明的一个实施例用于连铸钢坯的一种铸模的剖面图。
图11为图10的部分透视图。
图12为图10的部分细节图。
图13为图10的部分放大图。
图14示出了按照本发明的和按照先有技术的铸模的表面温度差。
图15示出了按照本发明的一个实施例的和按照先有技术的铸模的角部温度差。
图16(a)为圆形凹坑的图,图16(b)为有棱角形凹坑的图,图16(c)为六角形凹坑的图。
图17为按照本发明的一个实施例的和按照先有技术的铸模的可用范围的一个解释性的图。
图18为按照先有技术的铸模的一个示意图。
图19(a)为按照本发明的一个实施例的圆形铸模的透视图,图19(b)为在该铸模上的凹进部分的分解了的示意图。
图20示出了按照本发明的一个实施例的和按照先有技术的铸模的表面温度差。
图21为按照本发明的一个实施例的和按照先有技术的铸模的可用范围的一个示意图。
在按照本发明的用于连续铸造钢坯的铸模中,在铸模的内表面上基本上均匀地设置了包括至少一个凹槽或大量凹坑的凹进部分。因此,在钢坯与铸模之间强迫性地形成了间隙。因为铸模的内表面是倾斜的,其倾斜方式为它的内表面的距离在向下的方向上逐渐减小,所以可以防止钢坯在铸模中的偏心。并且,由于基本上均匀地减小热流量,所以只有凝固的壳的特定的表面不与铸模紧密地接触,并从而被冷却。结果,凝固的壳基本上均匀地收缩,即使当以高速进行铸造时也可以生产出有较小菱形变形的钢坯。下面,将详细地解释本发明的技术特点。
由钢水带到铸模的热流量在弯液面的最下面位置以下离开弯液面的量下面位置200毫米的距离范围内的位置最大。这一热流量的大小主要由凝固壳与铸模之间的间隙决定,其关系示于图2中。
按照传统的铸造钢坯的方法,由于钢坯与铸模的内表面之间的间隙在钢坯中出现偏心,从而铸模与钢坯表面之间的空气间隙变得在钢坯表面之间不均匀,并且出现在钢坯表面之间热流量的差别ΔQ1。结果,在钢坯的侧面表面上出现凝固收缩的不均匀,在产品中出现菱形变形。图1(a)示出了钢坯的表面之间的热流量的差与菱形变形之间的关系,图1(b)示出了钢坯的菱形变形。图1(a)示出了由实验确定的钢坯的表面之间热流量的差与菱形变形之间的关系的结果,为了把菱形变形保持在3度的范围以内,该图示出必须满足ΔQ≤1,000,000千卡/平方米小时。此外,在圆形钢坯的情况下,这相应于侧面边缘变形在3%的范围以内。
因此,采用下面的措施作为降低热流量差ΔQ的措施。
①首先,在弯液面的下面均匀地设置有预先确定的深度的空气间隙部分(凹进部分),从而把热流量例如由4,000,000千卡/平方米小时降到3,000,000千卡/平方米小时。
②把模具的倾斜设定成有一个适当的值,从而减小钢坯与铸模之间的间隙(例如,把平均空气间隙Δd1由20微米降到10微米)。
当结合起来使用这些措施①和②时,可以使钢坯的表面之间的热流量差减小。因此,钢坯被铸模均匀地冷却。结果,即使在高的铸造速度(例如3.4米/分钟)下仍可以生产出有较少缺陷的钢坯。
还有,在本发明人的研究中发现,由人为的空气间隙部分(凹进部分)所造成的逐渐冷却效应足以使热流量的差别减小,然而,当铸件(钢坯)的偏心大时不能减小热流量的差。因此,在本发明中最好使模具的倾斜达到最佳。
另外,凹槽部分的空气间隙部分所造成的逐渐冷却效应按照凹进部分的面积比和凹槽的深度改变,如3中所示。大约2%到大约84%的凹进部分的面积比对于防止菱形变形是有效的。当这一凹进部分的面积比小于2%时,热流量变得如此之大,以至铸模的内表面的温度差以与先有技术相同的方式变大。当这一面积比超过84%时,凝固壳与铸模接触的部分减小,结果是铸模的内表面的磨损增加,使用寿命较短。
