专利名称:可完成多种快速原型制造工艺的多功能设备的制作方法
技术领域:
本发明属于机械制造领域,特别涉及对快速成形机结构的改进。
快速成形技术是以离散/堆积的成形思想为基础,综合利用激光,数控,CAD和新材料等学科的高新技术,而形成的一种从概念设计到三维实体模型制造一体化的高新技术。这种技术是1986年在美国首次研究成功的。快速成形技术是基于分层制造(离散/堆积成形)的思想,首先由CAD软件设计出所需的三维CAD模型,然后将其按一定的厚度分层,分层得到平面轮廓信息,传给数控系统,在计算机控制下用一特定的堆积方式,按照分层信息所确定的轨迹加工材料,从而得到一个三维实体(原型)。在近十年来,快速成形技术发展迅速,到目前为止已有近十余种商品化快速成形技术。下面分别加以简要介绍1)分层实体制造(LOM)分层实体制造是芝加哥Helisys,Incin Michael Feygin于1987年发明的,1988年获得美国专利,LOM系统的原理图如图1所示。LOM系统主要由计算机及相应的控制系统,激光器与X-Y向运动的光学扫描系统,Z向运动的工作平台,加热辊,和送纸装置,及成形用的纸组成。LOM系统工作过程是这样的首先加热辊动作,将当前层的纸与下面的纸加热加压使之粘牢,然后加热辊回原位;下一步计算机控制光学扫描系统在聚焦平面对当前层材料进行扫描切割,得到零件当前层的平面轮廓,而余下不要的部分将其切成很小的网格;接下来,工作平台下降一定高度H,将激光切割的成形部分与纸卷分开,然后送纸装置工作,将新的纸送到工作平台上面,这时工作台上升(H减去一层纸厚)的高度。这样就完成了一次加工,接下来将重复上述过程直至完成所要求高度的零件。2)立体光刻(SLA)立体光刻是美国C.Hull于1986年研制成功的,1987年获得美国专利,1988年推出第一台商用机器SLA-1。立体印刷技术是基于光敏聚合物为成形材料的基础上,激光束在X-Y平面内运动,在材料上扫描出一个平面图形,形成连续的固化点,通过Z轴的配合运动,从而得到一个三维实体模型。3)选择性激光烧结(SLS)选择性激光烧结是得克萨斯大学奥斯汀分校的Carl Deckard在其研究生期间发明的。得克萨斯大学与DTM公司合作研制了商用机器SLS Model 125,SLS采用激光束烧结裹覆树脂的粉末材料的方式完成平面模型的加工,从理论上说,由于SLS使用的粉末材料可以是金属,陶瓷,蜡粉,ABS塑料等,因而具有直接制造零件的潜力。4)熔融堆积成形(FDM)熔融堆积成形(FDM)是美国明尼阿波利斯工程师ScottCrump于1988年发明的,并已申请专利。这种方法不使用激光,而是用一种加热的喷嘴,将热固性材料一层层地堆积起来,这种方法最大的优点是无污染,可用于办公室环境。
快速成形技术由于具有缩短产品设计到加工的时间,提高生产率,改善产品质量,加速优化设计等优点,因而从其诞生之日起,就受到了工业界和学术界的及其重视,并迅速在航空航天,汽车,电子,家电,机械,医疗,玩具等行业获得了广泛的应用,并取得了巨大的成果。1).在新产品开发中的应用由于快速成形技术能够在较短时间内把概念模型制造出来,因而在新产品开发中具有及其重要的作用,有了实体模型,设计人员就可以迅速判断外观设计的美观性和新颖性,并迅速修改不合适的设计方案,直至设计出满意的产品为止。其它的应用如功能检测,手感及外观测试,装配检验,产品促销等。2)快速零件/模具制造利用快速成形技术制造出来的模型,与传统的零件/模具制造方法结合,就可以快速制造零件和模型。3)试验模型对于需要做流线体风洞试验的产品(如飞机,汽车,船舶等)快速成形技术可以迅速,准确地制造出试验模型,加速这些产品的试验过程。4)医学利用CT技术和快速成形技术,可以迅速复制人体骨胳形状或肿瘤形状,辅助诊断,确定重大手术方案,以及进行人工假肢的设计与制造。5)工程分析模型对于土木,机械,水利等行业的工程结构分析进行数值模拟,从而确定危险部位,优化设计。快速成形技术还可以用于建筑模型制作,艺术品的制作等。
