专利名称:高性能铁-稀土-硼-难熔金属-钴纳米复合材料的制作方法
技术领域:
本发明涉及磁性材料,更特别的是涉及包含铁、稀土元素、硼、难熔金属和钴的磁性纳米复合材料,具有合适的磁性并适合于制造粘结磁体。
已经广泛研究了含有钕、铁和硼的磁性合金,由于其良好的磁性,在烧结和粘结磁体中使用。已经确定Nd2Fe14B相为呈现特别好的磁性的硬磁相。
Koon的美国专利No.4,402,770、4,409,043和Re.34,322在本文中引作参考,公开了一些磁性合金,包含在特定范围内的镧和其它稀土元素、过度金属如铁和钴、以及硼。虽然已经发现所公开的合金具有良好的磁性,但是这些合金并不具有最佳性能,并且在工业上不是有前途的。
本发明提供了良好的磁性并适用于粘结磁体的生产。
本发明提供具有控制组成并有改进磁性的纳米复合磁性材料并且容易加工。本发明的一个目的是提供一种纳米复合磁性材料,包含在特定范围内的Fe、稀土元素(优选的是La、Pr和Nd)、B、难熔金属和钴。
本发明的组合物可以具有分子式(Nd1-yLay)vFe100-v-w-x-zCowMzBx,其中,M是至少一种选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W的难熔金属;v约为5-15;w大于或等于5;x约为9-30;y约为0.05-0.5;z约为0.1-5。优选的是,M为Cr。
本发明的另一个目的是提供一种纳米复合磁性材料,包括硬磁相、软磁相、和优选的难熔金属硼化物沉淀相。硬磁相优选的是Nd2Fe14B,而软磁相优选的是包含α-Fe、Fe3B或其混合物。最优选的是,所述材料包含α-(Fe,Co)和R2(Fe,Co)14B相。
本发明提供一种制造纳米复合磁性材料的方法。该方法包括下列步骤,即提供一种包含Fe、稀土元素(优选的是Nd和La)、至少一种难熔金属(优选的是Cr)、和Co的熔融组合物,快速固化该组合物,形成基本为无定型的材料,并且热处理所述材料。
图1旋转冷却状态(Vs=25米/秒)和最佳热处理后的(Nd0.95La0.05)9.5Fe78Cr2B10.5带的磁性能。图2以Vs=25米/秒淬火的(Nd0.95La0.05)9.5Fe78Cr2B10.5带熔体的X射线衍射谱图。图3最佳热处理后的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带的磁性。图4在最佳热处理后(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带的退磁曲线。图5热处理的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)的TMA扫描,(a)x=0(b)x=2.5(c)x=5(d)x=7.5和(e)x=10,表明存在两种磁性相,即2∶14∶1和α-Fe,并且Tc在两相中都增大。图6在最佳热处理之后的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5带的X射线衍射谱图,其中,(a)x=0,(b)x=2.5,(c)x=5,(d)x=7.5,和(e)x=10。图7具有最佳磁性的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5带的TEM显微组织,其中,(a)x=0,(b)x=5,和(c)x=10。图8对于(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)合金带,δM随外加磁场的变化。
由于其潜在的高剩磁(Br)和最大磁能积((BH)max),已经广泛研究了纳米复合材料用于粘结磁体。在NdFeB体系中,已经开发了两种类型的纳米复合磁体,即α-Fe/Nd2Fe14B[1]和Fe3B/Nd2Fe14B[2,3]。这些纳米复合材料的Br受化学组成以及各相的平均晶粒尺寸、α-Fe和Nd2Fe14B[1]或Fe3B和Nd2Fe14B[2]的体积分数和分布的强烈影响。而且,通过提高软磁相(α-Fe)和/或硬磁相(2∶14∶1相)的饱和磁化强度,可以进一步改善Br和(BH)max。类似地,内禀矫顽力iHc和方形性受元素取代和显微组织的强烈影响[4,5,6]。传统的NdFeB型三元纳米复合材料通常表现出小于9kOe的iHc,而不管其制造方法或元素取代/添加。虽然已经报道Nd8Fe87B5和Nd8Fe87.5B4.5的交换耦合α-Fe/Nd2Fe14B纳米复合材料表现出极高的Br(12.5kG)和(BH)max(23.3MGOe)[7],但是,其低iHc(5.3kOe)可能仍然限制其在某些领域中的应用;例如微型电动机。
本发明的组合物可以具有分子式(RE1-yLay)vFe100y-w-x-zCowMzBx,这里,RE是至少一种除了La以外的稀土元素;M是至少一种选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W的难熔金属;v约为5-15;w大于或等于5;x约为9-30;y约为0.05-0.5;z约为0.1-5。
