生产氨/尿素的气化工艺的制作方法

文档序号:3468121阅读:857来源:国知局
专利名称:生产氨/尿素的气化工艺的制作方法
技术领域
本发明涉及氨和尿素的联产方法。
背景技术
在生产氨气(NH3)和尿素((NH2)2CO)时,包含氢气(H2)和一氧化碳(CO)的合成气物流首先供入CO变换单元,将CO转化成CO2,然后经由一个酸性气体脱除装置,使CO2与H2分离。H2和氮气(N2)混合后供入氨气合成单元。CO2与部分NH3产品混合后供入尿素合成单元。该过程的主要反应是(1)(2)众所周知,用气化法可以生成供入氨气/尿素生产装置中的合成气原料。在气化工艺中,烃类物质在富氧气体和温度调节剂的存在下在高温下部分氧化。气化工艺的合成气产品主要包括H2和CO。有多种可供入气化反应器中的烃类物质,从天然气至重油和诸如煤的固体物质。因为天然气的C/H比低于固体和液体烃类物质的C/H比,所以当用天然气气化剂生产合成气时,生成的CO2不足以生产尿素。相反,高C/H比的固体和液体烃类物质生成过量的CO2,其量比生产尿素需要的量大得多,因此,当只用固体和/或液体烃类物质生产合成气时,大部分的CO2要排出。因此,为了使尿素产量最大化,开发一种能够优化合成气中的CO2含量的一体化气化和氨气/尿素生产方法是有利的。另外,大家都知道CO2对环境有副作用,例如造成全球热效应。因此,还需要使一体化气化/尿素生产装置中排出的CO2最少。
发明概述本发明涉及一种氨气和尿素的联产方法,其中,用两个平行气化器以优化混合的合成气产品中的H2/CO2比,以此使氨气和尿素产量最大化。在第一个气化器中,固体和/或液体烃类物质在富氧气体和温度调节剂的存在下部分氧化,以生成包括一氧化碳、氢气和二氧化碳的第二种合成气混合物。富氧气体通常用空气分离单元(ASU)从空气中提取。ASU的副产品-氮气(N2)用在下游氨气生产单元中。
在第二个气化器中,天然气在富氧气体存在下部分氧化,以生成第二种包括一氧化碳、氢气和二氧化碳的合成气混合物。通过运行两个独立进料的平行气化器,可以各自调节各个气化器的进料速度以优化混合的合成气产品物流中的H2/CO2比,以此使氨气和尿素产量最大化,使CO2排放量最少化。
然后将混合的合成气产品物流在CO变换反应器中加工,使合成气中的所有CO转化成H2和CO2。然后在酸性气体脱除单元中将CO2从合成气中除去,通常和H2S及其它所有含硫成分一道除去,剩下基本纯净的H2物流。然后H2物流和来自空气分离单元的N2混合后形成氨气(NH3)。CO2回收单元回收的CO2与至少一部分NH3产品混合后形成尿素((NH2)2CO)。
附图简述

图1是对本发明的一个实施方案的说明,其中,固体和/或液体气化器与天然气气化器平行运行,形成优化的合成气产品。
图2是对本发明的第二个实施方案的说明,其中,当只用天然气气化器时,用CO2发生器弥补合成气中CO2的不足。
说明性实施方案的描述在本发明中,首先得到和制备用于供入气化反应器的含碳燃料。含碳燃料可以是任何可作为用于生产合成气的气化工艺的原料的固体、液体或气体可燃有机物。气化工艺的原料通常是烃类物质,即一种或多种通常是有机物的物质,这类物质包含可用于气化反应的元素氢和碳。烃类物质可以是气体、液体或固体状态,或根据需要使用其结合状态,如流化态的固-液组成。
原料制备步骤不一定是必需的,这要看原料的组成和物理性质。一般来说,固体含碳燃料在供入气化器之前需要用油或水液化。液体和气体含碳燃料可以直接供入气化器,但是,可以对其预处理以除去原料中可能存在的所有杂质。