当今RP领域,基于不同成形方法的成形设备几十种,而最有代表性的主要有十余家。各种快速成形方法和商品化设备层出不穷,但各种成形机价格昂贵(都在几十万美金左右),而且彼此之间的性能差别较大。拿美国3D System公司的SLA成形机与HELISYS公司的LOM成形机相比,在使用的材料,加工精度,成形范围上有很大不同。这样,造成彼此之间的优缺点难以弥补,成形方式单一,成形材料单一,系统是非开放式的。一台RP成形设备仅能完成一种工艺,因而性能价格比很低,同时,工业和科研教学上对RP技术的需求是多方面的,不同的产品开发要求不同的RP工艺,大型企业和研究单位往往需要购买多台不同工艺的功能单一的RP设备,使设备利用率降低,造成巨大的浪费。
基于发明申请人在RP领域多年的研究,得出一个重要的结论,那就是RP技术中的单元技术CAD造型技术,离散堆积和分层软件技术,数控扫描技术,温度控制技术,送料单元,测高系统等是RP技术中的关键技术,它们对所有的RP成形技术具有普遍适用性。
本发明的目的旨在开发一台多功能的RP设备,通过对那些带有普适性的关键技术集成,辅以相关的技术支持,从而完成一台多功能的,开放性的RP设备,在这台设备上不仅能完成多种RP工艺,还可以进行新成形工艺的研究和再集成,而且性能价格比高,可满足用户的多种需求,从而克服了已有设备的不足之处。
本发明设计出一种可完成多种快速原型制造工艺的多功能设备,该设备主要由加工室和对加工室中各部件的功能进行调控的计算机及相应的控制单元所组成,所说的加工室至少包括激光器以及X-Y向运动的扫描单元,测高单元,同步齿形带及其带动的加热辊,Z向运动的基本工作平台,箔材输送装置,其特征在于,所说的加工室为封闭箱体式的多功能加工室,其内装有送气、排气装置,还包括在所说加工室的侧壁固定的水平放置的光学平台、基准平台和Z向导轨,在光学平台上安装所说的激光器和X-Y向导轨,在光学平台上和X-Y向导轨的滑块上装有由多个光学镜片和聚焦镜组成的光路构成所说的扫描单元,在Z向导轨滑块上安装所说的基本工作平台,在基准平台上安装同步齿轮带和加热辊,所说的加热辊为可由电机及传动装置带动旋转的辊筒、外壳所构成的多功能辊,外壳为下方开一长形槽口的壳体,其外壁适当部位设置有接挂装置和测高装置,辊筒安装在外壳之中,辊筒径向侧壁从外壳槽口露出一适当宽度,辊筒内装有加热元件和测温元件。
本发明的上述方案可以满足LOM工艺,若改变工艺要求则可方便地在所说的多功能辊的外壳的接挂处挂接所需的送料装置,如挂接铺粉盒可实现SLS工艺,挂接刮平装置可实现SLA工艺。相应地,为适应不同工艺的成形,本发明的基本工作台可为一框架式结构,可简捷地与不同工艺要求的多种专用工作台相配合,上述的结构设计保证了快速方便地更换工艺。
本发明所述的控制单元,以工控机为主体,通过工控机的各接口相连的驱动器和X,Y,Z电机,送纸电机,多功能辊电机,FDM送丝电机,FDM辅助送丝电机,激光器,温度控制单元,高度测控单元,激光快门等组成。为保证在不同工艺下原型成形的质量和精度本发明温度控制采用两级控制,即多功能加工室的温控和多功能辊的温控。作为小环境温度控制的加工室温度控制是RP技术中的关键条件。对FDM工艺而言,成型室温度过低,容易造成层间剥离;成型室温度过高,又容易造成表面起皱。对SLS工艺,也需要有一定的温度,保证粉末有一定的温度,以减小在进行粉末烧结成形时层间的应力。
测高控制是为实时检测粉末、丝状或片状材料每一层成形后型的高度而设计。Z轴工作台根据分层数据每层走一个固定位移值,但是每层材料的厚度与这个位移值有一些误差,几十层后,高度上的误差积累可能达到一层厚的值,即几十个微米。测高器测量精度可达微米级,而且重复性好,测量Z轴工作台位移值与型的高度之间的误差并转化为电压值。
计算机由程序控制,根据需要启动A/D转换并采集高度信号值,这样计算机进行高度修正,从而保证成形零件的高度有较高的精度。