合适的稀土元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu。本组合物的总稀土含量本文中称为“TRE”。本文所用术语“RE”是指除了La以外的所有合适的稀土元素。优选的RE元素是Nd、Pr、Dy、Tb及其混合物,Nd、Pr及其混合物是最优选的。合适的难熔金属包括元素周期表的Ⅳb、Ⅴb和Ⅵb族的元素,例如,Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W。本组合物的难熔金属含量在本文中表示为“M”,优选的是,M是至少一种选自Ti、V、Nb、Cr和Mo的难熔金属。更优选的是,M是至少一种选自Ti、Nb和Cr的难熔金属。最优选的是,M是Cr或Ti或其混合物。向本发明的纳米复合材料中加入钴的优点一般在约1-40%开始。虽然本发明的特别优选的组合物包含等于或大于约5%的Co。TRE、B、M和Co的典型的、优选的和更优选的范围列于下表中
本发明的磁性材料优选的是通过快速固化和热处理过程生产。通过熔体纺丝(melt spinning)、喷射浇铸、熔体提取(melt extraction)、雾化和急冷凝固等技术把所述组合物从熔融态快速冷却进行快速固化。典型地使用每秒约104-107℃的冷却速度,优选的是每秒约105-106℃。快速固化的材料优选的是基本无定型的。在快速固化后,所述材料可以研磨、可以研磨并热处理或者可以直接热处理。
已经发现本发明的组合物具有改进的可加工性,允许使用较慢的快速固化速度。例如,在熔体纺丝过程中,可以使用缓慢的旋转轮速度和/或加工更大体积的材料。使用较慢的熔体纺丝轮转速的能力是重要的,因为在降低纺轮转速时,与纺轮转速接触的熔融合金块是明显更稳定的。此外,加工更大体积的材料的能力可以降低生产成本。
在所述组合物快速固化到基本无定型状态后,优选的是进行热处理诱导自发结晶。本文所用的术语“自发结晶”是指细晶粒的快速且基本均匀的形成。优选的是把所述材料加热到特定温度,保持可控的时间周期进行自发结晶,这导致晶粒的成核而没有明显的后续的晶粒长大。约400-800℃的温度是合适的,优选的是约600-750℃,更优选的是约645-700℃,最优选的是645-655℃。加热时间为约0.001秒-2小时是优选的,更优选的是约0.01秒-15分钟,最优选的是约8-11分钟。可以在任何合适的设备(例如炉子)中加热所述材料。可以使用连续的和/或间歇的方法。优选的是,在随后的晶粒长大发生之前,把所述材料加热到其结晶温度并且移走热源。
本发明的纳米复合磁性材料的粉末形式适用于形成具有良好磁性的粘结磁体。可以利用制备粘结磁体的任何常规方法。优选的是,把粉末纳米复合磁性材料与粘结及混合并固化。所述粘结剂优选的占粘结磁体的约0.5-4重量%。
已经发现加入纳米复合材料提供了在加热到约180℃并保温约15分钟时,电感的不可逆损失(幅度)小于约-4%、优选的是小于约-3.5%的材料。
实验下列实施例说明本发明的各个方面,并且不限制其范围。
表Ⅰ旋转冷却的和在650、675及700℃热处理10分钟后的(Nd0.95La0.05)9.5Fe78Cr2B10.5带的Br、iHc和(BH)max。
表Ⅱ在最佳热处理后的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带的Br、iHc和(BH)max的比较。
表Ⅲ在最佳热处理后,(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带的iHc、不可逆电感损失和可逆电感温度系数(通常所称为α)的比较。
通过真空感应熔化制造组成为(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)的合金锭。把约3克的合金锭块破碎成适合于熔体纺丝的坩埚尺寸的小块。使用直径约0.7-0.8毫米的喷口的石英喷嘴。用约为15-25米/秒的纺轮速度(Vs)范围生产合金带。利用Cu-Kα辐射的X射线粉末衍射确定合金带中的结晶度。通过热失重分析仪(TGA)以及50Oe的外加磁场(通常称为热磁分析(Thermo Magnetic Analysis(TMA))确定磁性相和相应的居里温度(Tc)。把所选择的部分无定型的带在约650-700℃热处理约10分钟,进行结晶化并改善磁性。用约50kOe的脉冲场磁化所淬火并热处理的带,通过Vibrating Sample Magnetometer(VSM)用12kOe的外加磁场测量所述带的磁性。把尺寸约4毫米×2.5毫米×50毫米的完全磁化的带在0外加磁场、从约2-180℃循环的条件下放在VSM中测量开路性能,及不可逆电感损失。使用Wohlfarth剩磁分析[8,9]确定部分Co取代Fe对所获得的材料的交换耦合作用的强度的影响。