本申请中用于描述各种合适原料的术语“液体烃类燃料”包括可泵送的液体烃类物质和可泵送的固体含碳材料的液体浆料及其混合物。例如,固体含碳燃料的可泵送的含水浆料是合适的原料。事实上,基本上所有的可燃含碳液体有机物或其浆料都可包括在术语“液体烃类燃料”的定义中。例如有(1)固体含碳燃料如煤、颗粒炭、石油焦、浓缩的下水道污泥及其混合物在可气化的液体载体如水、液体CO2、液体烃类燃料、及其混合物中的可泵送的浆料;(2)适于供入气化器的液体烃类燃料包括各种物质,如液化石油气、石油馏分及残留物、汽油、石脑油、煤油、原油、沥青、柴油、残油、焦油砂油和页岩油、煤提炼油、芳香烃(如苯、甲苯、二甲苯馏分)、煤焦油、流化床催化裂化操作中产生的循环瓦斯油、焦化瓦斯油的糠醛提取物、及其混合物;(3)术语“液体烃类燃料”的定义中还包括氧化烃类有机物,其包括碳水化合物、纤维质、醛、有机酸、醇、酮、氧化燃料油、化学方法产生的含有氧化烃类有机物的废液和副产品、及其混合物。
可单独或与液体烃类燃料一起在部分氧化气化器中燃烧的气体烃类燃料包括气化的液体天然气、炼油厂废气、C1-C4烃类气体、和化学方法产生的含碳废气。
如果使用了原料制备步骤,则在该步骤后将固体和/或液体含碳燃料送入第一个气化反应器或气化器,天然气送入第二个气化器。在这两个气化器中,原料和含反应性游离氧的气体反应,本申请使用的术语“含游离氧的气体”表示空气、富氧空气(即,氧气含量大于21mol%)、和基本纯净的氧气(即,氧气含量约大于95mol%,其余成分通常包括N2和稀有气体)。优选基本纯净的氧气,例如空气分离单元(ASU)产生的氧气。有利的是,烃类物质的部分氧化在气化区在温度控制调节剂如水蒸汽的存在下完成,从而得到热的合成气体或合成气。在本申请的说明书中,合成气和合成气体可互换使用。
在气体发生器的反应区中对控制温度的温度调节剂的需要一般取决于原料中的碳氢比和氧化剂物流中的氧含量。温度调节剂一般和液体烃类燃料一起与基本纯净的氧气一起使用。水或蒸汽是优选的温度调节剂。作为温度调节剂的蒸汽可以以其与一个或两个反应试剂物流的混合物形式引入。温度调节剂也可以通过燃烧器中的单独的导管引入气体发生器的反应区。其它温度调节剂包括富含CO2的气体、氮气、和循环合成气。
气化反应器一般包括反应区,反应区由垂直圆柱状有耐火材料衬里的耐压钢容器和如美国专利2809104(此处引入该专利作为参考)所示的骤冷筒组成。可以用如美国专利2928460(此处引入该专利作为参考)所示的燃烧器将原料物流导入反应区。在气化器的反应区,内容物达到的温度范围一般约为1700°F(927℃)-3000°F(1649℃),更一般地是约为2000°F(1093℃)-2800°F(1538℃)。压力范围一般是约1psi(101kPa)至约3675psi(25331kPa),更一般地是约200psi(1378kPa)至约2000psi(13782kPa),甚至更一般地是约800psi(5513kPa)至约1200psi(8269kPa)。参见描述了部分氧化燃烧器组件的美国专利3945942。参见描述了有机物气化方法和装置的美国专利5656044。还可参见描述了许多现有技术中已知的气化方法中的几种方法的美国专利5435940,4851013和4159238。此处全部引入上述专利的公开内容作为参考。
热气化工艺产品-合成气体或合成气包括一氧化碳、二氧化碳和氢气。常发现于合成气中的其它物质包括硫化氢、氨气、氰化物和颗粒状炭和痕量金属。原料中污染物的含量取决于原料种类和具体使用的气化工艺及操作条件。在任何情况下,都优选将这些污染物除去,以使气化成为一种可行工艺。
