热喷涂用钇类颗粒粉末、其制备方法及热喷涂皮膜与流程

文档序号:28926682发布日期:2022-02-16 14:26阅读:84来源:国知局
热喷涂用钇类颗粒粉末、其制备方法及热喷涂皮膜与流程

1.本发明涉及包含纳米尺寸的钇化合物粉末和二氧化硅成分的热喷涂用钇类颗粒粉末及利用其的高密度的热喷涂皮膜。


背景技术:

2.在半导体制造工序中,为了硅晶片等基板电路的高集成化所需的微细加工,等离子体干式蚀刻工序的重要性越来越重要。
3.为了在这种环境下使用,提出了将等离子体抵抗性优秀的材料用作腔室构件或将构件的表面用耐等离子体性优秀的物质形成皮膜而提高构件寿命的方案。
4.其中,通过用各种材料被覆基材的表面而赋予新的功能性的技术,以往已在多个领域利用。作为这种表面被覆技术之一,例如已知有热喷涂法,将由陶瓷等材料构成的热喷涂颗粒,借助于燃烧或电能,以软化或熔融状态喷射于基材表面,从而形成热喷涂皮膜。
5.一般而言,热喷涂涂布是通过使微细的粉末加热熔融,使熔融的粉末朝向母材的被涂布面喷射而执行。所述喷射的熔融粉末被急剧冷却,熔融粉末凝固,主要利用机械性结合力而层叠于所述涂布对象面。
6.在所述热喷涂涂布中,利用高温的等离子体火焰来熔融所述粉末的等离子体热喷涂涂布,在高熔点的诸如钨或钼的金属和陶瓷的涂布中必须使用。所述热喷涂涂布不仅有利于表现出保持母材的材质特性,生产表现出耐磨损、耐腐蚀、耐热及热屏障、超硬、耐氧化、绝缘、摩擦特性、散热、生物功能耐辐射性特性的高功能性材料,而且与化学气象沉积或物理气象沉积等其他涂布方法相比,可以在短时间内涂布宽阔面积的对象物。
7.而且,在半导体器件等的制造领域,一般借助于使用氟、氯、溴等卤素类气体的等离子体的干式蚀刻,进行在半导体基板表面实施微细加工。另外,在干式蚀刻后,使用氧气等离子体对取出半导体基板的腔室(真空容器)内部进行清洁。
8.此时,在腔室内部,暴露于反应性高的氧气等离子体或卤素气体等离子体的构件存在被腐蚀的可能性。而且,如果腐蚀(侵蚀)部分从相应构件呈颗粒状脱落,则这种颗粒附着于半导体基板,会成为导致电路缺陷的异物(以下将相应异物称为颗粒)。
9.因此,自以往起,在半导体器件制造装置中,出于减小颗粒发生的目的,在暴露于氧气或卤素气体等的等离子体的构件上,设置具备耐等离子体侵蚀性的陶瓷的热喷涂皮膜。
10.作为这种颗粒发生因素,除了在真空腔室内附着的反应生成物的剥离之外,还会有使用卤素气体等离子体或氧气等离子体而导致的腔室劣化。另外,根据本发明人的研究获知,在干式蚀刻环境下,从热喷涂皮膜发生的颗粒数或大小起因于构成热喷涂皮膜的颗粒之间结合力的强弱或未熔融颗粒的存在或高气孔率。
11.特别是陶瓷的热喷涂皮膜内涂层内部的密度越高,干式蚀刻工序中气孔等缺陷导致的cfx系列工序气体的吸附程度越减小,可以减小等离子体离子碰撞导致的蚀刻。
12.一般而言,作为用于形成高密度热喷涂皮膜的涂布方法,有悬浮液等离子体热喷
涂法(suspension plasma spray:sps)、气溶胶沉积法(aerosol deposition:ad)或物理气相沉积法(physicalvapor deposition:pvd),这三种方法与原有大气等离子体热喷涂法(air plasma spray:aps)方式相比,均存在制造方式复杂、制造单价升高的缺点。
13.就悬浮等离子体热喷涂法(sps)技术而言,借助于相对较高热源进行半导体腔室内涂布时,伴随高工序温度,发生制品变形等问题,随着颗粒大小的减小,颗粒飞行距离变短,等离子体装备与要涂布的基板的作业距离变近,作业一部分受限。另外,就sps技术而言,由于为水和颗粒分散的悬浮液状态,流入相同体积时,涂层的成膜速度低,发生追加的工序时间,制造成本高。
14.另外,作为气溶胶沉积法(ad)及物理气相沉积法(pvd),达成数百μm水平的涂布厚度存在技术上的局限,实际涂布时,在复杂形状的基板上,涂布作业受限。
