专利名称:制造结晶金属硅酸盐的方法
技术领域:
本发明涉及制造结晶金属硅酸盐(或沸石)的方法。沸石已经被证实对多种类 型的烃转化具有催化性能。此外,沸石已被用作用于多种类型的烃转化过程以及其它应用 的催化剂载体和吸附剂。更准确地说,通过本发明的方法制造的结晶金属硅酸盐包含晶粒 (crystallites),所述晶粒在外表面上和接近外表面处所具有的硅/金属比高于所述晶粒 的内部部分中的硅/金属比。在以下的描述中,外表面和接近外表面的部分可称为外层或 壳,内部部分可称为核。
背景技术:
结晶金属硅酸盐为具有通过χ-射线衍射测定的确定的晶体结构、拥有大量的可 通过孔相互连接的较小洞穴的有序多孔结晶材料。这些通道(孔道,charmcl)或孔的尺寸 使得容许吸附具有一定尺寸的分子,同时抵制具有更大尺寸的分子。由该晶体网络形成的 间隙空间或通道使得沸石能够用作分离过程中的分子筛以及各种的烃转化过程中的催化 剂和催化剂载体。沸石或金属硅酸盐由氧化硅网络和任选的金属氧化物组成,所述金属氧 化物任选地与可交换的阳离子例如碱或碱土金属离子组合。虽然术语“沸石”包括含有二氧 化硅和任选的氧化铝的材料,但应认识到,所述二氧化硅和氧化铝部分可全部或部分地用 其它氧化物代替。例如,氧化锗可代替所述二氧化硅部分。金属硅酸盐的氧化物骨架中除 硅以外的金属阳离子可为铁、铝、钛、镓和硼。因此,术语“沸石”在此是指微孔结晶金属硅酸 盐材料。金属硅酸盐的催化性能是由沸石骨架中不同于硅的元素的存在导致的。以金属阳 离子代替氧化物骨架中的硅产生潜在的催化活性位点。最著名的金属硅酸盐是在晶体的孔 中呈现酸性基团的铝硅酸盐。以成分例如具有较低价态的氧化铝代替二氧化硅造成正电荷 不足,其可通过阳离子例如氢离子补偿。沸石的酸度可在沸石的表面上,而且还可在沸石的 通道内。在沸石的孔内,烃转化反应例如烷烃异构化、烯烃骨架或双键异构化、低聚、歧化、 烷基化、和芳族化合物的烷基转移可由分子筛的通道尺寸所施加的约束条件控制。存在于 孔内部的酸性质子受择形约束条件(shape selective constraints)的支配。“择形”催化 的原理已经例如由 N. Y. Chen,W. E. Garwood和 F. G. Dwyer 在〃 Shape selective catalysis in industrial applications" ,36,Marcel Dekker,he.,1989 中进行了广泛综述。但是, 酸性基团也可存在于金属硅酸盐晶体的外表面处。这些酸性基团不受由晶体孔结构所施加 的择形约束条件的支配。外表面上的酸性基团在本文中称作外表面酸度。外表面酸度可催 化不合乎需要的反应,其使产物选择性降低。典型的不受由晶体孔结构所施加的约束条件 支配的非选择性表面催化反应为(1)烯烃的大量低聚/聚合,(2)在约束孔结构内选择性 地产生的烷基芳族化合物的异构化,(3)多环芳族化合物的形成,(4)芳族化合物的多重烷 基化,(5)烯烃和/或烷烃的多重支化,和(6)焦炭的大分子型前体的形成,其导致不期望的 炭沉积。外表面酸度的相对量由晶体尺寸决定;小晶体具有比大晶体多的外表面酸度。通 常有利的是,减少沸石或金属硅酸盐的外表面酸度的存在以改善它们的工艺性能。性能度 量包括产物选择性、产品质量和催化剂稳定性。
许多现有技术已经描述了这样的晶粒,其在外表面上和接近外表面处所具有的硅 /金属比高于在该晶粒的内部部分中的硅/金属比。所述现有技术描述了其中制造晶粒并 然后以二氧化硅或富含二氧化硅的组合物涂覆所述晶粒的第一种类型的方法。在第二种类 型的方法中,制造晶粒并进一步对其进行处理以从表面层去除部分金属以获得比该晶粒的 内部部分中高的硅/金属比。在第三种类型的方法中,制造晶粒并进一步对其进行处理以 阻止(hinder)外层中的金属位点。在EP 1661859A1的背景技术部分中列举了这些现有技 术。EP 1661859A1和WO 2006092657各自描述了直接制造晶粒的方法,该晶粒在外表 面上和接近外表面处所具有的硅/金属比高于在该晶粒的内部部分中的硅/金属比。