当合成气从气化器排出时,将其通入用于清洗的气化骤冷室。穿过水冒泡的大量气体在骤冷筒中造成的紊流状态有助于水清洗掉排出气体中的大量固体。骤冷容器内产生大量蒸汽,使合成气物流饱和。该原料气物流在骤冷筒内冷却后离开骤冷筒的温度约为350°F-600°F(约175℃-315℃),如约450°F-550°F(约230℃-290℃),其压力是约500-2500psia,如约1000psia。有利地是,新的骤冷用水是补给水和后续工艺中产生的冷凝水的混合物。
在气化步骤后,将固体和/或液体烃类气化器产生的合成气与天然气气化器产生的合成气混合。然后可以有利地用蒸汽变换混合的合成气物流,通过水煤气变换反应将合成气中的CO转化成二氧化碳(CO2)和氢气(H2),以优化用于下游氨气和尿素合成单元中的H2/CO2比。用蒸汽和合适的催化剂变换气化器产生的合成气从而形成氢气和二氧化碳的反应如下(3)在变换反应器中约90-98%的CO转化为H2和CO2。进行变换反应的方法和装置在本领域是公知的,本领域普通技术人员能够选择合适的装置完成这一步骤。
合成气从变换单元排出后送往酸性气体脱除单元以除去合成气中的杂质。通常使用胺或物理溶剂的脱除合成气中酸性气体的装置能够将合成气物流中的酸性气体特别是二氧化碳和硫化氢脱除。酸性气体脱除装置一般在低温下操作。合成气冷却到约130°F(54℃)以下,优选约100°F(38℃)以下后,合成气中的污染物,特别是含硫化合物和酸性气体易于脱除。合成气与溶剂在酸性气体脱除接触器中接触。接触器可以是本领域已知的任意类型,包括塔盘或填料塔,这类酸性气体脱除接触器的操作方法在本领域也是公知的。然后将酸性气流送往二氧化碳回收单元,在该单元中,将硫化氢从CO2中脱除,一般将硫化氢送往回收硫工艺,回收的二氧化碳送往下游尿素合成单元。
现在将主要包括氢气的净化合成气送往氨气合成单元。如本申请所述,任何合成氨工艺都可使用。最普通的合成氨的工业方法包括形成1∶3摩尔比的氮气和氢气的混合物,然后根据下述反应式反应(4)然后将该气体混合物压缩至高压(约80bar至约220bar),加热(约450℃至约550℃)后流经催化剂,进行合成氨气的反应。在合成氨气的过程中,反应试剂(氮气和氢气)和产品(氨气)处于平衡状态,因此,为了提高形成的氨气总量,在生成氨气时通过将氨气从反应混合物中分离而使该平衡向形成产品的方向移动。
分离氨气通常是通过将气体混合物冷却至较低温度(约-5℃至约25℃)完成的。在该温度范围内,形成两相混合物,氨是液体,而氮和氢仍为气体。液化的氨与混合物的其它组分分离,然后将余下的氮和氢再加热至氨转化的操作温度,然后再流经反应器。蒸馏和单级闪蒸是用于分离合成气中的氨气的其它方法。
然后使一部分氨产品与从合成气脱除的CO2混合后送往尿素生产单元。如本申请所述,任何尿素合成工艺都可使用。在普通的尿素合成工艺中,氨和二氧化碳供入合成段,根据下述放热反应生成氨基甲酸铵(5)一部分氨基甲酸铵随后根据下述吸热可逆反应水解为尿素和水(6)在通常使用的合成条件下,即,压力是约120-300bar和温度是约170℃-250℃,形成氨基甲酸盐的反应极快,实际上该反应能够彻底进行,但是,水解反应慢慢地达到平衡状态。水解形成尿素的氨基甲酸铵部分不仅取决于反应温度和压力,而且取决于各种反应试剂的比及其在合成段的停留时间。通常使用的摩尔比是氨/二氧化碳为2.5-7;水/二氧化碳为0-1。存在的水既有作为反应产品的水又有作为来自合成段下游的生产部分的循环物流组分的水。合成段的停留时间在20-90分钟内变化。