15.因此,需要开发一种能够利用原有的大气等离子体热喷涂法(aps)体现高密度热喷涂皮膜的技术。
16.通常的aps热喷涂法使用的热喷涂材料的颗粒,在集中数μm水平的一次粉末形成中间粒度30~50μm的颗粒粉末并使用的情况下,液滴的大小增加,在液滴固化的过程中,缺陷大小形成得相对较大,发生热喷涂皮膜内缺陷增加或致密度低下的问题。
17.另外,如果由颗粒粉末形成的二次颗粒过小,则借助于颗粒粉末之间的静电引力,粉末之间结块,难以事实上在大气中移送或颗粒粉末移送后因较低的质量而无法移送到中心部框架便散落到其他处的可能性高。
18.另一方面,提出了一种将构成这种热喷涂材料的一次粉末减小到1μm以下构成,从而提高热喷涂皮膜的密度的方法。
19.但是,就这种方法而言,随着热喷涂材料比表面积的增加,热无法均匀传递给处于颗粒粉末内部的一次粉末,在热喷涂皮膜的表面或内部形成包括非熔融或再熔融状态的皮膜,在干式蚀刻工序中成为颗粒发生原因。
20.作为以往技术,韩国公布专利第10-2016-0131918号(2016年11月16日)公开的热喷涂用材料记载称,作为构成元素,包括包含稀土类元素(re)、氧(o)及卤素(x)的稀土类元素氧卤化物(re-o-x),卤素相对于稀土类元素的摩尔比(x/re)为1.1以上,因此,耐等离子体性提高,气孔率或硬度等的特性得到改善。
21.另外,在韩国公布专利第10-2005-0013968号(2005年2月5日)中,公开了钇氧化物涂层内含有100至1000ppm硅元素的耐等离子体构件,但所述包含硅元素的钇氧化物涂层通过包含半导体成分而赋予电气特性,存在电弧危险性,基本颜色为黑色,与半导体工序的污染物无法区分,在清洁腔室时,因混同而追加不必要的清洁工序的隐患较大。
22.如上所述,以往为了克服氧化钇或氟化钇热喷涂材料的物性界限,提出了混合制造氧化钇及氟化钇,从而制备提高了等离子体侵蚀性、气孔率、硬度等物性的氟氧化钇热喷涂材料的技术,尽管如此,在产业层面却持续要求开发用于制备提高耐等离子体性所需的致密热喷涂皮膜的技术及用于制备其的热喷涂用颗粒粉末。
23.现有技术文献:(专利文献0001)韩国公开专利第10-2016-0131918号(2016年11月16日);(专利文献0002)韩国公开专利第10-2005-0013968号(2005年2月5日)。


技术实现要素:

24.为了解决上述问题,本发明的主要目的是使二氧化硅粉末包含于纳米尺寸的钇化合物粉末,提供热喷涂用颗粒粉末,从而钇类化合物的熔点低下,在热喷涂皮膜制备工序时,抑制热喷涂皮膜内气孔的形成,由于二氧化硅的沸点低于钇类化合物沸点的特性,二氧化硅在热喷涂皮膜工序中一部分消失,因而可以制备致密的钇类热喷涂皮膜。
25.为了达成如上所述目的,本发明的一个体现例提供一种热喷涂用钇类颗粒粉末,其特征在于,包含在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末,混合平均直径50至900nm的钇化合物粉末与平均直径50至900nm的二氧化硅粉末而制备,包含不足10重量%的y-si-o中间相。
26.在本发明的一个优选体现例中,所述颗粒粉末的表观密度可以为1.25至1.4g/cm2。
27.在本发明的一个优选体现例中,所述颗粒粉末的大小可以为5至50μm。
28.在本发明的一个优选体现例中,相对于所述钇的硅元素重量比(si/y)可以为0.3至1.00。
29.在本发明的一个优选体现例中,所述颗粒粉末可以混合90至99.9质量%的钇化合物粉末与0.1至10质量%的二氧化硅粉末而制备。
30.在本发明的一个优选体现例中,所述颗粒粉末可以追加包含氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物。
31.在本发明的一个优选体现例中,所述颗粒粉末可以将90至99.9质量%的钇化合物粉末和0.09至9质量%的二氧化硅粉末与氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物粉末按0.01至1质量%比率混合而制备。