EP 1661859A1描述了结晶金属硅酸盐组合物,其包含晶粒,所述晶粒具有晶体外 表面层和内部部分,所述晶体外表面层具有在外表面下面约IOnm的深度,所述内部部分从 在外表面下面约50nm的深度向内延伸,其中,在该金属硅酸盐组合物中,该晶体外表面层 中的硅/金属原子比是该内部部分中的硅/金属原子比的至少1.5倍高。用于制造所述结 晶金属硅酸盐组合物的方法包括下列步骤(a)提供包含水性液相和非水性液相的两相液体介质,该两相液体介质进一步包 含至少一种含硅化合物和至少一种含金属的化合物;和(b)从该两相液体介质中结晶出结晶金属硅酸盐组合物。WO 2006092657描述了结晶金属硅酸盐组合物,其包含晶粒,所述晶粒具有晶体外 表面层和内部部分,所述晶体外表面层具有在外表面下面约IOnm的深度,所述内部部分从 在外表面下面约50nm的深度向内延伸,其中,在该金属硅酸盐组合物中,该晶体外表面层 中的硅/金属原子比是该内部部分中的硅/金属原子比的至少1. 75倍高。用于制造所述 结晶金属硅酸盐组合物的方法包括下列步骤(a)提供包含至少一种含硅化合物和至少一种含金属的化合物的水性液相;和(b)从该水性液相中结晶出结晶金属硅酸盐组合物,该结晶步骤具有第一阶段以 及随后的第二阶段,并且其中在第二阶段中,所述至少一种含硅化合物在水性液相中的浓度升高。现在已经发现一种更高效率的且实施起来更简单的制造所述晶粒的新方法,所述 晶粒在外表面上和接近外表面处所具有的硅/金属比高于在该晶粒的内部部分中的硅/金 jM比。
发明内容
本发明涉及制造结晶金属硅酸盐组合物的方法,所述组合物包含晶粒,所述晶粒 具有内部部分(核)和外部部分(外层或壳),使得所述外部部分中的Si/金属比高于所述内部部分中的Si/金属比,所述晶粒在晶体横截面(crystalline cross-section)上具有金属和硅的连续分 布,所述方法包括a)提供包含0H_阴离子和金属源的水性(含水,aqueous)介质,b)提供包含无机硅源和任选的模板剂的水性介质,
c)任选地提供非水性(非水,non-aqueous)液体介质,其任选地包含有机硅源,d)将所述介质a)、b)和任选的c)在有效地结晶出所需金属硅酸盐的条件下混合,e)收取所需的金属硅酸盐,其中,在结晶之前,在混合物a)+b)+c)中,Si有机/Si无机(Siorg/Si inorganic)比 小于0. 3、有利地小于0. 2且优选为0,OHVSiO2摩尔比为至少0. 3、有利地为0. 3 0. 62、 优选为0. 31 0. 61、更优选为0. 32 0. 61、非常优选为0. 33 0. 6,和在结晶之前,所述混合物a) +b) +c)的pH高于13。结果,所述金属硅酸盐具有相对于内部的孔的降低的表面活性,所述内部的孔受 孔结构的择形约束条件的支配。该方法也称为一锅法。有利地,在结晶之前,所述混合物a)+b)+c)的pH优选高于13. 1、更优选高于 13. 2、还更优选高于13. 3且最优选高于13. 4。有利地,所述无机硅源选自沉淀二氧化硅、火成二氧化硅(pyrogenic silica)(或 热解二氧化硅(fumed silica))、以及二氧化硅的含水(aqueous)胶体悬浮液中的至少一 种。优选地,在加入碱性介质之前,所述无机硅源在水中具有有限的溶解性。优选地,所述有机硅源为原硅酸四烷基酯。有利地,所述金属源选自金属氧化物、金属盐、以及金属烷氧基化合物中的至少一 种。有利地,所述金属硅酸盐为铝硅酸盐,且铝源有利地选自下列的至少一种溶解在 碱性溶液中的水合氧化铝,铝金属,水溶性铝盐例如硫酸铝或硝酸铝或氯化铝,铝酸钠,和 烷氧基化合物例如异丙氧基铝。有利地,所述金属硅酸盐为硼硅酸盐,且硼源选自下列的至少一种溶解在碱性溶 液中的水合氧化硼,水溶性硼盐例如氯化硼,以及烷氧基化合物。有利地,所述金属硅酸盐为铁硅酸盐,且铁源为水溶性铁盐。有利地,所述金属硅酸盐为镓硅酸盐,且镓源为水溶性镓盐。有利地,所述金属硅酸盐为钛硅酸盐,且钛源选自商化钛、商氧化钛、硫酸钛和烷 氧基钛中的至少一种。有利地,所述非水性液体介质包括基本上不溶于水或不与水混溶的有机溶剂。优 选地,所述有机溶剂包括具有至少5个碳原子的醇或具有至少5个碳原子的硫醇中的至少 一种。