一种碳纳米管/三元硫属半导体纳米复合材料及其制备方法

文档序号:3467715阅读:434来源:国知局
专利名称:一种碳纳米管/三元硫属半导体纳米复合材料及其制备方法
技术领域
本发明是涉及一种碳纳米管/三元硫属半导体纳米材料及其制备方法,属于纳米复合材料技术领域。
背景技术
由于特殊的物理和化学性质,半导体纳米粒子在电子元器件、非线性光学、催化、 光电材料等诸多方面有着潜在的应用前景。迄今为止,多种半导体纳米粒子包括二氧化锌、 硒化镉、硫化锌、硫化镉、二氧化钛、二氧化硅等已经通过不同的物理或化学方法顺利修饰到了碳纳米管上。碳纳米管的表面修饰可以通过共价与非共价的方法来达到。碳纳米管本身由于具有优良的光学、热学和电学等性能而一直成为国际上研究的热点。近年来,碳纳米管的表面修饰以及在非线性光学方面的应用已成为材料学界研究的热门领域。在这些应用当中,主要是要解决纳米粒子在碳纳米管上面的分散均勻性的问题。为了解决这些问题,人们在碳纳米管的表面用一些聚电解质或表面活性剂作为模板来原位沉积纳米粒子,效果比较明显。碳纳米管本身具有良好的非线性光学性能,它又是纳米粒子的优良载体。三元硫属半导体纳米材料也具有优良的非线性光学性质。因此,将三元硫属半导体纳米粒子与碳纳米管结合起来,所得复合材料将会在非线性光学方面有着潜在的应用。

发明内容
本发明旨在提供一种碳纳米管/半导体纳米粒子复合材料,是一种碳纳米管/三元硫属半导体纳米粒子复合材料。本发明还提供了上述符合材料的制备方法。为实现上述发明目的,本发明采用的技术方案如下一种碳纳米管/三元硫属半导体纳米粒子复合材料,是在碳纳米管上包覆三元硫属半导体纳米粒子,其特征在于所述碳纳米管为多壁碳纳米管(MWCNTs),所述三元硫属半导体纳米粒子为Cdr^2。本发明所述的碳纳米管/半导体纳米复合材料的制备原理是将01 半导体纳米粒子通过溶剂热法原位沉积在碳纳米管上。分别先制备铜的前驱体以及铟的前驱体,然后把铜的前驱体和铟的前驱体在高温的条件下分解,通过原位沉淀法生成半导体纳米粒子。具体步骤如下(1)将多壁碳纳米管均勻分散在油酸中(可通过超声方法分散,超声时间0. 5 池),两者用量为1 3mg/ml ;加入油胺和十八烯;多壁碳纳米管与油胺和十八烯的用量比均为4 8mg/ml ;(2)加入铜前驱体Cu(DEDC)2和铟前驱体h (DEDC)3,使之分散均勻,并在180 230°C下反应8 12小时,取沉淀洗涤干燥;多壁碳纳米管与Cu(DEDC)2和M(DEDC)3的用量比为Img 1. 5 6mg 2. 5 10mg。更优选的,多壁碳纳米管的管径为10 200nm,长度为1 20 μ m。所述Cu(DEDC)2的制备方法为将铜盐溶液滴加到三水合二乙基二硫代氨基甲酸钠溶液中,混合均勻,静置3 10小时取沉淀洗涤干燥得到铜前驱体CU(DEDC)2。铜盐为氯化铜、硫酸铜或硝酸铜,铜盐溶液中铜元素的浓度为0. 1 0. 15mol/L ;铜盐中的铜元素与三水合二乙基二硫代氨基甲酸钠的摩尔比为1 1.5 2. 5。所述M(DEDC)3的制备方法为将铟盐溶液滴加到三水合二乙基二硫代氨基甲酸钠溶液中,混合均勻,静置3 10小时取沉淀洗涤干燥得到铟前驱体h(DEDC)3。铟盐中的铟元素与三水合二乙基二硫代氨基甲酸钠的摩尔比为1 2. 5 3. 5 ;铟盐溶液中铟元素的浓度为0. 1 0. 15mol/L。上述三水合二乙基二硫代氨基甲酸钠溶液浓度为0. 02 0. 03g/ml。通过上述方法,将半导体纳米粒子通过溶剂热法原位积淀在碳纳米管上,制备出来的纳米复合材料具有较好的非线性光学性能,是一种良好的非线性光学材料。为了拓宽非线性光学材料的来源,本发明制备了碳纳米管/半导体纳米粒子复合材料。包覆半导体一方面可以充分发挥半导体纳米材料的光限幅性能,另一方面可以将半导体纳米粒子和碳纳米管自身的光限幅性能结合起来,优化材料的性能。与现有技术相比,本发明的有益效果如下本发明的碳纳米管不需要用浓氧化性酸处理,碳纳米管的结构和性能的完整性得以很好的保护,也不必在碳纳米管表面预修饰聚合物或表面活性剂,并且还是首次将半导体01 纳米粒子修饰在碳纳米管上,具有操作简单、原料成本低廉和易得等诸多优点,适合工业化大生产与实际应用。半导体纳米粒子是通过热分解法原位沉淀修饰在碳纳米管上,所得的碳纳米管/ 三元硫属半导体纳米复合材料结合了两种材料的优良特性;并且,碳纳米管和半导体纳米粒子均具有良好的光限幅性能,有利于在非线性光学材料上应用,所得纳米复合材料有望用作激光防护材料。