在凹槽深度方面,对于百分之几十的凹进部分的面积比,在至少0.1到0.2毫米的深度下逐渐冷却的程度基本上不变。因此,即使把凹槽的深度增加到超过此值,也基本上得不到效果。下面将解释按照本发明的和按照先有技术的铸模的热流量。
在传统的连铸方法中,在弯液面以下的热流量在弯液面以下的位置迅速下降,而在按照本发明的连铸方法中,例如如图3中所示,由于50%的凹进部分的面积比和深度为0.2毫米的横向凹槽,热流量由4,000,000降到3,000,000千卡/平方米小时,并达到一个基本上不变的数值,如在图4(a)的左侧的虚线a所示。结果,由于按照先有技术的热流量的迅速变化,凝固壳的收缩形状呈现复杂的曲线形状,如图4(b)所示,而按照本发明,收缩形状可以接近简单的直线,如图4(c)所示。在本发明中,由于凹槽部分的空气间隙变小,结果,在凝固壳与铸模之间的间隙(空气间隙)变小,所以凝固收缩也与热流量的下降一起下降。因此,可以容易地减小钢坯与铸模之间的间隙,并靠把铸模的内表面的形状变成有一个适当的角度的(例如0.3到1.2%/米)倾斜的直线,可以使铸件(钢坯)的偏心减到最小。
在离开稳定的运行状态下作上下运动的弯液面的最低位置200毫米的距离以内形成由至少一个凹槽或大量凹坑构成的上述的凹进部分。在这一部分形成凝固壳,并且钢水与凹进部分通过凝固壳相互接触。结果,不会出现钢水的穿透,并且可以形成比先有技术中的凹进部分明显宽的凹槽或直径明显大的凹坑。结果,也可以消除由于采用碳粉作为润滑剂所造成的堵塞。图5示出了实际运行的数据。最好在大约15毫米(更可取的是离开弯液面大约20毫米)以下又不超过200毫米的位置形成上述空气间隙部分。这样,可以消除表面缺陷(比如双层表皮和熔渣穿出),并可以进一步提高铸造速度。顺便说一下,当凹进部分离开弯液面超过200毫米时,由于凝固壳的厚度太大,防止菱形变形的效果很难出现。另外,在圆形的铸模中,防止侧面边缘变形的效果也几乎被消除。这当然是本发明可以被用于采用一种粉末做为润滑剂的粉末铸造的情况。
具体地在用于按照本发明的钢坯的连续铸造的铸模的情况下,在铸模的内表面上形成平均空气间隙(凹进部分)的深度至少为20微米的横向凹槽(狭缝)。这是由于当平均空气间隙(凹进部分)的深度小于20微米时,菱形变形的角度变得较大,如由图7中所示的数据明显看到的那样。顺便说一下,当横向凹槽的深度至少为0.1毫米时,热流量变得稳定,菱形变形变得小于1度,运行最好在这样的条件下进行。
横向凹槽的宽度(W)由上述的公式(1)限定。如果该宽度比3毫米小,如已经描述的那样,在稳定运行的过程中用作润滑剂的碳粉把横向凹槽填满,从而使得横向凹槽不再存在,菱形变形的角度变得比3度大,如图8所示,产品变成有缺陷的产品。另外,图9(a)为模具振动的解释性的图,图9(b)示出了该振动。在这些图中,由于铸模10在竖直方向上振动,如图10所示,横向凹槽11的部分上下运动,横向凹槽被形成时的宽度(x)变成(W-2a)。如果在铸模10的内表面上形成的横向凹槽11宽,被倒入到凝固壳13中的钢水12把凝固壳13推到凹槽中,在产品中出现缺陷。由图8也明显地看出,当减去振动行程(a)的两倍以后所得的差超过10毫米时,菱形变形的角度变得比3度大。因此,当按照公式(1)确定宽度时,可以连续铸造出菱形变形的角度不大于3度的钢坯。另外,在圆形铸模的情况下,这相应于圆形理想度不超过3%。