优选地,所述醇具有最高达18个碳原子和所述硫醇具有最高达18个碳原子。有利地,所述0H—阴离子源为氢氧化钠。本发明还涉及结晶金属硅酸盐组合物作为用以通过甲醇对甲苯进行烷基化以制 造二甲苯的催化剂的用途,所述结晶金属硅酸盐组合物包含晶粒,所述晶粒具有内部部分 (核)和外部部分(外层或壳),使得所述外部部分中的Si/金属比高于所述内部部分中的Si/金属比,所述晶粒在晶体横截面上具有金属和硅的连续分布。本发明还提供结晶金属硅酸盐组合物,其包含晶粒,所述晶粒在晶体横截面上具 有金属和硅的连续分布,所述晶粒具有晶体外表面层和内部部分,所述晶体外表面层具有 在所述外表面下面约IOnm的深度,所述内部部分从在所述外表面下面约100-200nm的深度 向内延伸,其中,在所述金属硅酸盐组合物中,所述晶体外表面层中的硅/金属原子比有利地为所述内部部分中的硅/金属原子比的至少1.3倍高。在所述金属硅酸盐组合物中,所 述晶体外表面层中的硅/金属原子比优选为所述内部部分中的硅/金属原子比的1. 3 15 倍高、更优选2 10倍高、最优选3 5倍高。优选地,所述内部部分具有11 1000、更优 选20 500的硅/金属原子比,且所述晶体表面具有216 15000、更优选沈 5000的硅 /金属原子比。优选地,所述内部部分具有基本上恒定的硅/金属原子比。本发明还涉及上 述结晶金属硅酸盐组合物在通过甲醇对甲苯进行烷基化以制造二甲苯中的用途,所述结晶 金属硅酸盐组合物包含晶粒,所述晶粒具有晶体外表面层和内部部分,所述晶体外表面层 具有在所述外表面下面约IOnm的深度,所述内部部分从在所述外表面下面约100-200nm的 深度向内延伸,其中,在所述金属硅酸盐组合物中,所述晶体外表面层中的硅/金属原子比 有利地为所述内部部分中的硅/金属原子比的至少1. 3倍高。另外,本发明提供通过本发明的方法获得的结晶金属硅酸盐组合物在烃转化过程 中作为催化剂组分的用途。有利地,首先将所述介质b)和C)混合,并且进一步将介质a)缓慢加入到混合物 b)+c)中直至获得水凝胶。然后,通过加热进行结晶,有利地在搅拌条件下进行。在结晶之 后,与在任何沸石合成中一样,进一步进行冷却、过滤、洗涤、干燥和最后的煅烧步骤。
具体实施例方式可通过本发明的方法制造的特征在于构成元素的空间分布且特征在于富含硅的 表面的金属硅酸盐可为任何能够在碱性介质中合成的合成结晶沸石。有利地,根据本发明的沸石选自下列的组MFI (ZSM-5、硅沸石(si 1 ical ite)、 TS-1) ;MEL(ZSM-11、硅沸石-2、TS-2) ;MTT(ZSM_23、EU-13、ISI-4、KZ-1) ;MFS(ZSM-57); HEU(斜发沸石);FER(ZSM-35、镁碱沸石、FU-9、ISI-6、NU-23、Sr-D) ;T0N(ZSM-22、Theta_l、 ISI-I、KZ-2和NU-10) ;LTL(L) ;MAZ (针沸石、Omega、ZSM-4)。这些沸石和它们的同种型 (isotypes)描述在"Atlas of Zeolite Structure Types" (W. H. Meier、D. H. Olson 禾口 Ch. Baerlocher编著,Elsevier,第四版,1996)中,该文献特此引入作为参考。所述结构类 型由"IUPAC Commission of Zeolite Nomenclature“规定。在"Verified synthesis of zeolytic materials" (H. Robson 编著,Elsevier,2OOl)中给出 了用于合成这些沸石 的常规程序。通过本发明的方法获得的金属硅酸盐可包含电荷平衡阳离子M,其选自氢;铵; 一价、二价和三价阳离子;以及它们的混合。金属硅酸盐的各元素的来源可为任何在商业中找到的或特意制备的那些来源。例 如,硅源可为硅酸酯(例如原硅酸四烷基酯)、沉淀二氧化硅或者火成(热解)二氧化硅、或 者优选为二氧化硅的含水胶体悬浮液。优选地,在加入碱性介质之前,无机硅源在水中具有 有限的溶解性。当金属硅酸盐为铝硅酸盐沸石时,铝源优选为溶解在碱性溶液中的水合氧化铝, 或者铝金属,水溶性铝盐例如硫酸铝或氯化铝,铝酸钠,或者烷氧基化合物例如异丙氧基 铝。