图1所示的分别是熔体纺丝状态的和在约650、675和700℃等温处理约10分钟后的(Nd0.95La0.05)9.5Fe78Cr2B10.5带的Br、iHc和(BH)max。为了方便起见,这些试样的Br、iHc和(BH)max列于表Ⅰ中作为参考。没有任何热处理的所纺制的带的Br、iHc和(BH)max相当低分别为7.6kG、9.9kOe和8.5MGOe,可以归因于合金带的不完全结晶,通过图2所示的无定型前驱体合金的宽峰与2∶14∶1和α-Fe的特征峰重叠可以证实。在适当退火后,Br和(BH)max明显改善。在650℃-10分钟热处理后,获得8.4kG的Br、10.3kOe的iHc和14MGOe的(BH)max。在更高的温度(即约675或700℃)处理时,可以观察到Br和(BH)max的急剧降低,表明可能发生了微细的晶粒长大或者相变。与Br和(BH)max不同,在任何热处理之后,iHc保持相对恒定,为9.5-9.9kOe。所有的值表明对于本发明的材料,约650℃、10分钟的热处理可能是优选的热处理。
图3所示的是对于所述热处理,最佳的Br、iHc和(BH)max随(Nd0.95La0.05)9.5Fe78.5-xCoxCr2B10.5合金系列中的Co含量的变化。开始时,在低Co含量时(即x=2.5和5),Br和(BH)max几乎保持恒定,然后当x增大到7.5以上时,Br和(BH)max增大。在x为7.5和10的试样上获得了大于9.1kG和15.8MGOe的Br和(BH)max。这样的高Br值表明在硬磁相和软磁相之间存在明显的交换耦合作用。Co代替Fe没有明显影响iHc。在本试验的组成内,iHc的范围为9.5-10.3kOe。在x=10的带中,获得iHc为9.5kOe,(BH)max为19.8MGOe。所述高iHc与预计的相反,预计Co取代铁可能弱化硬磁相的各向异性常数,因此导致在纳米复合材料上获得的iHc降低。高Co含量合金在解释保持的高iHc值中起重要作用。推测在Cr的存在下,Co的添加可能改变熔化纺丝的前驱体合金的液体特性,改进纳米复合材料的微观结构。为了方便起见,该合金系列的Br、iHc和(BH)max列于表Ⅱ中用于比较。图4表示的是(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带的第二象限退磁曲线。该退磁曲线的iHc和方形性似乎对Co替代量不敏感。可以推测(BH)max随Co含量的变化遵循与Br相同的趋势。
为了理解引起Br和(BH)max随Co取代量变化的机理,对于约25-900℃的温度范围内,研究磁性相变作为Co含量的结果。图5(a),(b),(c),(d)和(e)所示的分别是最佳处理的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5带的TMA扫描,其中,x=0、2.5、5.0、7.5和10。在对比试样(x=0)中只发现了两个磁性相,即R2Fe14B和α-Fe。发现当Co含量从x=0增大到10时,2∶14∶1相的Tc从约289℃增大到393℃。这表明Co大概可以进入Nd2(Fe,Co)14B相的晶体结构中。还发现当x从0增大到10时,α-Fe的Tc从712℃提高到860℃。同样,这种变化也表明Co也可以形成α-(Fe,Co)固溶体。
通过x射线衍射(XRD)和透射电子显微镜(TEM)也可以比较最佳处理的带的平均晶粒尺寸。图6(a),(b),(c),(d)和(e)所示的是实验合金带的XRD谱图。所研究的所有试样的类似峰宽表明这些试样的平均晶粒尺寸对于α-(Fe,Co)和2∶14∶1相大致是相同的。图7(a),(b)和(c)中所示的分别是(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5的TEM分析,其中,x=0、5和10。在含5%Co的合金中产生略多的晶粒长大(见图7(a)和(b))。当x从5增大到10时,平均晶粒尺寸的差异变得不太明显,如图7(b)和(c)所示。然而,似乎晶界变得更不确定,当x增大到10时,晶界甚至被第二相(未表示出)包围。显微组织的这种变化可以解释为什么iHc对Co含量不敏感。
图8所示的是δM(=md(H)-(1-2mr(H))关于所研究的5种组成的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0、2.5、5和10)带的外加磁场的曲线,这里md是减小的磁化强度,mr是减小的剩磁[8,9]。在这些曲线中的正δM峰高表明在硬磁相和软磁相之间存在交换耦合作用。粘结在x=7.5和10中发现的高Br、晶粒粗化现象和显微组织的变化,可以推断这两个试样的Br和(BH)max增大可能是由于α-(Fe,Co)和2∶14∶1相由于Co取代产生的饱和磁化强度增大。此外,这也可以表明需要妥协通过细平均晶粒增强的交换耦合作用与晶粒粗化和显微组织的变化,以便获得在高Co浓度材料(0<x<10)上的最高Br和(BH)mar。如上所述,Co取代Fe增大了2∶14∶1相的Tc,这对于高操作温度用途也是由吸引力的。