在用于按照本发明连续铸造钢坯的铸模中,在稳定运行状态下弯液面的最下面位置以下的位置并在200毫米以内也可以形成大量平均凹进深度至少为20微米并且其直径(D)满足上述公式(2)的凹坑。由于与在上述情况中相同的理由,这个数值被限定。
下面,将考察凹进部分由一个纵向凹槽构成的情况。因为在铸模的内表面上在凝固壳的前进方向上连续地形成该纵向凹槽,所以被钢水推凝固壳连续地进入该凹槽,结果,该纵向凹槽被传递到钢坯的表面。结果,表面性质被大大变坏,可能会出现产品缺陷(比如钢坯的表面裂纹或在轧制过程中的裂纹)。另外,由于对应于纵向凹槽的凝固延迟部分在高速铸造的过程中在横具的下面,所以出现熔渣穿出的问题。
另一方面,由于凹进部分包括如上所述的横向凹槽或凹坑,它们的形状不会被传递到钢坯的表面上,上述的缺陷不出现。
示例示例1下面将参考附图详细地解释本发明。
图10为按照本发明的一个实施例用于连续铸造钢坯的一种铸模的剖面图,图11为图10的部分透视图,图12为图10的部分细节图,图13为图10的部分分解了的示意图。图14示出了按照本发明的和按照先有技术的铸模的表面温度差,图15示出了按照本发明的一个实施例的和按照先有技术的铸模的角部温度差,图16(a)为圆形凹坑的图,图16(b)为有棱角的凹坑的图,图16(c)为六角形凹坑的图。图17为示出按照本发明的一个实施例的铸模和按照先有技术的铸模的可用范围的一个解释性的图。
如图10到12所示,为了按照本发明的一个实施例进行钢坯的连续铸造,使铸模15的模具倾斜为0.6%/米,并且其上部的内边缘的形状为侧边为133毫米的一个正方形。由铸模15的上端到在稳定状态下形成的弯液面(下面仅把它称之为“弯液面”)的最下位置M的距离h大约为100毫米。
设置四个同样布置的横向凹槽16形成凹进部分17,每个凹槽的宽度δ为12毫米,长度K为70毫米,深度d为1毫米,间隙p为25毫米,位置为离开弯液面M的距离g为20毫米(见图13)。采用这种铸模15,连续铸造钢水的组分和性能如表1所列,生产出了侧边长度为130毫米的正方形钢坯。
表1
图14和15示出了在离开铸模15的上端大约150毫米的位置的模具铜片的中心部分和角部的温度差(最大温度-最小温度)的测量结果,与按照先有技术的铸模(即,没有凹进部分的铸模)的值比较。可以理解到,本发明的实施例的温度差比按照先有技术的铸模小。因此,减小了在铸模15与凝固壳18之间的间隙的差别,如图14和15所示,可以减小对凝固壳18的边缘表面的不均匀冷却,钢坯菱形变形变小(不大于1度)。
因为在凹进部分17处充分地形成了凝固壳18,即使当凝固壳被钢水19推时和即使铸模15已被使用了长时间,凝固壳18也不会进入横向凹槽16,不会出现被菜子油(由铸模15的上方注入的润滑剂的一个例子)的碳化物堵塞。
表2示出了在各种改变了的凹槽深度(d),凹进面积比,凹槽宽度(δ),带宽(A)和凹槽间距(p)条件下所生产的钢坯的菱形变形的程序,在所有这些情况下,菱形变形的程序是令人满意的。
表2
图16(a)-16(c)示出了按照本发明的另一实施例在铸模中形成凹进部分的方式。图16(a)示出了大量图形凹坑21,图16(b)示出了大量正方形的凹坑22,图16(c)示出了大量六角形凹坑23。在所有这些情况下,平均凹进深度(带部和凹槽,或凹坑的深度的平均值)为大约0.1毫米到大约0.5毫米,凹槽宽度或凹坑直径为至少3毫米且不大于(振动幅度)×2+10毫米,凹槽或凹坑的平均面积比为15%到80%。当满足这一范围时,即使在约3米/分钟的铸造速度下,所生产的钢坯的菱形变形也不大于1度。