本发明的高度测量控制单元包括位移传感器,位移-电压变送器,PC总线12位转换板等各元部件安装在一体构成测高器,它安装在多功能辊的外壳上。
为满足不同工艺的需求,本发明所述的激光器可以是He-Cd激光器,CO2激光器以及其他波长的激光器,输出功率视工艺要求而定。所述光路的多个反射镜,聚焦镜可根据采用不同波长的激光器进行更换。
本发明的工作原理简述如下首先根据用户的需要,选择合适的工艺方式,安装上相应工艺的送料装置,专用工作台,以及激光器和相应的光学镜片,用计算机对所需成形的零件结构和工艺参数进行设定,通过相应的软件处理,得到控制数控系统和相应控制单元的计算机指令,控制实时加工,自动实现预先设定的工艺过程。
本发明可以完成LOM、FDM、SLS、SLA等多种RP工艺。和其它RPM成型系统一样,本发明的软件系统也是由三部分组成CAD造型软件,数据检验与处理软件和监控系统软件,CAD造型软件负责零件的几何造型、支撑结构设计及STL文件输出等;数据检验与处理软件输入STL文件、检验其合理性、修正错误、做几何变换、选择成形方向、进行实体分层;监控系统软件完成分层信息输入、加工参数设定、零件排样合并、生成NC代码、控制实时加工等。本发明的软件系统要综合考虑各种RP工艺的成形要求和特点,自动地实现各种RP工艺。本发明具有如下显著特点1)设备的性能价格比高于现有的任何一种成形设备(每集成一种新工艺的花费少于设备成本的20%),大大降低用户的投资水平。2)能在一台多功能设备上完成多种RP工艺,满足用户的多种需求。3)能在该设备上进行新成形工艺的研究和集成。
图1为已有LOM技术结构示意2为本发明所述的一种实施例的总体结构示意3为本实施例控制系统原理示意4为本实施例控制系统的温度调控单元示意5为本实施例控制系统的高度测控单元示意6为本实施例X-Y扫描单元和Z向进给单元示意7为本实施例的多功能辊的结构示意8为本实施例的多功能辊与挂接有铺粉盒及测高器的示意9为本实施例的多功能辊在SLS工艺中工作示意10为本实施例的多功能辊在LOM工艺中工作示意11为本实施例的多功能辊在SLA工艺中工作示意12为本实施例的自动送丝装置示意13为本实施例的自动送纸装置示意14为本实施例的光路系统装配示意15为本实施例的光路系统中聚焦镜座结构示意16为本实施例的光路系统中光学镜座结构示意17为本实施例的光路系统中电磁快门示意18为本实施例的基本工作台与专用工作台装配示意图各附图中的标号说明如下1.基准平台2.光学平台3.光学镜座4.电磁快门5.辅助送纸辊6.送蜡丝辊7.FDM喷头(非工作状态)8.FDM喷头(工作状态)9.X导轨滑块10.Y导轨电机11.Y导轨12.X导轨13.Y导轨滑块14.聚焦镜15.X导轨电机16.铺粉盒17.多功能辊18.激光器19.同步齿形带20.控制按钮21.计算机显示器22.鼠标23.计算机键盘24计算机主机25.从动纸辊26.多功能工作台27.主动收纸辊28.Z导轨29.Z导轨滑块30.加工室门31.辅助工具箱32.保温板33.进气孔34.排气孔35.加工室观察窗36.SLS辅助工作台37.活塞38.SLS标准配件39.箔材(纸,塑料薄膜等)40多功能辊的传动电机41紧固螺钉42.主传动齿轮43.离合手柄44.减速齿轮45.轴承46.多功能辊底座47.测温元件48.加热元件49.铺粉盒悬挂处50测高器固定处51.轴承52.SLS用粉末53.电磁铁54.挡片55.测高器56.辊筒57.收纸电机61.光学镜座底座62.抱紧螺母63.支撑套管64.光学镜片架65.镜架固定螺母66.光学镜片座67.光学镜片68.光学镜片座固定螺母69.辅助工作台70.紧固螺钉71.SLA标准工作台72.已固化成形的物体73.刮平器74.加工台定位装置75.刮平器连接板76.连接板与多功能辊连接处77树脂槽78.树脂排放口79树脂80.蜡丝81.送丝轮82.液化器83.喷嘴84.已成形的蜡层85.