表Ⅲ中所示的是iHc、不可逆电感损耗和可逆电感温度系数α随着所研究材料的Co浓度的变化。对于x=0,不可逆损耗和α分别为-3.5%和-0.184%/℃。当x从0变化到10时,Co取代Fe使α从-0.184%降低到-0.105%/℃。α数值的降低可能直接与在烧结Nd(Fe,Co)B磁体中观察到的Tc的增大[10]。然而,不可逆损耗似乎从-2.7变化到3.5%,而没有与组合物内的Co含量对应。对于x=10,获得-3.4%的不可逆损耗和-0.105%/℃的α。这些数值可以工业上可以获得的用于粘结磁体用途的NdFeB粉末(不可逆损耗为-4.5%,α为0.105%/℃)相比。
在本发明的最佳处理的磁性材料中只存在两种磁性相,即α-Fe和R2Fe14B,包括优选的(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10)带。Co取代Fe(例如x=2.5-10的优选的范围),提高了α-(Fe,Co)和R2(Fe,Co)14B相的居里温度(Tc)。在高Co含量试样中,Br和(BH)max也增大。可以观察到在硬磁相和软磁相之间的交换耦合作用。通过TEM分析在最佳处理的具有稀的Co取代(x=2.5和5)的最佳加工带中发现了晶粒粗化。当x增大到6或更大时,晶粒粗化变得不太明显。例如,在x=10时,观察到包围主晶相的污染晶界相(未表示出)。在优选的组成上,例如分子式为(Nd0.95La0.05)9.5Fe68Co10Cr2B10.5,获得了10.4kG的Br、9.5kOe的iHc和19.8MGOe的(BH)max。而且,发现充分处理的材料的可逆电感温度系数的数值随Co含量增大而减小。
总之,熔体纺丝纳米复合材料,例如(Nd0.95La0.05)9.5Fe78-xCoxCr2B10.5(x=0-10),表明两种磁性相,即α-(Fe,Co)和R2(Fe,Co)14B。Co取代Fe,例如x=2.5-10,提高α-(Fe,Co)和R2(Fe,Co)14B相的居里温度,提高率为约1%的Co取代量约提高20℃。在含有低Co含量(例如,x=5)的最佳加工带上可以观察到最小的晶粒粗化。Co含量的进一步增大对所得的平均晶粒尺寸没有影响。例如,而是一种未知晶界相包围x=10的合金带的主晶相。显微结构的这种变化可能是随着Co含量增大,iHc保持在大于9.5kOe的一个原因。在所有的试样中发现在硬磁相和软磁相之间的交换耦合作用。在x=7.5和10时,明显改善了剩磁Br和最大能积(BH)max,这可能由于α-(Fe,Co)和R2(Fe,Co)14B的饱和磁化强度以及它们之间的交换耦合增大。在(Nd0.95La0.05)9.5Fe68Co10Cr2B10.5中获得了10.4kG的Br、9.5kOe的iHc、19.5MGOe的(BH)max。而且,发现最佳处理材料的可逆电感温度系数(通常表示为α)随Co浓度增大而减小。
参考文献[1]A.Manaf,R.A.Buckley,H.A.Davies and M.Leonowicz,J.Magn.Magn.Mater.(磁性材料杂志),101,360(1991).[2]R.Coehoorn,D.B.De Mooji,J.P.W.B.Duchateau,and K.H.J.Buschoow,J.Phys.(物理杂志)49,C8,669(1988).[3]E.F.Kneller and R.Hawig,IEEE Trans.Magn.(IEEE会刊,磁),27,3588(1991).[4]A.Manaf,P.Z.Zhang,I.Ahmed,H.A.Davies and R.A.Buckley,IEEE Trans.Mag.(IEEE会刊,磁),29(1993)2866.[5]A.Manaf,M.Al-Khafaji,P.Z.Zhang,H.A.Davies,R.A.Buckley andW.Rainforth,J.Magn.Magn.Mater.(磁性材料杂志)128(1993)307.[6]W.C.Chang,D.M.Hsing,B.M.Ma and C.O.Bounds,IEEE Trans.Magn.(IEEE会刊,磁)32(1996),4425.[7]J.Bauer,M.Seeger,A.Zern,and H.Kronmuller,J.Appl.Phys.(应用物理学报)80(1996)1667.[8]F.Vajda and E.D.Torre,J.Appl.Phys.(应用物理学报)75(1994)5689。[9]P.E.Kelly,K.O’Grady,P.I.Mayo and R.W.Cantrell,IEEE Trans.Magn.(IEEE会刊,磁),MAG-25(1989)388.[10]B.M.Ma,W.L.Liu,Y.L.Liang,D.W.Scoot,and C.O.Bounds,J.