图1为实施例1所制备的MWCNT/Culr^2纳米复合材料的XRD图;图2为实施例1所制备的MWCNT/Culnh纳米复合材料的场发射扫描电镜图;图3为实施例1所制备的MWCNT/Culr^2纳米复合材料的透射电镜图;图4为实施例1所制备的MWCNT/Culnh纳米复合材料的元素分析图;图5为实验所用的MWCNTs在入射波长为532nm的典型开口 ζ扫描曲线;图6为实施例2所制备的MWCNT/Culr^2纳米复合材料的XRD图。图7为实施例2所制备的MWCNT/Culnh纳米复合材料的场发射扫描电镜图;图8为实施例2所制备的MWCNT/Culr^2纳米复合材料的透射电镜图;图9为实施例2所制备的MWCNT/Culr^2纳米复合材料的选区电子衍射图;图10为实施例2所制备的MWCNT/Cdr^2纳米复合材料在入射波长为1064nm的典型开口 ζ扫描曲线。
具体实施方式
下面结合实施例对本发明做进一步详细、完整地说明。所用的多壁碳纳米管的管径为10 200nm,长度为1 20 μ m。实施例1(1)将2. 25g(0. Olmol)三水合二乙基二硫代氨基甲酸钠(DEDC)溶解在IOOmL的水中,分散均勻;(2)将 0. 85g CuCl2 · 2H20 (0. 005mol)加入到 50mL 水中,分散均勻;(3)将( 所得的溶液在磁力搅拌下逐滴加入到(1)所得溶液中,静置他至沉淀完全,将得到的黑色沉淀用水洗涤3次,真空干燥得到铜前驱体Cu(DEDC)2备用;(4)将3. 38g三水合二乙基二硫代氨基甲酸钠(DEDC)溶解在150mL的水中,分散均勻;(5)将 1. 47g InCl3 · 4H20 (0. 005mol)加入到 50mL 水中,分散均勻;(6)将( 所得的溶液在磁力搅拌下逐滴加入到(4)所得溶液中,静置他至沉淀完全,将得到的白色沉淀用水洗涤3次,真空干燥得到铟前驱体h (DEDC)3备用;(7)称取30mg多壁碳纳米管溶于20mL油酸中,超声池使之分散均勻;再加入5mL 的油胺和5ml十八烯混勻;(8)分别称取55mg的Cu(DEDC)2和86mg的h(DEDC)3加入到上述所得的混合液中,机械搅拌Ih使之全部分散均勻;再将所得的混合液转移到反应釜中,200°C反应9h ;自然冷却至室温,离心分离,分别用乙醇和水洗涤2 5次,真空干燥备用。所得到的产品为碳纳米管/三元硫属半导体纳米粒子复合材料(MWCNT/Cdr^2纳米复合材料)图1为所制备MWCNT/CiJr^2纳米复合材料的XRD谱图。从谱图上可以看出复合材料是由两个相组成的。其中在2 θ = °的峰是碳纳米管的峰,其他的都是01 的峰。 除了这两个相的峰以外,没有其他的杂质相的峰。图2为所制备MWCNT/Cuhh纳米复合材料的场发射扫描电镜图,由图同样可以看出01 大量并均勻地修饰在碳纳米管上。图3为所制备MWCNT/Cdr^2纳米复合材料的透射电镜图,由图可以看出01 大量并均勻地修饰在碳纳米管上,纳米粒子的平均尺寸约为6nm。图4为所制备MWCNT/Cuhh纳米复合材料的元素分析图,由图可以看出共有四种元素出现,其中C元素来自于碳纳米管,而S、In、Cu三种元素来源于01 ,且三种元素的比列符合1 1 2,说明01 成功地合成出来并且修饰到碳纳米管上。图5为实验所用的碳纳米管在入射波长为1064nm的开口 ζ扫描曲线,在焦点处的归一化透过率约为0. 65左右。实施例2步骤(1) (7)同实施例1 ;(8)分别称取166mg的Cu (DEDC) 2和260mg的h (DEDC) 3上述所得的混合液中,机械搅拌Ih使之全部分散均勻;再将所得的混合液转移到反应釜中,200°C反应9h ;自然冷却至室温,离心分离,分别用乙醇和水洗涤2 5次,真空干燥备用;图6为所制备MWCNT/CiJr^2纳米复合材料的XRD谱图。从谱图上可以看出复合材料是由两个相组成的。其中在2 θ = °的峰是碳纳米管的峰,其他的都是01 的峰。 除了这两个相的峰以外,没有其他的杂质相的峰。