已成形的纸型86.LOM的标准件(200×200mm)87.LOM的标准件(150×150mm)88.LOM的标准件(250×250mm)89.FDM的标准工作平台90SLS用标准配件91支撑板92.光学镜片架93.连接套管94.抱紧螺母95.支撑长套管96.聚焦镜头盖97.聚焦境98.光学镜片座99.光学镜片盖100.光学镜片101.螺母108.上铁芯109.上电磁线圈110.电磁挡块111.下电磁线圈112.下铁芯201.收纸辊202.层周边及交叉阴影线203.聚焦装置204.镜头205.激光器206.加热辊207.计算机208.纸209.送纸辊本发明设计出一种可完成多种快速原型成形工艺的多功能设备实施例,如图2本发明所述的一种实施例的总体结构示意图所示,结合各附图详细描述如下一.总体结构本实施例为一大箱体结构,总体结构如图2所示,箱内用隔板将箱体隔为左右两部分,右部分为一开放式结构,分别放置计算机显示器21,计算机主机24和放专用工作台,送料单元等的辅助工具箱。左部分为封闭式结构的多功能加工室,加工室内设置两个平面支架,将室内空间分为上中下三个部分,其中上支架设置光学平台2,安装有激光器18,光学镜座3和光学镜片,X-Y-Z三向导轨系统,蜡丝供应装置6,FDM喷头7等;中支架设置同步齿形带19传动装置和多功能辊17,辊上挂接铺粉盒16;底板上安装有送纸装置,基本工作平台26安装在Z向导轨28的滑块上。
本实施例需满足各种成形工艺的要求,实际上各种成形工艺的总体参数的基本要求是相同的。因而在保证基本要求的前提下,照顾到某些成形工艺的特殊要求,确定总体参数为a)成形尺寸确定为250mm×250mm×250mmb)不同工艺对数控系统的扫描速度的要求略有查异,确定最高扫描速度为500mm/sc)许多工艺要求CO2激光器及相应的光路系统,考虑到扫描速度与激光功率的匹配,系统采用40W的CO2激光器及相应的电源和冷却系统。二.系统控制电路图3是本实施例控制电路原理图。486工控机通过OEMAT6400数控卡对完成平面扫描的X,Y电机和工作台升降的Z电机进行控制,另外数控卡发出的控制信号在多路转换器通过工控机I/O口发出的转换控制信号进行选通,分别去控制送纸电机,热压电机,激光器控制系统,FDM送丝电机和辅助送丝电机。计算机还通过I/O口发出信号来控制总电源,激光器等,通过485接口来控制WEST温控器,通过12位A/D口进行测高控制。
本实施例的温度调控电路包括Pt-100铂电阻温度传感器,电阻式加热执行元件固态继电器开关,West温度控制器(包括设定、显示等)及相应接口电路。如图4所示。West温控器本身具有PID自整定自调节功能。为得到更好的温度控制效果,选择模糊控制与PID相结合(FUZY&PID)。同时,上位机为统一协调控制,要能够方便地查询参数和修改参数,例如设定温度值。因此,上位PC机的管理软件需要通过通讯接口实现对下位West表的控制。
本实施例的测高器包括位移传感器,位移-电压变送器,PC总线12位A/D转换板。安装在多功能辊架上。如图5所示当有一位移量变化时,位移传感器中的查动变压器产生一定的电压变化,通过位移-电压变送器将此信号通过A/D转换便可得到位移的变化值,根据此位移的变化来控制并保证当前加工层始终在聚焦平面上。三.多功能加工室加工室的示意图如图2所示。原型的成形是在加工室中完成的。每一种成形工艺都需要一个特定的环境要求,本实施例的多功能加工室为各种成形工艺提供了以下必要的条件。a)温度条件成形时要将材料预热,同时也为了减少已成形材料与未成形材料之间而温差以防止翘曲变形,成形室内的温度要适当。温度太高,会影响电机及小导轨,丝杠的正常工作;温度太低则降低了工作效率。所以加工室采用隔热板进行隔热保温,同时需要温控单元对温度进行控制和调节。多功能加工室的温度一般控制在40-50℃的范围之内。b)气氛条件当采用高能量密度的CO2激光进行成形加工时,往往伴随着强烈的氧化反应,这对零件成形后的表面质量是十分不利的,为避免之就需要对加工室内的气氛进行控制。