合成反应的产品基本上由包括氨基甲酸铵、尿素、水和游离氨的溶液组成,因为所有工业上应用的方法都是用大量过量的氨操作以达到高产率并限制有害副产品如缩二脲的生成。游离氨和氨基甲酸铵与合成段得到的尿素溶液分离后,循环到合成段,以彻底转化成尿素。然后必须根据目前的商品规格将尿素溶液进一步加工成粒状产品。各种工业性尿素生产工艺的特征恰恰在于其分离和循环没有转化成尿素的组分的方法。任何已知工艺都可用作本发明的尿素生产单元。
现在参照图1对本发明的第一个实施方案进行示意性说明。固体或液体烃类原料2和温度调节剂4及氧气18一起供入第一个气化反应器6。天然气原料8和氧气20一起供入第二个气化反应器10。氧气18和氧气20由空气分离单元14产生,空气分离单元14将空气12分离成氧气16和氮气22。将分别由第一个气化反应器6和第二个气化反应器10生成的合成气产品22和24混合成合成气物流26。独立调节各个气化反应器的供料速度以优化合成气物流26的组成。例如,如果合成气物流26中需要较高的CO2含量,则应当提高第一个气化反应器6的供料速度,或降低第二个气化反应器10的供料速度。然后将合成气物流26送往变换单元30,在变换单元30中,合成气物流26中存在的大部分CO转化成CO2和H2。
然后将变换后的合成气32在热交换器34中冷却,然后在酸性气体脱除单元38中处理。在酸性气体脱除单元38中,合成气中的CO2和H2分离。通过管线40将CO2和变换后的合成气物流36中存在的所有含硫化合物一起排出。然后将余下的H2物流42与来自空气分离单元14的氮气物流22混合后送往氨合成反应器44。回收氨产品46后,或者将其送往尿素反应器58或者用管线48将其排出用于其它工艺。
然后将CO2废气物流40送往CO2回收单元50,在CO2回收单元50中回收到基本纯净的CO2物流54,剩下废气物流52。将CO2物流54与氨物流56混合后送往尿素反应器58。最后,在尿素反应器58中得到尿素产品60,然后送往储存点或其它下游工艺。根据氨产品48和尿素产品60的需要量,独立地调节分别供入气化器6和10的原料物流2和8。
在第二个实施方案中,只用天然气作为供入氨气/尿素生产单元的原料。天然气可以如上所述进行气化,也可以在蒸汽甲烷重整工艺中加工。如本申请所述,任何已知的蒸汽甲烷重整工艺都可使用。在普通的蒸汽甲烷重整工艺(SMR)中,将天然气加热到约750°F,用一般为氧化锌(ZnO)的固体吸附剂脱除所有的H2S。工艺蒸汽与天然气混合,形成蒸汽/碳比是1.0-3.5(一般是1.5)的混合原料。如果能够得到二氧化碳,则还可以将二氧化碳混入该原料,形成0.1-2.0的CO2/C比。在对流段线圈内将该混合原料(蒸汽和天然气)加热到约900°F~1050°F,然后进入SMR。在SMR中,混合原料流经带有含Ni催化剂(如氧化铝载体上有5-30%Ni)的管,这种催化剂能够促进甲烷和蒸汽的反应,生成氢气和一氧化碳,该重整反应的反应式如下(7)用下述反应式说明水煤气反应(8)还产生含有氢气、一氧化碳、二氧化碳、水和少量未反应的甲烷的合成气。合成气在约1300°F-1700°F下离开SMR。最终的合成气产品含有约70-72mol%的氢、6-8%的未转化的甲烷、8-10%的二氧化碳和10-14%的一氧化碳,所有这些都是基于干燥物计算。
其余步骤与上述实施方案中列举的步骤基本相同。将合成气变换,脱除CO2和其它杂质,H2与N2反应形成氨,CO2和一部分氨反应形成尿素。因为天然气的气化不能生成足够使尿素产量最大化的二氧化碳,所以用二氧化碳生成工艺提供尿素合成工艺的补给CO2。如本申请所述,任何合成二氧化碳的工艺都可使用。
