专利名称:一种制备富氢流的方法
技术领域:
本发明涉及一种制备富氢流的方法,并且提供一种能提高以燃料为基础的氢设备生产能力的简易方法。
氢设备能利用例如天然气、液态碳氢化物或固态燃料如碳、生物质的燃料。在这些设备中,氢的生产发生在四个连续的工序中——进料纯化,接着是蒸汽转化(或气化),水气的变换(WGS)和纯化。这些工序在KirkOthmer和Ullman中进一步描述。
WGS反应用下述方程式描述(1)这是一个用以产生更多氢的轻微的放热反应。在工业化高温变换(HTS)应用中已知的WGS催化剂是以铬作支持且铁为基础的高温催化剂,有时由铜促进。HTS可操作的范围典型的是入口温度为340-360℃,出口温度大约比其高100℃。对于低温变换(LTS)催化剂入口温度的可操作温度范围为从200℃开始(或高于气体露点20℃)。入口温度应保持尽可能低。关于用于变换反应的催化剂和操作温度进一步的细节在Catalyst Handbook中描述,第二版,Manson PublishingLtd,英国1996。
除了这些催化剂,Haldor Topse A/S已有商品化的中温变换催化剂,该催化剂以铜为基础,能在温度至多到310℃下使用。各种卖家为以气化作基础的设备提供耐硫的催化剂。然而,这些设备并不是广泛的用于氢生产。
甲醇的制造占很大的比例,大于30MMt/y。基本上,甲醇在具有产量高于2000MTPD的大型设备生产,这些设备位于天然气便宜的地方。具有便宜天然气的地方甲醇的生产成本数量级估计为60-80USD/MT。
将来,期望获得大量的甲醇,且基于能量基础的价格能显著低于石油价格。
近几年,出现了关于甲醇蒸汽转化以生产氢及特别是用于燃料电池的氢的大量研究。蒸汽转化工艺的缺点在于通过壁提供反应热,因此设备变得笨重。
甲醇低温蒸汽转化的催化剂以铜为基础,或者任选地以贵金属为基础。一些公司,如Haldor Topse A/S提供商品化的产品。
美国专利No.5,221,524描述了一种制备氢的方法,其中转化气体在经历低温变换反应之前被冷却,该低温变换反应通过铜催化剂进行催化,入口温度为205℃。液体甲醇分散式地提供给变换器,并且没被转变的甲醇被再次循环给甲醇提供源和变换反应器。催化剂对于一氧化碳的低温变换转变和甲醇蒸汽转化以得到氢及二氧化碳的反应均具有活性。变换转变反应产生的热可用于加速甲醇分解的吸热反应。
美国专利申请No.2001/0038816描述了一种气体发生器,该发生器利用变换反应器产生氢,并且需为变换反应器提供转化气和水,其中含有少量用于霜冻保护的甲醇。该气体发生器被连接到燃料电池结构上。
日本专利申请No.59203702描述了一种制备氢的方法,其中甲醇和蒸汽在变换反应器中反应,流出的气体被净化,并且除去氢。剩余气体经燃烧,产生的热量可用作在变换反应器中甲醇分解的热源。
日本专利申请No.3254071描述了一种改性乙醇并为燃料电池产生氢的方法。天然气在甲醇改性装置中与空气反应,产生的热可用于甲醇/水混合物的转变。
本发明的目的是提供一种利用催化剂制备氢的方法,该催化剂能在较大的温度范围内使用。
根据本发明,提供了一种制备富氢流的方法,该方法包含在至少一个变换步骤中,在包含铜、锌和铝和/或铬的催化剂存在下,将含一氧化碳的气体、甲醇和水相接触。
可以通过加入甲醇到水汽变换反应器的进料流中实施本方法,反应器包含的铜基催化剂含有锌、铝和/或铬,且结果伴随着水汽变换反应甲醇被催化分解。在恒温情况下,通过放热水汽变换反应释放的热量平衡了用于甲醇吸热蒸汽转化所需的热量。进料流中的显热可进一步用于此过程,因此显著更大量的甲醇可以进行蒸汽转化。
本发明方法中使用的催化剂既可以在较低温度下也可以在350℃以上的高温下使用。
通过在该方法中利用这种催化剂,来自于此单元的氢生产可以被促进到100%。或者,该方法可以用于在转化部分减少负荷。同样可以在氨设备中应用本发明的方法提高生产量。
吸热甲醇蒸汽转化反应为(2)同来自于WGS反应的潜在热量一样,可以从气体中的显热获得必要的反应热。在本发明的方法中使用的催化剂可以容许最大入口温度,并且在低得多的温度下仍然是活性的,此低温主要取决于期望保持出口甲醇的浓度足够低(典型的温度范围为240-320℃)。
铁基变换催化剂添加甲醇的试验显示在这些催化剂上发生了显著量的甲烷形成。这也是采用Lurgi发展的Hytanol方法的民用燃气的大规模生产的结果。