32.在本发明的一个优选体现例中,所述颗粒粉末可以包含不足10重量%的一种以上a-y-si-o中间相,所述a可以为在li、mg、ca中选择的某一种以上元素。
33.在本发明的又一优选体现例中,提供(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末与二氧化硅(sio2)粉末混合而制备混合物的步骤;(b)将所述混合物造粒而制备颗粒粉末的步骤;及(c)以1200至1450℃烧成所述颗粒粉末而收得热喷涂用钇类颗粒粉末的步骤;所述钇化合物粉末与二氧化硅粉末的平均直径为50至900nm,所述热喷涂用钇类颗粒粉末包含不足10重量%的y-si-o中间相。
34.在本发明的又一优选体现例中,提供一种热喷涂用钇类颗粒粉末的制备方法,其特征在于,包括:(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末与氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物粉末混合而制备混合物的步骤;(b)将所述混合物造粒而制备颗粒粉末的步骤;及(c)以1200至1450℃烧成所述颗粒粉末而收得热喷涂用钇类颗粒粉末的步骤;所述钇化合物粉末和二氧化硅粉末与氧化锂、氧化镁、氧化钙(cao)及碳酸钙(caco3)粉末的平均直径为50至900nm,所述热喷涂用钇类颗粒粉末包含不足10重量%的一种以上a-y-si-o中间相,所述a为在li、mg、ca中选择的某一种以上元素。
35.在本发明的又一优选体现例中,提供一种热喷涂以所述制备方法制备的热喷涂用钇类颗粒粉末而在基材上形成的钇类热喷涂皮膜。
36.在本发明的一个优选体现例中,所述钇类热喷涂皮膜在热喷涂皮膜的制备工序
中,所述硅元素可以一部分气化。
37.本发明的从包含二氧化硅成分的热喷涂用钇类颗粒粉末制备的热喷涂皮膜,由于涂层内部的密度非常高,在干式蚀刻工序中,工序气体所致蚀刻率减小,用作半导体腔室内构件的涂布材料时,耐久性优秀,抑制蚀刻现象所致涂布物脱离现象,可以有助于提高半导体晶片的收率。
附图说明
38.图1的(a)是本发明的制备例1、图1的(b)是本发明的制备例2及图1的(c)是本发明的制备例4的热喷涂用钇类颗粒粉末的电子扫描显微镜(sem)照片。
39.图2的(a)是本发明的比较例1、图2的(b)是本发明的比较例2、图2的(c)是本发明的实施例1的热喷涂皮膜的侧面电子扫描显微镜(sem)照片。
40.图3是本发明的制备例4至制备例7的热喷涂用钇类颗粒粉末的电子扫描显微镜(sem)照片和x射线衍射分析(xrd)的结果。
具体实施方式
41.只要未以其他方式定义,本说明书中使用的所有技术性及科学性术语具有与本发明所属技术领域的熟练专家通常所理解的内容相同的意义。一般而言,本说明书使用的命名法是本技术领域公知的和通常使用的。
42.在本技术说明书通篇中,当提到某部分“包括”某构成要素时,只要没有特别反对的记载,则意味着并非排除其他构成要素,而是可以还包括其他构成要素。
43.在半导体的制造工序中,利用栅蚀刻装置、绝缘膜蚀刻装置、抗蚀膜蚀刻装置、溅射装置、cvd装置等。另一方面,在液晶的制造工序中,利用用于形成薄膜晶体管的蚀刻装置等。另外,在这些制造装置中,以基于微细加工的高集成化等为目的,采用具备等离子体发生机构的构成。
44.在这些制造工序中,作为处理气体,氟类、氯类等卤素类腐蚀气体由于他们的高反应性而用于所述的装置。作为氟类气体,可以为sf6、cf4、chf3、clf3、hf、nf3等,作为氯类气体,可以例如cl2、bcl3、hcl、ccl4、sicl4等,在导入这些气体的气氛下如果接入微波或高频等,则这些气体被等离子体化。暴露于这些卤素类气体或其等离子体的装置构件,要求在表面上除材料成份之外的金属很少,并具有高耐蚀性。因此,本发明的目的在于提供一种热喷涂用钇类颗粒粉末,所述热喷涂用钇类颗粒粉末用于提供对等离子体蚀刻装置用构件进行被覆的耐等离子体性优秀的热喷涂皮膜。