当金属硅酸盐为硼硅酸盐沸石时,硼源优选为溶解在碱性溶液中的水合氧化硼,或水 溶性硼盐例如氯化硼,或烷氧基化合物。当金属硅酸盐为铁硅酸盐或镓硅酸盐时,铁源或镓 源几乎可为任何易溶于水中的铁盐或镓盐。当金属硅酸盐为钛硅酸盐时,钛源可为商化钛、卤氧化钛、硫酸钛或烷氧基钛。硅与金属的原子比取决于该金属和取决于该金属硅酸盐的 用途,并且为至少2/1-约10000/1、优选为5/1-约5000/1且最优选为约10/1-1000/1。任 选地,可向合成混合物中引入一种或多种模板剂(或导向剂),例如含有氮、氧、硫或磷的有 机或无机化合物。当导向剂为阳离子时,其还可以氢氧化物与盐(例如卤化物)的混合物 的形式引入。所用的试剂取决于通过该方法制备的金属硅酸盐。导向剂的量取决于通过该 方法制备的金属硅酸盐。M阳离子源可为碱或碱土金属的氢氧化物或盐。M还可为氢氧化 铵或铵盐。M阳离子与导向剂一起影响结晶介质的pH。0H_源在水性介质a)中的比例必须 与模板剂和M阳离子相适应以遵循如下条件在混合物a)+b)+c)中,0H_/Si02摩尔比为至 少0. 3且优选为0. 3-0. 6。优选地,有机溶剂介质基本上不溶于水或不与水混溶。有机溶剂介质优选含有至 少一种基本上不溶于水的醇或硫醇。基本上不溶于水的醇或硫醇的实例为具有至少5个 至最高达约18个碳的醇或硫醇。有机溶剂介质可任选地含有其它不带有醇或硫醇官能团 的不溶于水的有机化合物。本领域技术人员知道在具体金属硅酸盐的合成中需要时如何改 变有机介质的疏水性。可与所需量的不溶于水的醇或硫醇一起使用的有机化合物可为卤代 烃、烷烃、环烷烃、芳烃或它们的混合物。外b)和C)的混合顺序不重要并且取决于正在制备的沸石。任选地,可使结晶介质 (a)+b)+c))在这样的温度下陈化(age),在该温度下,不发生结晶,任选地,可开始成核。本 领域技术人员知道用于制备本发明的沸石晶体的设备。通常,金属硅酸盐可通过使用高压 釜制备,在加热期间,高压釜具有充分的搅动以均化结晶混合物,直至达到该混合物的有效 成核和结晶温度。结晶容器可由耐受结晶条件的金属或金属合金制造,或者任选地可涂覆 有碳氟化合物例如Teflon 。可采用本领域技术人员已知的其它引起搅动的手段,例如, 从高压釜的一个部分向另一部分泵送合成混合物。在有利的实施方式中,将通过混合a)、b)和c)而获得的结晶介质保持在室温、搅 拌条件下10分钟至2小时的时间。然后,使结晶介质经受自生压力和升高的温度。将反 应混合物加热至结晶温度,所述结晶温度可为约120°C -250°C、优选130°C _230°C、最优选 160°C -220°C。加热至结晶温度典型地进行约0. 5-约30小时、优选约1_12小时、最优选约 2-9小时的时间。温度可逐步地或持续地升高。但是,优选持续加热。在水热处理期间,可 使结晶介质保持静止,或者,可通过使反应容器翻滚(tumble)或对反应容器进行搅拌而使 结晶介质保持搅动。优选地,使反应混合物翻滚或对反应混合物进行搅拌,最优选地,对反 应混合物进行搅拌。然后,使温度保持在结晶温度下2-200小时的时间。施加有效地形成 结晶产物的时间的热量和搅动。在具体实施方式
中,将反应混合物保持在结晶温度下16-96 小时的时间。可使用任何烘炉例如常规的烘箱和微波炉。典型地,结晶金属硅酸盐作为浆料形成并且可通过标准手段(例如通过沉降、离 心分离或过滤)进行收取。对分离的结晶金属硅酸盐进行以下操作洗涤;通过沉降、离心 分离或过滤进行收取;和在典型地为约25°C -约250°C且更优选80°C -约120°C的温度下 进行干燥。金属硅酸盐的煅烧本身是已知的。作为金属硅酸盐结晶过程的结果,所收取的金 属硅酸盐在其孔内含有所用模板的至少一部分。在优选实施方式中,以这样的方式进行活 化,使得从金属硅酸盐中除去模板,留下金属硅酸盐的活性催化位点和微孔性通道,其是开 放的以与原料接触。活化过程典型地通过煅烧或者主要在含氧气体的存在下在200-800°C的温度下对包含模板剂的金属硅酸盐进行加热而完成。在一些情况下,在具有低的氧气浓 度的环境中加热金属硅酸盐可为合乎需要的。