任何规模的氢设备都可以应用本发明。另外,证实本发明对基于气化的组合循环动力设备或燃料处理器中的峰削目的特别有效,例如,通过在自热转化器之后注入(液体的)甲醇水混合物。
附图
对本发明的方法进行了说明。合成气1被注入到变换部分2。甲醇3和水4的流同样被注入到发生变换步骤的变换部分2。甲醇流3既可以液体的形式被加入,也可以蒸汽的形式被加入。水4可以蒸汽加入。变换部分包含催化剂,该催化剂对于一氧化碳的变换转变反应和甲醇的蒸汽转化反应均具有活性。甲醇的吸热蒸汽转化反应所需热量可以通过变换转变反应提供的热量获得。产物为富氢流5。
本发明适宜的催化剂包括铜、锌、铝和/或铬。使用此催化剂可以提高产量,并且此催化剂既可以在较低温度下也可以在350℃以上的高温下使用。
甲醇和水以蒸汽形式加入具有的好处是可以避免在变换部分需要复杂的分散元素以分配液态甲醇。另外一个有利之处在于变换部分始终可以产生高的反应物分压。甲醇可作为单独的流加入,这是有利的。
变换部分可以包含单独的变换步骤或者变换步骤的组合。本发明的一个实施方案包括的方法是至少一个变换步骤是中温或高温变换步骤。本发明的另一个实施方案包括的方法是中温或高温变换步骤之后是低温变换步骤。变换步骤的其它组合也是可能的且包含于本发明的方法。
合成气流1可以通过各种源得到,例如蒸汽转化气、二次转化器、自热转化器或上流预转化器。
本发明的特别实施方案包含的方法,在进入变换步骤之前,碳氢流和蒸汽首先预转化得到甲烷,然后蒸汽转化得到含有一氧化碳的气体。变换反应之后,产生的氢被分离,未转变的甲醇重新循环到预转化器中。
除了甲醇,可以采用其它类似物质比如甲基形式、甲醛或甲酸。
本发明方法的优势可以在以下实施例中进行说明。
实施例来自于Haldor Topse A/S的下述催化剂在实施例中使用。
催化剂ASK201-2-高温变换催化剂,该催化剂包含铜、铁和铬的氧化物。
催化剂BMK101-甲醇合成催化剂,该催化剂包含铜、锌和铝的氧化物。
催化剂CMK121-甲醇合成催化剂,该催化剂包含铜、锌和铝的氧化物。
实施例1是比较实施例,用于说明例如催化剂A的催化剂不适合于通过甲醇裂解得到产物氢。实施例2-13用于说明使用铜基催化剂的本发明的范围。在这些实施例中,说明了根据本发明的方法如何显著增加氢产量并具有非常高的效率。实施例14-18作为比较实施例说明了在正常水汽变换条件下催化剂的性能。催化剂C用于这些实施例。
实施例1(比较的)10g催化剂A通过蒸汽和含有15%CO、10%CO2和75%H2的干燥气体被活化。进一步于380℃、50Nl/h的干燥气流量,和压力2.3MPa下45Nl/h的蒸汽流量下进行测试。70小时后出口干燥气中CO的浓度为3.7%。接着加入0.5Nl/h的甲醇,导致CO出口浓度增加到4.0%,并且出口CH4的浓度从20ppm增加到1000ppm。而且,反应器后的冷凝水含有显著量的未转变的甲醇,大约相当于加入甲醇的50%。当甲醇除去时,CH4的形成减少到25ppm,且CO的形成为3.9%。
结果清楚地表明此催化剂不适用于催化甲醇分解为氢和碳氧化物。
实施例2185℃、0.1MPa压力下,15.2g催化剂B在稀释氢(1-5体积%)中被还原,并且导入含有43.1%氢,14.3%一氧化碳,11.1%二氧化碳和31.5%氮的合成气。压力增加到2.5MPa,温度升高到235℃。水中甲醇质量比为19.63%的溶液被蒸发并与合成气合并进料。干燥气流量为100Nl/h,然而液体流量为41.6g/h,相当于蒸气流量为41.6Nl/h,且甲醇流量为5.7Nl/h。当剩余蒸汽和甲醇浓缩后,出口气被分析。在这些条件下,CO出口浓度等于0.90%,且CO2出口浓度为21.7%,且干燥气流流量增加到130Nl/h。任何时候检测限约1ppm时未发现CH4。
在这些条件下,在催化剂床之后立刻测定出口温度为242℃,且反应器中液体流量出口为20.8g/h,并具有浓度为8.14%(质量比)的甲醇。因此甲醇出口流量为1.18Nl/h。这相当于甲醇转变C(M)为C(M)=(甲醇流量入口-甲醇流量出口)/甲醇流量出口)/甲醇流量入口*100%=79.3%一氧化碳转变计算作C(CO)C(CO)=(CO流量入口-CO流量出口)/CO流量入口*100%=91.8%氢产量计算作Prod(H2)Prod(H2)=(氢流量出口-氢流量入口)/催化剂量=1700NlH2/kg/h。