45.本发明的热喷涂用钇类颗粒粉末的特征在于,包含在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末,混合平均直径50至900nm的钇化合物粉末与平均直径50至900nm的二氧化硅粉末而制备,包含不足10重量%的y-si-o中间相。
46.作为所述热喷涂用钇化合物粉末的构成成分,包含在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种或两种以上,另外,除钇类化合物之外,还包含二氧化硅(sio2)成分,从而降低钇类化合物的熔点,在热喷涂皮膜制备工序时抑制热喷涂皮膜内气孔的形成,有利于制备气孔率低、致密的钇类热喷涂皮膜。
47.此时,所述颗粒粉末为了提高颗粒粉末本身的密度,优选在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的钇化合物粉末与二氧化硅粉末的平均直径为50至900nm,更优选地,可以为150至800nm。
48.所述钇化合物粉末与二氧化硅粉末的平均直径不足约50nm时,会生成y-si-o中间相,在制备用于制备颗粒粉末的浆料时,分散有机物的含有量增加,其在热处理过程中消失,颗粒粉末内形成气孔,难以制备高密度的颗粒粉末。另外,作为一次颗粒的钇化合物粉末与二氧化硅粉末的平均直径如果超过约900nm,则热喷涂皮膜内表面粗糙度增加,会导致在半导体蚀刻工序之间发生颗粒。
49.作为一个示例,所述颗粒粉末内钇化合物粉末与二氧化硅粉末的平均直径为50至900nm时,颗粒粉末的表观密度为1.25至1.4g/cm2,这在制备致密的热喷涂皮膜方面有利。
50.另外,优选所述热喷涂用钇类颗粒粉末内钇化合物含有90至99.9质量%,所述二氧化硅含有0.1至10质量%,更优选地,钇化合物可以为95至99.5质量%,所述二氧化硅可以为0.5至5质量%。
51.当所述二氧化硅的含量不足0.1质量%时,制备热喷涂皮膜时,降低二氧化硅熔点的效果微弱,另外,如果所述二氧化硅的含量超过约10质量%,则应以二氧化硅(sio2)形态消失的成分变换成y-si-o中间相,残存于热喷涂皮膜内或部分地实现非晶化,降低耐等离子体性,颗粒的发生危险度反而会升高。
52.二氧化硅的沸点低于所述钇化合物的熔点,在本发明的热喷涂皮膜制备工序时,在所述热喷涂用钇类颗粒粉末液化、飞散期间,赋予降低所述热喷涂用钇类颗粒粉末的熔点的效果,所述二氧化硅的一部分乃至全部气化,所述热喷涂皮膜制备工序的涂布膜中残存的所述二氧化硅,与向所述热喷涂皮膜制备工序投入前相比,含有量降低。
53.另外,所述二氧化硅粉末的平均直径与钇化合物粉末的平均直径的偏差优选为30%以下。
54.如果所述二氧化硅粉末的平均直径比钇化合物粉末的平均直径大30%以上,则在皮膜形成时,会生成过量的y-si-o中间相。
55.另外,本发明的热喷涂用钇类颗粒粉末大小可以为5至50μm,优选地,可以为10~40μm,更优选地,可以为15~30μm。
56.如果所述热喷涂用钇类颗粒粉末的大小不足5μm,则在热喷涂涂布时,粉末的流动性低,无法体现均一的膜,在粉末传递到框架之前被氧化或无法传递到框架中心,难以满足用于形成致密膜所需的液滴飞翔速度及热量,导致形成气孔高或硬度低的膜。如果钇类颗粒粉末的平均直径超过50μm,则颗粒粉末的熔融比表面积减小,无法完全熔融,发生涂布膜质内未熔融部分,难以满足本发明要求的热喷涂皮膜的品质。
57.另外,本发明的热喷涂用钇类颗粒粉末的纵横比(aspect ratio)用颗粒粉末的长直径与短直径之比表示,从形成致密均一的膜的观点而言,优选1.0以上、5.0以下,从这种观点而言,更优选纵横比为1.0以上、4.0以下,尤其优选1.0以上、1.5以下。