图17示出了采用上述实施例的铸模所生产的钢坯与采用按照先有技术的铸模所生产的钢坯的比较。如阴影线所示的那样,可以理解到,即使在高速铸造范围内,当采用按照本发明的实施例的铸模时,菱形变形也不大于1度。
顺便说一下,在上述实施例中的直线倾斜只是一阶段倾斜,而本发明也可以用到两阶段倾斜,多阶段倾斜,或抛物线形倾斜。
示例2此示例为本发明对于圆形钢坯的连续铸造的应用。图19为在铸模的里面形成的凹进部分的分解了的示意图。
如图19所示,为了按照本发明的一个实施例进行圆形钢坯的连续铸造,使铸模15的横具倾斜为0.6%/米,并且其上部的内边缘的形状为直径为133毫米的一个圆形。由铸模15的上端到在稳定状态下形成的弯液面(下面仅把它称之为“弯液面”)的最下位置M的距离h大约为100毫米。
设置三排基本上之字形的横向凹槽16形成凹进部分17,每个凹槽的宽度δ为12毫米,长度L为100毫米,深度d为1毫米,间距p为25毫米,位置为离开弯液面M的距离g为25毫米(见图19)。采用这种铸模15,连续铸造钢水的组分和性能如表3所列,生产出了直径大约为130毫米的圆形钢坯。
表3
顺便说一下,圆形理想度(%)由下列公式定义,其中圆的最大直径为Dmax,而圆的最小直径为Dmin圆形理想度=200×(Dmax-Dmin)/(Dmax+Dmin)图20示出了在离开铸模15的上端大约150毫米的位置的模具铜片的中心部分的表面温度差(最大温度-最小温度)的测量结果,与按照先有技术的铸模(即,没有凹进部分的铸模)的值比较。可以理解到,本发明的实施例的表面温度差比按照先有技术的铸模小。因此,减小了在铸模与凝固壳之间的间隙的差别,如图20所示,可以减小对凝固壳的边缘表面的不均匀冷却,圆形钢坯的圆形理想度变小(不大于1%)。
因为在凹进部分处充分地形成了凝固壳,即使当凝固壳被钢水推时和即使铸模已被使用了长时间,凝固壳也不会进入横向凹槽,不会出现被菜子油(由铸模15的上方注入的润滑剂的一个例子)的碳化物堵塞。
表4示出了在各种改变了的凹槽深度(d),凹进面积比,凹槽宽度(δ),带宽(A)和凹槽间距(p)的条件下所生产的圆形钢坯的圆形理想度,在所有这些情况下,圆形理想度是令人满意的。
表4
图21示出了采用上述实施例的铸模所生产的圆形钢坯与采用按照先有技术的铸模所生产的圆形钢坯的比较。如阴影线所表示的那样,可以理解到,即使在高速铸造范围内,当采用按照本发明的实施例的铸模时,圆形理想度也不大于1%。
示例3此示例为本发明对于有两阶段直线倾斜的铸模的应用。为了按照本发明的一个实施例进行钢坯的连续铸造,使铸模的模具倾斜为第一阶段为1.5%/米,第二阶段为0.6%/米。在此示例中其它铸造条件与示例1相同,在此示例中,连续铸造钢水的组分和性能如表5所列,生产出了侧边长度为130毫米的正方形钢坯。
表5
因为在凹进部分处充分地形成了凝固壳,即使当凝固壳被钢水推时和即使铸模已被使用了长时间,凝固壳也不会进入横向凹槽,不会出现被菜子油(由铸模的上方注入的润滑剂的一个例子)的碳化物堵塞。
表6示出了在各种改变了的凹槽深度(d),凹进面积比,凹槽宽度(δ),带宽(A)和凹槽间距(p)条件下所生产的钢坯的菱形变形的程度,在所有这些情况下,菱形变形的程度是令人满意的。
表6
按照本发明,用于连续铸造钢坯的铸模即使以高速进行铸造也可以生产出菱形变形较小的钢坯(圆形钢坯中有较小的侧面边缘变形),并可以改进高质量的产品的生产率。