最普通的制备二氧化碳的方法一般涉及粗二氧化碳气的生成、纯化和分离步骤。生成粗二氧化碳气涉及用过量的空气燃烧液体燃料如燃料油或固体燃料如无烟煤、焦炭、木炭等以促进燃料的完全氧化并产生富含二氧化碳的燃烧废气。燃烧废气的纯化一般涉及几个分离处理步骤以产生高纯度气体。这些纯化处理包括洗涤、吸收、吸附、脱附和除去还原性物质。洗涤一般涉及水吸收喷洒(水洗涤)以除去固体物质(油烟、携带的飞灰等),同时冷却该燃烧气体。一般用各种洗涤溶液除去污染物并将燃烧气体混合物中的组分减至二氧化碳、氮气和氧气。还可以使燃烧废气流经含有循环氧化溶液如高锰酸钾溶液的塔以除去气体中携带的痕量有机杂质。
然后将洗涤后的燃烧气体分离,得到富含二氧化碳部分。在一种分离方法中,使燃烧气体混合物循环流过诸如碳酸钾、一乙醇胺等的吸收溶液的逆流喷淋塔。将二氧化碳饱和溶液加热到100℃以上可以使二氧化碳脱附出来。在另一种分离方法中,在变压(pressure swing)吸附系统中通过在沸石床上选择性吸附二氧化碳来分离燃烧混合物。从空气中分离氮气的最普通的方法是低温分馏法、生成惰性气体法(天然气或丙烷在空气中燃烧)和变压吸附法,所有这些方法在本领域都是公知的。
然后将补给二氧化碳与从合成气中脱除的二氧化碳混合,再与一部分氨产品混合后送往上述的尿素合成单元。
现在参照图2对本发明的第二个实施方案进行示意性说明。为简化起见,图2中与图1中相同的单元和物流仍用图1中的单元或物流数字。天然气原料8和氧气20一起供入气化反应器10。氧气20由空气分离单元14产生,空气分离单元14将空气12分离成氧气20和氮气22。然后将合成气产品26送往变换单元30,在变换单元30中,合成气物流26中存在的大部分CO转化成CO2。
然后将变换后的合成气32在热交换器34中冷却,然后在酸性气体脱除单元38中处理。在酸性气体脱除单元38中,合成气中的CO2和H2分离。通过管线40将CO2和变换后的合成气物流36中存在的所有含硫化合物一起排出。然后将余下的H2物流42与来自空气分离单元14的氮气物流22混合后送往氨合成反应器44。回收氨产品46后,或者将其送往尿素反应器58或者用管线48将其排出用于其它工艺。
然后将CO2废气物流40送往CO2回收单元50,在CO2回收单元50中回收到基本纯净的CO2物流54,剩下废气物流52。物流54中回收的CO2通常不具有足以使尿素产量最大化的高流量。因此,要在物流54中加入补给CO278。补给CO278由CO2生产单元产生,其涉及将含碳物质62和空气64一起供入CO2发生器66,产生粗CO2物流68。然后将物流68在热交换器70中冷却,其中可以包括洗涤步骤(图中未示出)。然后将冷却后的物流68送往分离器74,在分离器74中,冷凝液72与CO2物流分离。然后将最终纯化的CO2产品物流78与从合成气中脱除的CO2物流54混合,再与一部分氨产品56混合后送往尿素合成单元58。最后,在尿素反应器58中得到尿素产品60后送往储存点或其它下游工艺。
上述说明性实施方案是为了简单地示意性说明本发明可能的实施方案。化学工程领域的普通技术人员应当理解和意识到任何实施方案的具体细节可以是不同的,其取决于工地位置和要考虑使用的系统。所有这些能够达到本发明目的的设计、示意性选择和实施方案都认为在本领域普通技术人员的能力范围之内,因此处于本发明的保护范围内。
虽然已经结合一些优选实施方案对本发明的装置、化合物和方法进行了说明,但是,在不背离本发明的概念和保护范围的情况下对本申请所描述的工艺进行一些改变对本领域普通技术人员来说是显而易见的。所有这些对本领域普通技术人员来说是显而易见的相似性取代和变化都认为在本发明的保护范围和概念内。
权利要求