本实施例采用对加工室通氮气的方法,所以加工室为密闭的结构,并有充气装置。c)排放废气成形过程中往往伴随着一些有刺激性气味的气体产生,为保证加工室内正常的加工条件应及时将废气排走。所以在加工室中设计了抽气装置。四。X-Y扫描系统及Z向进给系统本实施例的X-Y扫描系统和Z向进给系统由X,Y,Z三向导轨构成如图7所示X-Y扫描系统是由两个滚珠丝杠传动的导轨组合而成。当电机15转动时,通过滚珠丝杠的传动使滑块9沿X方向运动,由于电机10和导轨11固定在滑块9上,所以导轨11也沿X方向运动;当电机10转动时,滑块13沿Y方向运动,在滑块13上可以安装激光聚焦镜或FDM工艺用喷头。控制电机X,Y联合运动,带动激光聚焦头或喷头沿着预定的路径进行平面扫描,形成原形的一层物理实体层。Z向进给系统由电机Z,滚珠丝杠,滑块组成。工作台安装在滑块上,当电机Z转动时,通过滚珠丝杠传动使滑块Z沿Z向运动,从而完成工作台的升降运动。当Z向工作台进给(下降)成形材料一层的厚度后,便可进行另一层的加工。基本工作台固定在Z轴的滑块上,由步进电机带动,通过高精度的滚珠丝杠传动使工作台沿Z向(高度方向)运动。一方面它具有良好的刚性,另一方面还具有很高的位置精度。五.集成的滚压,刮平,送料装置尽管各种快速成形工艺的成形材料是多种多样的,然而按材料的形态无非分为四种丝状,粉状,片状,液态。综合对材料的作用过程大致分为材料输送,铺平(粉材),压实(片材),加热(粉材或片材),以及对液面的刮平等。所以,一个集成的滚压,刮平,送料装置是必需的,它们安装在基准平台上。1)多功能辊多功能辊结构图如图7,它集成了旋转、加热、加压、刮平等功能。图中电机40的转速可由计算机控制,电机40通过减速传动系统带动辊筒56旋转,辊子内部有加热元件48和测温元件47,使辊子能保持一定的温度,通过调节辊筒56和工作台的间隙,可实现对材料的加压作用。辊子上还设计了一些可拆装的机构,如挂接式的结构用以安装铺粉盒16和测高器55,如图8所示,在辊子的外壳上端面上可安装用于SLA工艺的刮平装置,如图7所示。
对于SLS工艺,多功能辊提供送粉,旋转和加压功能。如图9所示,在多功能辊的前部可挂接式地安装上铺粉盒,当同步齿形带带动多功能辊17和铺粉盒16到达工作台面上时,计算机控制电磁铁53动作,打开铺粉盒的挡片54,将粉末铺于工作台上。随后,顺时针旋转的辊筒56到达工作台面,将粉末铺平并压实(顺时针旋转的辊筒对粉末有上扬的作用,可保证粉末均匀铺平)。从而保证这一层的粉末具有正常的加工条件。
对于LOM工艺,多功能辊的作用是对纸进行加热加压,如图10所示,保证这一层纸与前一层纸粘牢而且平整辊子工作时,可将铺粉装置16取下,同时拨开离合手柄43,使电机40与辊筒56失去传动离合关系,控制辊筒内的加热元件48和测温元件47工作(测温元件也可装在辊筒的外部),调整好辊筒56与工作台的间隙,装好测高器55,便可进行LOM工艺。
对于SLA工艺,当前液体表面固化完一层后,由于工作台的降升运动,会导致出现气泡等不利于下一层激光固化的缺陷。因而需对液体表面进行刮平处理,如图11所示,刮平装置固定于多功能辊17上,当同步齿形带19带动多功能辊17运动时,刮平器73就对液面进行刮平处理。
对FDM工艺,不需要对表面进行处理,而只需对材料表面进行高度检测。因而,当多功能辊运动到工作台面时,测高器55对已成形材料进行高度检测,以保证零件的高度。2)自动送丝装置自动送丝装置是FDM(熔蜡堆积成形)技术的关键,如图12所示。自动送丝装置包括丝卷,辅助送丝辊6,喷头7等。送丝的驱动力来自喷头上由电机带动的送丝轮81。当送丝轮81运动时,丝卷上的蜡丝80送人FDM喷头。当进行FDM工艺时,将Y导轨滑块13上固定的聚焦镜座14取下换成FDM喷头8并固定好接上蜡丝即可进行FDM工艺。3)自动送纸装置自动送纸装置由从动纸辊25,主动收纸辊27,辅助送纸辊5,收纸电机57及及相应的控制电路。如图13,纸卷装在从动纸辊25上,把纸通过辅助送纸辊辊5,工作台,辅助辊5,到主动收纸辊27上。