该类型的方法可用于从晶体内的孔体系中部 分或完全地除去模板。一旦制得结晶金属硅酸盐,其便可原样用作催化剂。在另一实施方式中,其可通过 如下配制成催化剂将结晶金属硅酸盐与为最终的催化剂产品提供额外的硬度或催化活性 的其它材料组合。通过本发明制备的晶体可成型为各种形状。在其中催化剂是由通过本发明制造的 金属硅酸盐制造的情况下,催化剂需要具有可适用于工业反应器中的形状。晶体可在干燥 之前成型,或者部分干燥并然后成型,或者可对晶体进行煅烧以除去有机模板并然后成型。 在许多催化剂的情况下,向通过本发明的方法制备的结晶沸石引入耐受有机转化过程中所 采用的温度和其它条件的粘合剂材料是合乎需要的。本领域技术人员容易理解粘合剂材料 不含有结合到特征在于构成元素的空间分布且特征在于富含硅的表面的金属硅酸盐的骨 架中的金属元素。此外,粘合剂材料不含有破坏金属硅酸盐的构成元素的空间分布或者金 属硅酸盐的富含硅的表面的成分。粘合剂材料的实例可与多孔基体材料(例如二氧化硅、 氧化锆、氧化镁、二氧化钛、二氧化硅-氧化镁、二氧化硅-氧化锆、二氧化硅-氧化钍和二 氧化硅-二氧化钛、以及三元组合物(例如二氧化硅-氧化镁-氧化锆))复合。金属硅酸 盐组分和粘合剂材料的相对比例随着金属硅酸盐含量而宽范围地变化,所述金属硅酸盐含 量为约1-约99重量%、更优选为约10-约85重量%且还更优选为约20-约80重量%的 金属硅酸盐组分。通过本发明的方法制备的金属硅酸盐可在如本领域中已知的进行煅烧以 除去有机模板之后进一步进行离子交换,以用不同的阳离子(例如周期表第IB-VIII族的 金属如钨、钼、镍、铜、锌、钯、钼、钙或稀土金属)至少部分地代替金属硅酸盐中所存在的原 始的电荷平衡阳离子,或者以通过用铵阳离子交换原始的电荷平衡阳离子并随后煅烧该铵 形式以提供酸性氢形式从而提供沸石的更强酸性形式。酸性形式可通过使用合适的试剂 (例如硝酸铵、碳酸铵或质子酸(如HC1、HNO3和H3PO4))进行离子交换而容易地制备。然 后,金属硅酸盐可在400-550°C的温度下煅烧以除去氨并产生氢形式。特别优选的阳离子取 决于金属硅酸盐的用途并且包括氢,稀土金属,以及元素周期表第IIA、IIIA、IVA、IB、IIB、 IIIB、IVB和VIII族的金属。通过本发明的方法制备的金属硅酸盐可进一步由至少一种不 同的金属前体负载,所述金属前体在已知的预处理之后具有催化活性,例如周期表第IIA、 11IA-VIIIA, IB、IIB、IIIB-VIB族金属诸如钨、钼、镍、铜、锌、钯、钼、镓、锡和/或碲金属前 体。由于特征在于构成元素的空间分布且特征在于富含硅的表面的本发明的金属硅 酸盐具有受控的催化活性,本发明的金属硅酸盐本身或者与一种或多种催化活性物质组合 的本发明的金属硅酸盐在用作用于多种烃转化过程的催化剂时可具有高的活性、高的选择 性、高的稳定性、或它们的组合,其中,本发明的金属硅酸盐具有受控的催化活性是由于催 化活性位点主要存在于金属硅酸盐晶体的内部部分中,并且主要是由于在金属硅酸盐晶体 的外表面附近不存在可导致发生不合乎需要的副反应的非选择性催化活性位点。“本发明 的金属硅酸盐”是指通过本发明的方法制造的金属硅酸盐和/或在上面的“发明内容”中作 为产品本身描述的金属硅酸盐。作为非限制性实例,这样的过程的实例包括如下过程1.以轻质烯烃对芳烃进行烷基化以提供短链烷基芳族化合物,例如,用丙烯对苯进行烷基化以提供异丙基苯和用乙烯对苯进行烷基化以提供乙苯。典型的反应条件包括约 IOO0C -约450°C的温度、约5-约80巴的压力和lh—1-约IOOtT1的芳烃重时空速。2.以轻质烯烃对多环芳烃进行烷基化以提供短链烷基多环芳族化合物,例如,以 丙烯对萘进行烷基化以提供单异丙基萘或二异丙基萘。典型的反应条件包括约ioo°c -约 400°C的温度、约2-约80巴的压力和lh—1-约IOOtT1的芳烃重时空速。3.在烷基化剂例如具有1-约20个碳原子的醇和卤代烷的存在下,对芳烃例如苯 和烷基苯进行烷基化。典型的反应条件包括约100°C -约550°C的温度、约大气压-约50 巴的压力、约lh—1-约lOOOh—1的重时空速和约1/1-约20/1的芳烃/烷基化剂摩尔比。