Appl.Phys.(应用物理学报),75(1994)6628.
权利要求
1.一种纳米复合磁性材料,其分子式为(RE1-yLay)vFe100-v-w-x-zCowMzBx,其中,RE是至少一种选自由Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu组成的组中的稀土元素;M是至少一种选自Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W的难熔金属;v约为5-15;w大于或等于5;x约为9-30;y约为0.05-0.5;z约为0.1-5。
2.根据权利要求1的纳米复合材料,其中,w大于或等于6。
3.根据权利要求1的纳米复合材料,其中,RE是至少一种选自由Nd、Pr、Dy和Tb组成的组中的元素。
4.根据权利要求1的纳米复合材料,其中,RE是至少一种选自由Nd和Pr组成的组中的元素。
5.根据权利要求3的纳米复合材料,其中,M是至少一种选自由Ti、V、Nb、Cr和Mo组成的组中的难熔金属;v约为9-12;w约为6-20;x约为9-12;y约为0.05-0.1;z约为0.5-4。
6.根据权利要求3的纳米复合材料,其中,M是至少一种选自由Ti、Nb、和Cr组成的组中的难熔金属;v约为9.5-11.5;w约为6-15;x约为10-12;y约为0.05-0.07;z约为0.5-3。
7.根据权利要求3的纳米复合材料,其中,M是Cr;v约为9.5-11.5;w约为7-12;x约为10.5-11.5;y约为0.05-0.07;z约为1-2.5。
8.根据权利要求3的纳米复合材料,其中,M是Ti;v约为9.5-11.5;w约为7-12;x约为10.5-11.5;y约为0.05-0.07;z约为1-2.5。
9.根据权利要求3的纳米复合材料,其中,x大于或等于约9.5。
10.根据权利要求3的纳米复合材料,其中,x大于或等于约10。
11.根据权利要求3的纳米复合材料,其中,x大于或等于约10.5。
12.根据权利要求3的纳米复合材料,其中,x约为10.5-30。
13.一种粘结磁体,包含一种分子式为(RE1-yLay)vFe100-v-w-x-zCowMzBx的纳米复合磁性材料,其中,RE是至少一种选自由Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu组成的组中的稀土元素;M是至少一种选自由Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W的难熔金属;v约为5-15;w大于或等于5;x约为9-30;y约为0.05-0.5;z约为0.1-5;和一种粘结剂。
14.根据权利要求13的粘结磁体,其中,所述粘结剂占粘结磁体的约0.5-4重量%。
15.一种制造粘结磁体的方法,包括提供一种分子式为(RE1-yLay)vFe100-v-w-x-zCowMzBx;的粉末纳米复合磁性材料,其中,RE是至少一种选自由Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu组成的组中的稀土元素;M是至少一种选自由Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W的难熔金属;v约为5-15;w大于或等于5;x约为9-30;y约为0.05-0.5;z约为0.1-5;把粉末纳米复合磁性材料与粘结剂混合;并固化所述粘结剂,形成粘结磁体。
16.根据权利要求1的纳米复合材料,其中,在加热到180℃约15分钟时,其不可逆电感损耗数值小于-4%。
全文摘要
公开了包含铁、稀土元素、硼、难熔金属和钴的磁性纳米复合材料,具有良好的磁性并适合于制造粘结磁体。本发明的组合物可以具有分子式:(Nd
文档编号B22F9/00GK1309811SQ99808567
公开日2001年8月22日 申请日期1999年7月9日 优先权日1998年7月13日
发明者张文成, B-M·马, 陈群, C·O·邦斯 申请人:桑特库美国公司