还有,由于形成凹进部分所带来的逐渐冷却,铸模的使用寿命可以明显地延长,并且也可以防止出现凹陷部分(凹进变形)。
权利要求
1.一种钢坯的连铸方法,它靠由上部把钢水倒入在竖直方向上作振动的一个铸模中实现铸造,其特征在于在所述铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的四个内边缘表面上形成凹进部分,每个凹进部分包括一个或多个横向凹槽或大量凹坑,从而使得所述铸模的每个内表面的冷地能力基本上均匀。
2.一种钢坯的连铸方法,它靠由上部把钢水倒入在竖直方向上作振动的一个铸模中并加少量润滑剂倒入模具实现铸造,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的四个内边缘表面上形成凹进部分,每个凹进部分包括一个或多个横向凹槽或大量凹坑,从而使得所述铸模的每个内表面的冷却能力基本上均匀。
3.一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上设置横向凹槽,它们的平均凹进深度至少为20微米,其宽度(W)满足下述公式(1)。3毫米≤W≤(铸模的振动幅度)×2+10毫米(1)
4.一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上有间隙地设置大量凹坑,它们的平均凹进深度至少为20微米,其直径(D)满足下述公式(2)。3毫米≤D≤(铸模的振动幅度)×2+10毫米(2)
5.一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于铸模的内表面是倾斜的,其倾斜的方式为它的内表面的距离在向下的方向上逐渐减小,并且在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上设置横向凹槽,它们的平均凹进深度至少为20微米,其宽度(W)满足下述公式(1)。3毫米≤W≤(铸模的振动幅度)×2+10毫米(1)
6.一种在竖直方向上振动并有基本上正方形的内截面的铸模,其特征在于所述铸模的内表面是倾斜的,其倾斜的方式为它的内表面的距离在向下的方向上逐渐减小,并且在铸模的稳定运行状态下的弯液面的最低位置以下并在离开该位置200毫米的距离以内的内表面上在它们之间有间隙地设置大量凹坑,它们的平均凹进深度至少为20微米,其直径(D)满足下述公式(2)。3毫米≤D≤(铸模的振动幅度)×2+10毫米(2)
7.按照权利要求1或2的一种圆形钢坯的连铸方法,其特征在于铸模的内截面是圆形的,并且铸模的内表面是倾斜的,其倾斜的方式为它的直径在向下的方向上逐渐减小。
8.按照权利要求3或4的一种圆形钢坏的铸模,其特征在于铸模的内截面是圆形的,并且铸模的内表面是倾斜的,其倾斜的方式为它的直径在向下的方向上逐渐减小。
全文摘要
为了提供能够稳定地铸造钢坯而在连续铸造所生产的钢坯中不产生菱形变形或侧面边缘变形的一种连铸方法,在用于这一方法的铸模中,在稳定运行状态下的弯液面的最低位置以下并在200毫米的距离以内,在铸模的内边缘表面上设置凹进部分,每个凹进部分包括一个或多个横向凹槽或大量凹坑,从而使得凝固壳被逐渐冷却,并且铸模的每个内表面的冷却能力基本上是均匀的。
文档编号B22D11/053GK1142207SQ95191832
公开日1997年2月5日 申请日期1995年12月26日 优先权日1994年12月28日
发明者上原正次, 佐藤寿树, 藤永辉郎, 中尾一时 申请人:新日本制铁株式会社