作 为实例,可列举以甲醇对甲苯进行烷基化以制造二甲苯。这也称作甲苯甲基化。4.以长链烯烃例如C14烯烃对芳烃例如苯进行烷基化。典型的反应条件包括约 50°C -约300°C的温度、约大气压-约200巴的压力、约ar1-约lOOOh—1的重时空速和约 1/1-约20/1的芳烃/烯烃摩尔比。5.以烯烃或相当的醇对酚进行烷基化以提供长链烷基酚。典型的反应条件包括约 IOO0C -约250°C的温度、约1-50巴的压力和约21^-约IOtT1的总重时空速。6.在多烷基芳烃的存在下对芳烃进行烷基转移。典型的反应条件包括约 1500C -约550°C的温度、约大气压-约100巴的压力、约lh—1-约δΟΟΙΓ1的重时空速和约 1/1-约20/1的芳烃/多烷基芳烃的摩尔比。7.芳族(例如二甲苯)原料组分的异构化。为此的典型的反应条件包括约 200 V -约550 V的温度、约1巴-约50巴的压力、约0. Ih"1-约2001Γ1的重时空速和约0-约 100的氢/烃的摩尔比。8.使甲苯歧化以制造苯和对二甲苯。典型的反应条件包括约200°C-约600°C的 温度、约大气压-约60巴的压力和约0. ItT1-约301^的重时空速。9.对石脑油进料进行催化裂化以制造轻质烯烃。典型的反应条件包括约 4500C -约650°C、大气压-约8巴的压力和约δΡ-δΟΙΓ1的重时空速。10.对丁烯进料进行催化裂化以制造轻质烯烃例如丙烯。典型的反应条件包括约 4500C -约650°C、大气压-约8巴的压力和约SdOh—1的重时空速。11.将高分子量的烃催化裂化为较低重量的烃。本发明的金属硅酸盐可与在流化 催化裂化单元中所用的常规催化剂组合使用。典型的催化裂化反应条件包括约450°C -约 650°C的温度、约0. 1巴-约10巴的压力、和约lh—1-约30( -1的重时空速。12.通过选择性地除去直链烷烃而对烃进行脱蜡。典型的反应条件包括约 2000C _450°C的温度、10至最高达100巴的压力和0. 1^^20^1的液时空速。13.重质石油原料的加氢裂化。金属硅酸盐催化剂含有有效量的至少一种在加氢 裂化催化剂中所用类型的加氢组分。14.组合加氢裂化/脱蜡过程,其中,任选地,采用超过一种的金属硅酸盐或者金 属硅酸盐与另外的沸石或分子筛的组合。15.将轻质烷烃转化为烯烃和/或芳族化合物。典型的反应条件包括约425°C -约 750°C的温度和约1-约60巴的压力。16.将轻质烯烃转化为汽油、馏出物和润滑油级烃。典型的反应条件包括约 1750C -约450°C的温度和约3-约100巴的压力。
17.通过如下将石脑油(例如C6-C10)转化为具有显著更高的辛烷芳族化合物含 量的产物使烃进料与催化剂在约400°C -600°C (优选480°C -550°C )的温度、大气压_40 巴的压力和0. 1^^35^1的液时空速下接触。18.醇与烯烃反应以提供混合的醚,例如,甲醇或乙醇与异丁烯和/或异戊烯反应 以提供甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)和/或叔戊基甲基醚(TAME)或叔戊 基乙基醚(TAEE)。典型的转化条件包括约20°C -约250°C的温度、2-约100巴的压力、约 0. lh-1-约2001Γ1的液时空速和约0. 2/1-约3/1的醇/烯烃摩尔进料比。19.使醚例如MTBE、ETBE、TAME或TAEE分解为异丁烯和异戊烯以及相应的醇。典 型的转化条件包括约20°C -约300°C的温度、0. 5-约10巴的压力、约0. lh—1-约20(^1的 液时空速。20.将含氧化合物(例如醇(如甲醇)、或醚(如二甲醚)、或它们的混合物)转化 为烃,包括烯烃和芳族化合物,其中反应条件包括约275°C -约600°C的温度、约0. 5巴-约 60巴的压力和约0. Ih"1-约IOOtT1的液时空速。21.具有约2-约10个碳原子的直链和支链烯烃的低聚。作为该过程的产物的低 聚物具有6-约50个碳原子,其可用于燃料掺混原料(作为溶剂)、润滑油、烷基化剂和用于 制备各种含氧化学品的试剂。