碳量平衡,C(in)/C(ex),发现为1.02。结果总结在表1中。
实施例3-7除了温度有所变化,同实施例2一样,干燥气流量和液体流量按照表1所示。催化剂的量同实施例2一样。对实施例7中出口气可凝结部分的分析显示乙醇的浓度为10ppm(质量比)。在实施例3-7中没有观测到更高级的醇、甲烷和任何其它的碳氢化物。在实验精确度内,甲醇转变为碳氧化物和氢的选择性为100%。
实施例8185℃、0.1MPa压力下,15.1g催化剂C在干燥稀释氢(1-5体积%)中被还原,并且导入含有43.1%氢,14.3%一氧化碳,11.1%二氧化碳和31.5%氮的合成气。压力增加到2.5MPa,温度升高到216℃。水中甲醇质量比为22.37%的溶液被蒸发并与合成气合并进料。干燥气流量为50Nl/h,然而液体流量为16.0g/h,相当于15.5Nl/h的蒸汽流量,且甲醇流量为2.5Nl/h。当剩余蒸汽和甲醇浓缩后,出口气被分析。在这些条件下,CO出口浓度等于0.64%,且CO2出口浓度为22.3%,且干燥气流流量增加到63Nl/h。任何时候检测限约1ppm时未发现CH4。在这些条件下,在催化剂床之后立刻测定出口温度为219℃,且反应器中液体流出口为18.7g/h,并具有浓度为11.26%(质量比)的甲醇。因此甲醇出口流为1.47Nl/h。
转变率按上述计算为C(M)=56.9%,且C(CO)=94.3%。氢的产量为Prod(H2)=749Nl H2/g/h。碳量平衡为1.00。在催化剂C上,甲醇促进转变的结果总结在表2中。
表1
实施例9除了与表2中示出的干燥气流量和液体流量不同以外,试验同实施例8类似。甲醇转变为碳氧化物和氢的选择性为100%。
实施例10在入口温度为313℃,干燥气流量为100Nl/h,液体流量为60g/h,压力为2.5MPa,并且加入实施例8-9中组合物的条件下,用于实施例8-9的催化剂在流体中停留120小时。甲醇转变为碳氧化物和氢的选择性为100%。此期间,一氧化碳出口浓度为稳定的1.25±0.05%。120小时之后,冷凝物的再次分析结果在表2中给出。
实施例11-13除了与表2中示出的温度、干燥气流量和液体流量不同以外,这些试验同实施例10类似。
实施例14-17(比较的)除了甲醇从液体进料中排除以外,这些试验同实施例10-13类似。没有添加甲醇的催化剂C的结果在表3中显示。
表2
表3
上述实施例清楚的证实了氢产量可以通过在合成气中添加甲醇并且将得到的混合物暴露于含有铜的催化剂而显著提高。因此,当15g催化剂MK121被暴露于合成气时,入口温度为313℃,干燥气流量为100Nl/h,蒸汽流量为57Nl/h,压力为25巴,氢的产量等于1040Nl/kg/h(实施例17)。在此实施例中,出口温度为327℃且CO浓度为1.15%。使用同样的催化剂,添加9.4Nl/h甲醇到进料中,但采用相同的操作条件,氢的产量增加到2550Nl/kg/h(实施例10)。此实施例中的出口温度为310℃,CO浓度为1.23%。
权利要求
1.一种制备富氢流的方法,该方法包括在至少一个没有外部热量添加的变换步骤中,在包含铜、锌和铝和/或铬的催化剂存在下,将含一氧化碳的气体、甲醇和水相接触,变换入口的温度至少280℃,且压力至少为2.0MPa。
2.权力要求1的方法,其中甲醇和水为蒸汽形式。
3.权力要求1的方法,其中甲醇和水为液体形式。
4.权力要求1和2或3的方法,其中至少一个变换步骤为中温或高温变换步骤。
5.权力要求4的方法,其中中温或高温变换步骤之后是低温变换步骤。
6.权力要求1、2、4和5的方法,其中含有一氧化碳的气体通过碳氢化物进料的转化得到。
7.权力要求6的方法,其中碳氢化物进料在转化步骤前进行预转化。
8.权力要求7的方法,其中未反应的甲醇从变换步骤流出物中分离并重新循环到预转化步骤。
9.权力要求4的方法,其中变换入口温度至少为300℃。
全文摘要
一种制备富氢流的方法,该方法包括在至少一个变换步骤中,在包含铜、锌和铝和/或铬的催化剂存在下,将含一氧化碳的气体、甲醇和水相接触,变换入口的温度至少280℃,且压力至少为2.0MPa。
文档编号C01B3/16GK1856441SQ200480009024
公开日2006年11月1日 申请日期2004年3月25日 优先权日2003年4月1日
发明者P·E·H·尼尔森, J·B·汉森, N·C·希奥特 申请人:赫多特普索化工设备公司