当每层纸加工完后,收纸电机57在计算机控制下旋转一个角度(这个角度随着收纸卷半径的增大而成比例地减小)。六.多功能激光光路系统在许多快速成形工艺中需要激光做为加工源,因而光路系统不仅要保证激光束能进行X-Y平面扫描,还要满足能适应不同波长激光器的通用要求,光路系统安装在光学平台上,如图14.1)适应多种激光器的光学镜座在图14中,光学镜座3分别安装在光学平台2上,数控系统的X导轨滑块9和Y导轨的滑块13上。光学镜座是用来安放光学反射镜的,聚焦镜座14上要安放反射镜和聚焦镜。激光束经过反射镜的反射通过聚焦镜聚焦于加工平面上(焦平面)。通过控制数控导轨X和Y上滑块的配合运动,使得其上的光学镜座做相应的运动,从而实现聚焦后的激光在加工平面上完成预定的平面运动。对于LOM和SLS工艺,需要CO2激光器(激光波长为的10.6微米);而对于SLA工艺则需要He-Cd(氦镉)激光器(激光波长为325纳米)。因而需要配备适合不同波长激光的全反镜和聚焦镜。在镜座的设计中考虑了方便安装不同镜片的结构。如图15,16所示,图15是聚焦镜座示意图,聚焦镜座14通过支撑板91固定于导轨Y的滑块13上,光学镜片100放在光学镜片座98内,用光学镜片盖99拧紧;聚焦镜97放在支撑长套管95底部,用聚焦镜头盖96拧紧。光学镜片架92与连接套管93通过螺纹连接锁紧,支撑长套管95在连接套管93内沿轴向有一定的移动范围,以保证激光束聚焦后可调节聚焦镜的位置保证焦点在工作台面上。利用抱紧螺母94可将支撑长套管95与连接套管93锁紧。调整好的光路应保证激光束经反射镜100的反射沿连接套管93和支撑长套管95的轴心方向并通过聚焦镜97聚焦在工作平面上。光学镜座的结构图如图16所示。2)电磁快门在光路系统中,我们还配有电磁快门4,如图17示。对电磁线圈通电将铁芯磁化,构成一个电磁铁通过继电器控制上电磁线圈109通电对电磁挡块110的产生磁吸力的作用,使电磁挡块迅速向上运动,即使激光束通过;控制下电磁线圈111通电,上电磁线圈109断电则电磁挡块110迅速向下运动,将激光束截断。因而通过控制电磁挡块的运动,便可控制激光束的通和断,这一方面是某些成形工艺的要求,在激光切割扫描过程停顿时,将激光束迅速关断,保证良好的成形质量;同时也可避免因激光器频繁地开关而导致激光器寿命降低;另外在非成形条件下,激光束受控关断,以保整操作者的安全。七.多功能工作台根据快速成形的分层离散堆积的原理,在工作台上每加工完一层,要使工作台沿分层的方向(高度方向)产生单层进给运动。对不同的工艺,其材料的性状是不同的,如LOM的材料是片层状,SLS的材料是粉末状,FDM的材料是丝状,SLA的材料是液状的,因而我们发明了多功能的工作台以适应不同的成形工艺。
如图18所示,工作台是一个中空的框架,在这个框架上可安放不同的标准平台(不同标准的配件),从而组装成适合不同快速成形工艺的成形平台。多功能工作台具有配件标准化,并且拆装方便等优点。加工成形完成后,即可将标准配件和它上面的成形零件从工作台上取出。将标准配件86,标准配件87,标准配件88安装在工作台上即构成了分层实体制造技术中不同零件成形尺寸(分别为150×150mm,200×200mm,250×250mm)所需的成形平台。标准配件89安装在工作台上构成了熔蜡堆积成形工艺中所需的成形平台。标准配件90安装在工作台上在配以活塞即构成了激光烧结成形工艺中所需的成形平台。本实施例的主要性能指标1.最大成形零件尺寸250×250×250mm2.二维扫描速度(最大)500mm/sec.3.二维扫描及升降台停位精度<0.01mm/100mm4.温度控制实现多点预置,室温到300±2℃内任意可调5.能自动完成的RP工艺LOM(SSM),SLS,FDM6.可集成其他工艺如SLA,3DP等。
权利要求