58.热喷涂用钇类颗粒粉末的流动性作为热喷涂膜品质的重要要素而发挥作用,因而最优选制作成球形,否则,在制备热喷涂皮膜时,既定量的粉末无法传递到框架,也会无法形成我们要求水平的膜。
59.作为一个示例,所述硅元素可以在热喷涂皮膜的制备工序中一部分气化,热喷涂
用钇类颗粒粉末中相对于所述钇的硅元素重量比(si/y)可以为0.3至1.00。
60.另外,本发明的热喷涂用钇类颗粒粉末优选不包含y-si-o中间相,可以至少包含不足10重量%的y-si-o中间相。
61.如果所述y-si-o中间相生成10重量%以上,则发生硅元素(si)与卤素类腐蚀气体反应而气化的情形,因而生成空隙的可能性升高,腐蚀气体等工序气体会沿着所生成的空隙侵入而发生颗粒。
62.另外,本发明的钇类颗粒粉末除二氧化硅(sio2)成分之外,为了追加降低钇类化合物熔点,追加包含氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物,从而在热喷涂用钇类颗粒粉末液化、飞散期间,赋予降低所述热喷涂用钇类颗粒粉末的熔点的效果,可以抑制热喷涂皮膜内气孔的形成。
63.所述热喷涂用钇类颗粒粉末可以将90至99.9质量%的钇化合物粉末和0.09至9质量%的二氧化硅粉末与氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物粉末按0.01至1质量%比率混合而制备。
64.作为一个示例,所述热喷涂用钇类颗粒粉末可以将90至99.9质量%的钇化合物粉末和0.09至9质量%的二氧化硅粉末与0.01至1质量%的氧化锂粉末混合而制备。
65.作为一个示例,所述颗粒粉末可以将90至99.9质量%的钇化合物粉末和0.09至9质量%的二氧化硅粉末与0.01至1质量%的氧化镁粉末混合而制备。
66.另外,本发明的热喷涂用钇类颗粒粉末除二氧化硅(sio2)成分之外,追加包含氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物时,优选不包括包含了锂(li)、镁(mg)及钙ca)中至少一种以上的a-y-si-o中间相,也可以包含不足10重量%的至少一种以上的a-y-si-o中间相。(此时,所述a是在li、mg、ca中选择的某一种以上元素。)
67.另外,本发明提供一种热喷涂用钇类颗粒粉末的制备方法,其特征在于,包括:(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末与二氧化硅(sio2)粉末混合而制备混合物的步骤;(b)将所述混合物造粒而制备颗粒粉末的步骤;及(c)以1200至1450℃烧成所述颗粒粉末而收得热喷涂用钇类颗粒粉末的步骤;所述钇化合物粉末与二氧化硅粉末的平均直径为50至900nm,所述热喷涂用钇类颗粒粉末包含不足10重量%的y-si-o中间相。
68.下面对本发明的制备热喷涂用钇类颗粒粉末的方法进行详细说明。
69.就本发明的热喷涂用钇类颗粒粉末而言,作为一次材料的在所述y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末材料,由于材料的流动性无法达到热喷涂所需的水平,因而优选经过制备成球形形态的混合、造粒及烧成工序而构成颗粒粉末。
70.在所述(a)步骤的混合工序中,在所述y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末材料中添加烧结助剂及分散介质并混合,收得混合物,根据需要,追加与结合剂混合而制备浆料液滴。
71.此时,所述颗粒粉末为了提高粉末本身的密度并使最终热喷涂皮膜的表面粗糙度光滑,优选在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的钇化合物粉末和二氧化硅粉末的平均直径为50至900nm。