该低聚过程通常在约i50°c -约350°c的温度、约ο. ar1-约 70h^的液时空速和约5-约100巴的压力下进行。通过以下非限制性实施例对本发明进行说明。在下列实施例中,给出了用于制造和表征所得材料的技术。使用X-射线衍射获得衍射图,以确保证实所需的晶体结构或者检测异种 (foreign)结晶相的存在和测定与参比沸石比较的结晶度。衍射仪为WiilipsPW1830 (Co Κα )。通过“二次离子质谱法”(或称为SIMS)测量构成元素的空间分布。所用设备为CAMECA TOF-SIMS IV。为了避免电荷影响(沸石为非导电材料),使用低能电子浸没电子枪。为了 获得深度组成分布图,同时使用溅射枪和分析枪。所用的溅射枪和分析枪均使用氩作为一 次离子,溅射枪离子束的能量为3keV且电流密度为20nA,分析枪的能量为IOkeV且电流为 ΙρΑ。溅射枪侵蚀200 X 200微米的表面积,且表面分析枪扫描约5 X 5微米的表面积。分 布图以非交错模式完成,这意味着样品的分析和溅射是完全分开的。循环顺序如下30秒 分析-30秒溅射-2秒间歇。将沸石粉末压实并压制为片。将所述片固定在支持物上并置 于10_6 10_7托的真空中。在脱气M小时后进行分析。对于浓度分布图,仅考虑了铝和 硅的单原子(monoatomic)物质,且对于定量测量,仅考虑了带双电荷的阳离子(Si2+/Al2+)。 先前已使用公知的Si/Al比对沸石完成了校准。在所述分析的情况下,校准曲线对应于以 下等式骨架中的Si/Al = 2. 1008 X 通过 SIMS 测得的 Si2+/Al2+通过轮廓测定仪测量了侵蚀速率且其对应于0. 17nm/秒。通过将溶液外b)和c)混合而制备MFI铝硅酸盐。溶液a) :xxx g的Al (NO3) 3 · 9H20和在xxx ml蒸馏水中的xxx g氢氧化钠(表 2)。溶液b) :xxx g的模板、xxx ml的蒸馏水和xxx ml含有40重量% SiO2的胶体二氧化硅溶液(Ludox AS-40)(表2)。溶液c) :xxx ml的溶剂和xxx ml的原硅酸四乙酯(TEOS)(表2)。将溶液b)和C)在高压釜中混合15分钟,并通过缓慢加入溶液a)而获得水凝 胶。在室温下搅拌30分钟之后,在微波炉中在170°C下在自生压力下进行结晶反应5. 5小 时(实施例1-9),在常规烘箱中在170°C下在自生压力下进行结晶反应M小时(实施例 10-14),所述结晶反应>在微波炉中在约50rpm的搅拌速率下进行,或者>在常规烘箱中使用特氟隆搅拌球在50次翻滚/分钟下进行。然后,使产物冷却并用0. 75升蒸馏水洗涤、在110°C下干燥16小时并然后在 600°C下煅烧5小时以除去有机物质。各化合物的确切的量报道于表2中,且合成条件报道于表1中。所述量是在20ml 的总体积的基础上计算的。对于所有实施例在模板去除之前和之后测得的XRD图显示在 各情况(表幻下,形成纯的沸石相而没有可见的杂质。Si/Al比示于下列图中
图1 (实施例1为100% Ludox,实施例2为95% Ludox,实施例3为85% Ludox且 实施例4为75% Ludox),图2(实施例 5-7),图3 (实施例8为对比例,实施例9)图4(实施例 11-13)图5 (实施例10)图6 (实施例14)来自实施例1的样品的XRD图示于图7中。来自实施例1的样品的SEM图像示于图8中。
权利要求
1.制造结晶金属硅酸盐组合物的方法,所述组合物包含晶粒,所述晶粒具有内部部分 (核)和外部部分(外层或壳)使得所述外部部分中的Si/金属比高于所述内部部分中的Si/金属比, 所述晶粒在晶体横截面上具有金属和硅的连续分布, 所述方法包括a)提供包含OH—阴离子和金属源的水性介质,b)提供包含无机硅源和任选的模板剂的水性介质,c)任选地提供非水性液体介质,其任选地包含有机硅源,d)将所述介质a)、b)和任选的c)在有效地结晶出所需金属硅酸盐的条件下混合,e)收取所需的金属硅酸盐,其中,在结晶之前,在混合物a)+b)+c)中,Si有机/Si无机比小于0.3,OHVSiO2摩尔比为至少0. 3,和在结晶之前,所述混合物a)+b)+c)的pH高于13。
2.权利要求1的方法,其中所述Si有机/Si5a^小于0.2。