1.一种可完成多种快速原型制造工艺的多功能设备,主要由加工室和对加工室中各部件的功能进行调控的计算机及相应的控制单元所组成,所说的加工室至少包括激光器以及X-Y向运动的扫描单元,测高单元,同步齿形带及其带动的加热辊,Z向运动的基本工作平台,箔材输送装置,其特征在于,所说的加工室为封闭箱体式的多功能加工室,其内装有送气、排气装置,还包括在所说加工室的侧壁固定的水平放置的光学平台、基准平台和Z向导轨,在光学平台上安装所说的激光器和X-Y向导轨,在光学平台上和X-Y向导轨的滑块上装有由多个光学镜片和聚焦镜组成的光路构成所说的扫描单元,在Z向导轨滑块上安装所说的基本工作平台,在基准平台上安装同步齿轮带和加热辊,所说的加热辊为可由电机及传动装置带动旋转的辊筒、外壳所构成的多功能辊,外壳为下方开一长形槽口的壳体,其外壁适当部位设置有接挂装置和测高装置,辊筒安装在外壳之中,辊筒径向侧壁从外壳槽口露出一适当宽度,辊筒内装有加热元件,测温元件。
2.如权利要求1所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,通过所说的多功能辊的外壳的接挂装置可安装适合不同工艺要求的送料装置。
3.如权利要求2所述的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的送料装置至少包括铺粉装置、刮平装置。
4.如权利要求1所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,还包括固定在Y导轨滑块上的FDM喷头。
5.如权利要求1、2或3所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的基本工作平台为一框架结构,可安装适合于不同工艺要求的多个专用工作台,每个专用工作台底板下面结合一垫板,垫板的尺寸与基本工作平台的框架内尺寸相匹配。
6.如权利要求1所述的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的控制单元包括以工控机为主体,通过工控机各接口相连的X,Y,Z三向导轨电机驱动控制单元,送料装置电机驱动单元,温度控制单元,成形材料高度测量控制单元,激光器的控制单元。
7.如权利要求1或6所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的温度控制电路包括分别安装在多功能辊筒中和工作室内的温度传感器,电阻式加热执行元件,以及温度控制单元。
8.如权利要求1或6所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的高度测量控制单元包括位移传感器、位移-电压变送器、A/D转换板。
9.如权利要求1所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,所说的光学镜座分别安装在光学平台和X导轨的滑块上,所说的聚焦镜座安装在Y导轨的滑块上。
10.如权利要求1、2、3、4、6或8所说的可完成多种快速原型制造工艺的多功能设备,其特征在于,可以在多功能加工室中完成多种快速原型制造工艺。
全文摘要
本发明所述设备主要由加工室和计算机及相应的控制单元所组成,加工室包括激光器以及X-Y-Z三向运动的扫描单元,测高单元,同步齿形带及其带动的加热辊,Z向运动的基本工作平台,箔材输送装置,其特征在于,所说的加工室为内装有送气、排气装置封闭箱体,加热辊为可由电机及传动装置带动旋转的辊筒、外壳所构成的多功能辊。本发明设备能完成多种快速成型工艺,可满足航空航天、汽车、电子、家电、机械、医疗、玩具等行业的用户的多种需求;在该设备上可进行新成型工艺的研究和集成。本设备性能价格比高于现有的其他快速成型设备。
文档编号B22F3/00GK1163807SQ9610474
公开日1997年11月5日 申请日期1996年4月26日 优先权日1996年4月26日
发明者颜永年, 张晓萍, 郭海滨, 王刚, 刁庆军, 卢清华 申请人:清华大学