72.另外,优选本发明的热喷涂用钇类颗粒粉末不包含y-si-o中间相,可以至少包含不足10重量%的y-si-o中间相。如果所述y-si-o中间相生成10重量%以上,则发生硅元素(si)与卤素类蚀刻气体反应而气化的情形,因而生成空隙的可能性升高,腐蚀气体等工序气体会沿着所生成的空隙侵入而发生颗粒。
73.另外,为了制备本发明的钇类颗粒粉末,除二氧化硅(sio2)成分之外,为了降低钇类化合物的熔点,追加包含氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物,从而赋予降低所述热喷涂用钇类颗粒粉末的熔点的效果,可以抑制热喷涂皮膜内气孔的形成,制备气孔率低、致密的钇类热喷涂皮膜。
74.此时,所述颗粒粉末为了提高颗粒粉末本身的密度,优选氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)粉末的平均直径为50至900nm。
75.另外,本发明的热喷涂用钇类颗粒粉末的制备方法包括:(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末与氧化锂(lio)、氧化镁(mgo)、氧化钙(cao)及碳酸钙(caco3)中某一种以上化合物粉末混合而制备混合物的步骤;所述钇化合物粉末、二氧化硅粉末与氧化锂、氧化镁、氧化钙(cao)及碳酸钙(caco3)的平均直径为50至900nm,所述热喷涂用钇类颗粒粉末可以包含不足10重量%的一种以上a-y-si-o中间相,此时,所述a为在li、mg、ca中选择的某一种以上元素。
76.作为一个示例,所述热喷涂用钇类颗粒粉末的制备方法可以包括:(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末与氧化锂(lio)混合而制备混合物的步骤;所述钇化合物粉末、二氧化硅粉末和氧化锂的平均直径可以为50至900nm,所述热喷涂用钇类颗粒粉末可以包含不足10重量%的y-si-o中间相及li-y-si-o中间相。
77.作为一个示例,本发明的热喷涂用钇类颗粒粉末的制备方法可以包括:(a)将在y2o3、yof、yf3、y4al2o9、y3al5o
12
及yalo3中选择的某一种以上钇化合物粉末和二氧化硅(sio2)粉末与氧化镁(mgo)混合而制备混合物的步骤;所述钇化合物粉末、二氧化硅粉末和氧化镁的平均直径可以为50至900nm,所述热喷涂用钇类颗粒粉末包含不足10重量%的y-si-o中间相及mg-y-si-o中间相。
78.作为追加性的结合剂,优选有机化合物,可以例如由碳、氢及氧或由碳、氢、氧及氮构成的有机化合物,例如羧甲基纤维素(cmc)、聚乙烯醇(pva)、聚乙烯吡咯烷酮(pvp)等,但不限于此。
79.然后,在(b)步骤中,包含所述钇化合物粉末和二氧化硅(sio2)粉末的混合物经过造粒过程。作为造粒装置,例如可以利用喷雾干燥(spray drying)装置。在喷雾干燥装置中,包含经粉碎的多个颗粒的浆料液滴,在热风中滴下,液滴因此而固化,造粒成包括多个颗粒的中间颗粒。
80.最后,在(c)步骤中,所述颗粒粉末经过烧成步骤,优选烧成温度为1200至1450℃。在该温度范围下烧成,从而颗粒粉末内钇化合物粉末与二氧化硅(sio2)粉末以物理方式结合。
81.按照烧成温度为所述范围的条件,所述烧成时间优选为2小时以上、8小时以下。
82.烧成气氛可以使用大气气氛等含氧气氛,但优选氩气等惰性气体气氛或真空气氛。
83.另外,本发明提供一种以所述热喷涂用钇类颗粒的制备方法制备的热喷涂用钇类颗粒。
84.另外,本发明可以热喷涂所述热喷涂用钇类颗粒粉末而制备在基材上形成的钇类热喷涂皮膜。
85.所述热喷涂可以为火焰热喷涂、电弧(wire arc)热喷涂、等离子体热喷涂、真空等离子体热喷涂、高速火焰热喷涂(hvof)、低温热喷涂及爆炸热喷涂中某一种。