1.一种工艺,其包括(a)部分氧化固体或液体烃类物质或其混合物,方法是使所述物质与富氧气体在温度调节剂的存在下反应,以生成包括一氧化碳、氢气和二氧化碳的第一种合成气混合物;(b)部分氧化天然气原料,方法是使所述天然气与富氧气体反应,以生成包括一氧化碳、氢气和二氧化碳的第二种合成气混合物;(c)将第一种合成气混合物与第二种合成气混合物混合,形成混合的包括一氧化碳、氢气和二氧化碳的合成气混合物;(d)将混合的合成气混合物中的部分一氧化碳转化成氢气和二氧化碳;(e)从混合的合成气混合物中脱除二氧化碳,剩下氢气物流;(f)使氢气物流和氮反应,生成氨;和(g)使部分氨和部分二氧化碳反应,生成尿素。
2.根据权利要求1所述的工艺,其中的富氧气体和氮由空气分离单元供应。
3.根据权利要求1所述的工艺,其中,混合的合成气混合物还包括硫化氢。
4.根据权利要求3所述的工艺,其中还包括将硫化氢和二氧化碳一起从混合的合成气混合物中脱除。
5.根据权利要求4所述的工艺,其中还包括至少将一部分二氧化碳与硫化氢分离。
6.根据权利要求5所述的工艺,其中,分离的二氧化碳与部分氨反应,生成尿素。
7.根据权利要求1所述的工艺,其中,固体或液体烃类物质选自煤和油。
8.一种工艺,其包括(a)部分氧化天然气原料,方法是使所述天然气与富氧气体反应,以生成包括一氧化碳、氢气和二氧化碳的合成气混合物;(b)将合成气混合物中的部分一氧化碳转化成氢气和二氧化碳;(c)从合成气混合物中脱除二氧化碳,剩下氢气物流;(d)使氢气物流和氮反应,生成氨;(e)提供补给二氧化碳物流;(f)将补给二氧化碳物流和来自步骤(c)的二氧化碳混合;(g)使部分氨和步骤(f)得到的混合二氧化碳物流反应,生成尿素。
9.根据权利要求8所述的工艺,其中的富氧气体和氮由空气分离单元供应。
10.根据权利要求8所述的工艺,其中,合成气混合物还包括硫化氢。
11.根据权利要求10所述的工艺,其中还包括将硫化氢和二氧化碳一起从合成气混合物中脱除。
12.根据权利要求11所述的工艺,其中还包括至少将一部分二氧化碳与硫化氢分离。
13.根据权利要求12所述的工艺,其中,分离的二氧化碳和步骤(f)中的补给二氧化碳物流混合,然后与部分氨反应,生成尿素。
14.根据权利要求8所述的工艺,其中的补给二氧化碳物流由二氧化碳发生器供应。
15.根据权利要求14所述的工艺,其中还包括在二氧化碳发生器中燃烧空气和烃类物质,生成补给二氧化碳物流和水。
16.根据权利要求15所述的工艺,其中还包括将补给二氧化碳物流冷却,并将补给二氧化碳物流和水分离。
17.根据权利要求16所述的工艺,其中还包括将补给二氧化碳物流纯化。
18.一种工艺,其包括(a)部分氧化固体或液体烃类物质、或其混合物,方法是使所述物质与富氧气体在温度调节剂的存在下反应,以生成包括一氧化碳、氢气和二氧化碳的第一种合成气混合物;(b)部分氧化天然气原料,方法是使所述天然气与富氧气体反应,以生成包括一氧化碳、氢气和二氧化碳的第二种合成气混合物;和(c)将第一种合成气混合物与第二种合成气混合物混合,形成混合的包括一氧化碳、氢气和二氧化碳的合成气混合物。
19.根据权利要求18所述的工艺,其中,固体或液体烃类物质选自煤和油。
全文摘要
本发明涉及一种氨和尿素的联产方法,其中,用两个平行气化器优化混合的合成气产品中的H
文档编号C01C1/04GK1384045SQ0210750
公开日2002年12月11日 申请日期2002年3月14日 优先权日2001年5月7日
发明者W·C·F·冯, E·A·里奇 申请人:德士古发展公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1