图7为所制备MWCNT/Cuhh纳米复合材料的场发射扫描电镜图,由图同样可以看出01 大量并均勻地修饰在碳纳米管上,但是修饰的数量要比实施例1中的数量要多。图8为所制备MWCNT/Cu^^2纳米复合材料的透射电镜图,由图可以看出01 大量并均勻地修饰在碳纳米管上,纳米粒子的平均尺寸约为6nm,数量要多于实施例1。图9为所制备MWCNT/Cu纳米复合材料的选区电子衍射图,由图可以看出 CuInS2的结晶度很好,出现了很好的衍射环,与XRD数据相吻合。图10为所制备MWCNT/CiJr^2纳米复合材料在入射波长为1064nm的开口 ζ扫描曲线,从图5和图10可以看出光限幅性质来源于碳纳米管及其复合材料,并且所制备的 MWCNT/CuInS2纳米复合材料的非线性吸收要比碳纳米管本身要强,说明纳米粒子出现了比较好的非线性吸收,复合材料非线性性能要优于两者。
权利要求
1.一种碳纳米管/三元硫属半导体纳米粒子复合材料,在碳纳米管上包覆一层三元硫属半导体纳米粒子,其特征在于,所述碳纳米管为多壁碳纳米管,所述三元硫属半导体纳米粒子为CuInS20
2.权利要求1所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 包括如下步骤(1)将多壁碳纳米管均勻分散在油酸中;再加入油胺和十八烯混勻;(2)加入铜前驱体Cu(DEDC)2和铟前驱体M(DEDC)3,使之分散均勻,并在180 230°C 下反应8 12小时,取沉淀洗涤干燥。
3.权利要求2所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 步骤(1)中,多壁碳纳米管与油酸用量比为1 3mg/ml ;多壁碳纳米管与油胺和十八烯的用量比均为4 ang/ml。
4.权利要求2所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 步骤O)中多壁碳纳米管与Cu(DEDC)JP ^i(DEDC)3的用量比为Img 1. 5 6mg 2. 5 10mg。
5.权利要求2所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 所述Cu(DEDC)2的制备方法为将铜盐溶液滴加到三水合二乙基二硫代氨基甲酸钠溶液中, 混合均勻,静置3 10小时取沉淀洗涤干燥得到铜前驱体Cu(DEDC)2 ;所述^(DEDC)3的制备方法为将铟盐溶液滴加到三水合二乙基二硫代氨基甲酸钠溶液中,混合均勻,静置3 10小时取沉淀洗涤干燥得到铟前驱体h(DEDC)3。
6.权利要求5所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 所述铜盐为氯化铜、硫酸铜或硝酸铜;所述铟盐为氯化铟或硝酸铟。
7.权利要求5所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 所述铟盐中的铟元素与三水合二乙基二硫代氨基甲酸钠的摩尔比为1 2. 5 3. 5;所述铜盐中的铜元素与三水合二乙基二硫代氨基甲酸钠的摩尔比为1 1.5 2. 5。
8.权利要求5所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 所述三水合二乙基二硫代氨基甲酸钠溶液浓度为0. 02 0. 03g/ml,所述铜盐溶液中铜离子的浓度为0. 1 0. 15mol/L,所述铟盐溶液中铟离子的浓度为0. 1 0. 15mol/L。
9.权利要求1所述碳纳米管/三元硫属半导体纳米复合材料的制备方法,其特征在于, 所述多壁碳纳米管的管径为10 200nm,长度为1 20 μ m。
全文摘要
本发明公开了一种MWCNT/CuInS2(MWCNT为多壁碳纳米管)三元硫属半导体纳米粒子复合材料的制备方法,该材料是在多壁碳纳米管上修饰CuInS2半导体纳米粒子,所述半导体纳米粒子通过溶剂热法原位沉积在碳纳米管上。经上述方法制备出来的纳米复合材料具有较好的非线性光学性能,是一种良好的非线性光学材料。另外,本发明的制备方法无需事先对碳纳米管进行氧化处理,使得碳纳米管的结构和性能的完整性得到了很好的保护,也不必在碳纳米管表面预修饰聚合物或表面活性剂,并且还是首次将半导体CuInS2纳米粒子修饰在碳纳米管上,具有操作简单、原料成本低廉和易得等诸多优点,适合工业化大生产与实际应用。
文档编号C01G15/00GK102557002SQ20111038849
公开日2012年7月11日 申请日期2011年11月29日 优先权日2011年11月29日
发明者刘丹丹, 吴惠霞, 张豪强, 朱亚超, 杨仕平 申请人:上海师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1