86.所述等离子体热喷涂法包括向该等离子体射流投入热喷涂用材料,经加热、加速而堆积于基材,从而获得热喷涂皮膜的普通涂布方法。另外,等离子体热喷涂法可以是在大气中进行的大气等离子体热喷涂(air plasma spray:aps)、在低于大气压的气压下进行热喷涂的减压等离子体热喷涂(low pressure plasma spraying:lps)、在高于大气压的加压容器内进行等离子体热喷涂的加压等离子体热喷涂(high pressure plasma spraying)等形态。借助于这种等离子体热喷涂,例如作为一个示例,借助于10000k至15000k左右的等离子体射流使热喷涂材料熔融及加速,从而可以使热喷涂用颗粒粉末以300m/s至1000m/s左右速度碰撞基材并堆积。
87.在本发明中,被覆热喷涂皮膜的基材不特别限定。例如,如果是提供用于这种热喷涂用材料的热喷涂并包括可具备所需耐性的材料的基材,则其材质或形状等不特别限制。作为构成这种热喷涂的基材的材料,例如优选在构成半导体制造装置用构件等的铝、镍、铬、锌及他们的合金、氧化铝、氮化铝、氮化硅、碳化硅及石英玻璃中的至少一种以上的组合中选择。
88.这种基材例如为构成半导体器件制造装置的构件,也可以为暴露于反应性高的氧气等离子体或卤素气体等离子体的构件。
89.优选所述基材表面在等离子体热喷涂之前,根据jis h 9302规定的陶瓷热喷涂作业标准进行处理。例如,去除该基材表面的锈或油脂等后,喷射al2o3、sic等磨削颗粒而进行表面粗糙化,预处理成热喷涂颗粒粉末容易附着的状态。
90.另外,所述热喷涂皮膜的制备方法除了等离子体热喷涂之外,也可以通过将在此公开的热喷涂材料提供给基于公知热喷涂方法的热喷涂装置而形成。适宜地热喷涂这种热喷涂用材料的热喷涂方法,例如采用高速框架热喷涂法、框架热喷涂法、爆炸热喷涂法等热喷涂方法。
91.热喷涂皮膜的特性会有在某种程度上依赖于热喷涂方法及其热喷涂条件的情形。但是,无论采用哪种热喷涂方法及热喷涂条件,通过使用在此公开的热喷涂用材料,与使用其他热喷涂材料时相比,可以形成气孔率低、致密的热喷涂皮膜。
92.在以往的钇类热喷涂膜中,诸如在涂层内部及表面存在的气孔及裂隙的机械性缺陷和高表面粗糙度,作为对在蚀刻工序中发生的化学性/物理性冲击薄弱的部位,会因涂层劣化等而成为生成颗粒的潜在性危险要素。
93.相反,在本发明中,利用纳米尺寸的钇类粉末作为一次粉末,另外,添加二氧化硅成分来降低钇类化合物的熔点,在热喷涂皮膜制备工序时,抑制热喷涂皮膜内气孔的形成,二氧化硅成分在高温的皮膜制备工序中自动消失,因而制备气孔率低、致密的钇类热喷涂皮膜。
94.作为一个示例,以钇类热喷涂皮膜的制备方法形成的钇类热喷涂皮膜,气孔率可
以不足2%,优选地,可以不足1.5%,更优选地,可以不足1%。
95.因此,本发明的钇类热喷涂皮膜相比原有热喷涂皮膜,气孔率水平优秀,应用于原有蚀刻工序使用的半导体腔室,表现出优秀的耐久性,抑制蚀刻气体所致的涂布物脱离现象。
96.作为一个示例,在所述钇类热喷涂皮膜的制备方法中,硅元素可以在热喷涂皮膜制备工序中一部分气化,因此,相对于所述钇的硅元素重量比(si/y)具有0.3至1.00范围。
97.另外,就本发明的钇类热喷涂皮膜而言,在所述钇化合物为氧化钇(y2o3)的情况下,作为所述氧化钇的结晶结构,可以包含70至90%单斜晶(monoclinic)形态。此时,解释为氧化钇(y2o3)的单斜晶结晶结构赋予提高氧化钇粉末之间接合强度的效果,可以有助于较小地形成热喷涂皮膜内气孔的大小。
98.另外,优选本发明的钇类热喷涂皮膜不包含y-si-o中间相,可以至少包含不足10重量%的y-si-o中间相。
99.如果所述y-si-o中间相生成10重量%以上,则发生硅元素(si)与卤素类蚀刻气体反应而气化的情形,因而生成空隙的可能性升高,腐蚀气体等工序气体会沿着所生成的空隙侵入而发生颗粒。
100.另外,在所述y-si-o中间相生成的同时,无法形成颗粒粉末内均质膜,会发生各部位的功能差异,因此,在赋予特性方面发生困难。
101.另一方面,在所述钇类热喷涂皮膜中,当包含10重量%以上的li、mg、ca中某一种以上元素的中间相时,也发生相同的现象。