3.权利要求2的方法,其中所述Si有机/Si55tt比为0。
4.前述权利要求中任一项的方法,其中所述0H7Si&摩尔比为0.31 0. 61。
5.前述权利要求中任一项的方法,其中所述金属硅酸盐为铝硅酸盐。
6.前述权利要求中任一项的方法,其中所述金属硅酸盐为MFI。
7.权利要求1-5中任一项的方法,其中所述金属硅酸盐选自如下的组MEL、MTT、MFS、 腳、FER、TON、LTL、MAZ0
8.前述权利要求中任一项的方法,其中在结晶之前,所述混合物a)+b)+c)的pH高于 13. 1。
9.权利要求8的方法,其中所述pH高于13.2。
10.权利要求8的方法,其中所述pH高于13.3。
11.前述权利要求中任一项的方法,其中所述无机硅源选自如下的至少一种沉淀二 氧化硅、火成二氧化硅(或热解二氧化硅)、以及二氧化硅的含水胶体悬浮液。
12.前述权利要求中任一项的方法,其中首先将所述介质b)和c)混合,并且进一步将 介质a)缓慢加入到混合物b)+c)中直至获得水凝胶。
13.通过前述权利要求中任一项的方法获得的结晶金属硅酸盐组合物在烃转化过程中 作为催化剂组分的用途。
14.根据权利要求13的用途,其中所述烃转化过程为通过甲醇对甲苯进行烷基化以制 造二甲苯。
15.结晶金属硅酸盐组合物作为用以通过甲醇对甲苯进行烷基化以制造二甲苯的催化 剂的用途,所述结晶金属硅酸盐组合物包含晶粒,所述晶粒具有内部部分(核)和外部部分 (外层或壳)使得所述外部部分中的Si/金属比高于所述内部部分中的Si/金属比, 所述晶粒在晶体横截面上具有金属和硅的连续分布。
16.结晶金属硅酸盐组合物用以通过甲醇对甲苯进行烷基化以制造二甲苯的用途,所述结晶金属硅酸盐组合物包含晶粒,所述晶粒具有晶体外表面层和内部部分,所述晶体 外表面层具有在所述外表面下面约IOnm的深度,所述内部部分从在所述外表面下面约 100-200nm的深度向内延伸,其中在所述金属硅酸盐组合物中,所述晶体外表面层中的硅/ 金属原子比有利地为所述内部部分中的硅/金属原子比的至少1. 3倍高。
17.结晶金属硅酸盐组合物,其包含晶粒,所述晶粒在晶体横截面上具有金属和硅的连 续分布,所述晶粒具有晶体外表面层和内部部分,所述晶体外表面层具有在所述外表面下 面约IOnm的深度,所述内部部分从在所述外表面下面约100-200nm的深度向内延伸,其中 在所述金属硅酸盐组合物中,所述晶体外表面层中的硅/金属原子比是所述内部部分中的 硅/金属原子比的至少1. 3倍高。
18.权利要求17的结晶金属硅酸盐组合物,其中在所述金属硅酸盐组合物中,所述晶 体外表面层中的硅/金属原子比是所述内部部分中的硅/金属原子比的1. 3 15倍高。
全文摘要
本发明涉及制造结晶金属硅酸盐组合物的方法,所述结晶金属硅酸盐组合物包含晶粒,所述晶粒具有内部部分(核)和外部部分(外层或壳)使得所述外部部分中的Si/金属比高于所述内部部分中的Si/金属比,所述晶粒在晶体横截面上具有金属和硅的连续分布,所述方法包括a)提供包含OH-阴离子和金属源的水性介质,b)提供包含无机硅源和任选的模板剂的水性介质,c)任选地提供非水性液体介质,其任选地包含有机硅源,d)将所述介质a)、b)和任选的c)在有效地结晶出所需金属硅酸盐的条件下混合,e)收取所需的金属硅酸盐,其中,在结晶之前,在所述混合物a)+b)+c)中,Si有机/Si无机比小于0.3、有利地小于0.2且优选为0,OH-/SiO2摩尔比为至少0.3、有利地为0.3~0.62、优选为0.31~0.61、更优选为0.32~0.61、非常优选为0.33~0.6,并且在结晶之前,所述混合物a)+b)+c)的pH高于13、优选高于13.1、更优选高于13.2、还更优选高于13.3且最优选高于13.4。
文档编号C01B39/36GK102056668SQ200980121082
公开日2011年5月11日 申请日期2009年2月24日 优先权日2008年6月6日
发明者尼科莱·内斯特伦科, 德尔菲因·米诺克斯, 桑德·范唐克, 梅廷·布鲁特, 皮埃尔·雅各布斯, 让-皮埃尔·达思 申请人:道达尔石油化学产品研究弗吕公司