102.下面通过实施例,更详细地说明本发明。但是,下述实施例只是对本发明的示例,并非本发明由所述实施例所限定。
103.制备例1~2
104.制备例使用的钇氧化物颗粒粉末内钇元素和氧元素的混合比率为78/22。
105.在钇氧化物粉末及二氧化硅粉末中混合粘合剂后,借助于喷雾干燥机获得造粒粉末,
106.然后,对所述造粒粉末脱脂后进行烧结,获得了烧结粉末。各制备例使用的钇氧化物粉末及二氧化硅粉末的大小及混合比率等实验条件显示于下表1,制备的热喷涂用颗粒粉末的电子扫描显微镜(sem)照片图示于图1。
107.表1
108.[0109][0110]
如上表1所示,使用一次颗粒粉末大小为纳米尺寸的粉末的制备例4,相比包含微米尺寸的钇类化合物粉末的制备例2,表现出高表观密度。
[0111]
比较例1~2及实施例1
[0112]
利用所述制备例1、3及4准备的热喷涂材料及等离子体枪,作为热源气体流入氩气和氢气,在移动热喷涂枪的同时,在40~50kw功率下生成等离子体,利用所生成的等离子体使原料粉末熔融,在母材上形成涂布膜。涂布膜的厚度形成得具有150~200μm,实验条件显示于下表2。另外,制备的热喷涂皮膜侧面的电子扫描显微镜(sem)照片显示于图2。
[0113]
表2
[0114][0115]
实验例1:热喷涂皮膜的观察
[0116]
图2是本发明的比较例1至2、实施例1的热喷涂皮膜侧面的电子扫描显微镜(sem)照片,通过图2的热喷涂皮膜侧面的电子扫描显微镜(sem)照片,确认形成了热喷涂皮膜内气孔率低、致密的薄膜。
[0117]
另外,气孔率的测量如下进行。即,将热喷涂皮膜截断成与基材表面直交的面,对获得的剖面进行树脂包埋研磨后,使用电子显微镜(jeol、js-6010)拍摄该剖面图像(图2)。使用图像解析软件(media cybernetics,image pro)解析该图像,从而对剖面图像中的气孔部分的面积进行特定,算出这种气孔部分的面积在全体剖面中所占比率,从而求出气孔率,将通过在热喷涂皮膜剖面出现的气孔面积获得的气孔率(porosity)显示于下表3。
[0118]
表3
[0119][0120]
比较例1制备的热喷涂皮膜的气孔率(prosity)表现出3%以上的值,相反,实施例1的气孔率显示出不足1%的值,表明本发明的钇类热喷涂皮膜的致密度比以往所利用的组成的热喷涂皮膜增加。
[0121]
在图3中确认二氧化硅粉末的含量所致颗粒粉末的形态及成分的结果,确认了所述制备例4制备的颗粒粉末作为一次颗粒形态残存的形态,包含微细气孔,但二氧化硅粉末含量超过本发明范围的制备例5至7所制备的颗粒粉末,由于一次相颗粒或二次相颗粒的生长,颗粒粉末内微细气孔的大小反而增加,颗粒粉末的致密度降低。
[0122]
实验例2:硬度测量
[0123]
上表3中显示的“硬度”栏代表各热喷涂皮膜的维氏硬度的测量结果。维氏硬度的测量使用微小硬度测量仪,测量了借助于对面角136
°
的金刚石压头而施加294.2mn实验力时求出的维氏硬度(hv0.2)。
[0124]
如上表3所示,确认了实施例1的热喷涂皮膜表现出比比较例1及2的热喷涂皮膜优秀的硬度。
[0125]
实验例3:粗糙度测量
[0126]
利用粗糙度测量仪(sj-201),测量了本发明实施例和比较例制备的涂布膜的表面粗糙度(roughness、μm),其结果记载于上表3。
[0127]
实验例4:沉积率测量
[0128]
利用扫描电子显微镜图像观察了本发明实施例和比较例制备的涂布膜厚度,将除以进行相应涂布的次数所得的值记载于上表3。
[0129]
以上详细记述了本发明内容的特定部分,本行业的普通技术人员不言而喻,这种具体记述只是优选的实施形态,本发明的范围并非由此限定。因此,本发明的实质性范围由附带的权利要求项及其等价物所定义。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1