基于石油的液态烃的热中和重整的制作方法

文档序号:3476176阅读:303来源:国知局

专利名称::基于石油的液态烃的热中和重整的制作方法
技术领域
:本发明涉及用于基于石油的液态烃燃料重整的热中和方法,更具体地讲,涉及具有双重功能的单一催化剂在完成燃烧及蒸汽和/或〇02重整的方法中的用途。
背景技术
:由于包括更高效率和较低散发在内的各种原因,用于机动和静止应用的基于氢气的燃料电池正在普及。然而,纯氢气作为机动和住宅应用的燃料有许多局限性。目前递送氬气的基础结构不适当,气态氢气的燃料补给会慢,而且氢气的安全贮存存在问题。因此,使用车载(onboard)重整装置从如汽油和曱醇的燃料产生富含氢气的气流正在普及。制氢的可选方法包括未来的基于太阳能的氢气产生乃至更实际的烃重整。人们正在计划把利用液态烃和/或气态烃燃料制氢当作环保地产生能量的直接办法。除有利的经济因素和重整相对容易这些方面之外,由于可以利用现有的分布网(distributionnetwork),所以这种选择也更加实用。烃类燃料转化为氢气可通过几种方法实现,包括烃蒸汽重整(HSR)、部分氧化(POX)和自热重整(ATR)。烃蒸汽重整包括在催化剂存在下蒸汽与燃料反应产生氢气和CO,如方程式(1)和(2)所示,适用于曱烷(014)和异辛烷(〇81118)(2,2,4-三曱基戊烷,用作汽油的代用品)。因为蒸汽重整是吸热的,所以必须在外炉中燃烧一些燃料并经由热交换器使热传导至重整装置。CH4+H20—CO+3H2,AH。2诉=+206J2kJ/raol(1)CgHi8+8H20SCO+17H2,AH°加=+1273.2kJ/mol(2)部分氧化包括氧气与燃料反应产生氢气和CO,如方程式(3)和(4)所示,此时,氧对燃料的比率小于完全燃烧时(即完全转化为(302和&0)所需的比率。CHt+%02^CO+2H2,AH。2卯=-35.7kJ/mol(3)C8H18+402—8CO+9H2,AH°298=-15UkJ/mol(4)进行部分氧化可以用催化剂(催化部分氧化)或者不用催化剂(非催化部分氧化)。部分氧化的反应速度比蒸汽重整快很多,但是燃料中每个碳的氢产率较低。非催化部分氧化需要高于IOO(TC的反应温度以达到快速反应速度。尽管该反应是放热的,但是必须燃烧一些燃料,因为该反应所产生的热还不足以使进料预热以达到最佳速度。近来,人们对催化部分氧化产生了兴趣,因为它可以在比非催化途径更低的温度下操作。较低的搡作温度可以更好地控制反应,从而使焦炭生成最小化,并且允许反应器的制造材料有更宽的选择。自热重整包括氧气、蒸汽和燃料反应产生氢气和C02,而且可以看作是部分氧化和蒸汽重整的结合,如方程式(5)和(6)所示。从本质上讲,这种方法可看作是POX和HRS的结合。CRt+ViCh+H20—C02+3H2,AH。298=-18.4kJ/mol(5)C8H18+402+8H20—8CO+17H2,△H°29s=-236.7kJ乂moI(6)用于车载重整的反应方法的选择依赖于很多种因素,包括实际应用的运作特征(例如,改变的功率需求、快速启动和频繁关闭)和燃料电池组的类型。HSR的传热有限,因此不会对功率需求变化作出快速反应(即"负荷跟踪")。当功率需求快速减少时,催化剂会过热而引起烧结,从而导致活性损失。ATR可以克服HSR的负荷跟踪限制,因为该吸热反应所需的热在催化剂床内生成,该特性允许对变化的功率需求作出更快速的反应,以及更快的启动。发明概述已经发现一种新的、高气时空速的方法,称作热中和重整(TNR),适用于生产富含氢气的合成气体(合成气(syngas)),该方法已用于基于石油的液态烃燃料(包括异辛烷和石脑油)的重整。通过独特的氢和氧溢流作用的催化功能,该方法的优点在于,没有明显的由于焦炭形成或硫化而引起的催化剂钝化。本发明方法结合了燃烧及蒸汽和/或co2重整二者的催化功能,并且使用了具有多重功能的四组分的催化剂。该催化剂先前已用于重整天然气和液化石油气(LPG),现在已经扩展到基于石油的液态烃燃料的重整。本方法可转化反应气体混合物,例如,由2.7%摩尔异辛烷、51.7%摩尔空气和46.6%摩尔蒸汽组成的反应气体混合物,以制成含34.5o/o摩尔H2、7.4%摩尔CO、9.3%摩尔C02、0.3%摩尔CH4、25.5%摩尔&和23.0%摩尔蒸汽的混合物。可以以80升/小时的流速,以大于96.5%的转化率,生成包含54.4%摩尔112和CO的干燥气体。本方法所产生的合成气可用于由以40%效率运作的燃料电池产生约80瓦特(W)的电力。附图简述图1.为常规类型的重整方法与本发明重整方法的示意图比较。图2.为本发明热中和方法的详细图示。发明详述本发明包含新的高气时空速(01丫=25,00011-1至40,000h")热中和重整(TNR)方法的应用,用于由基于石油的液态烃燃料产生合成气。本发明解决了迄今为止无焦炭形成的液态烃重整这一难题。参考图l.可以容易地理解本发明的热中和重整方法相对于常规重整方法所实现的优势。在自热重整中,即便是最高级的自热重整,也串联使用了两种催化剂床,即燃烧催化剂和蒸汽重整催化剂。然而,催化剂载体和催化剂成分的热阻(thermalresistance)将催化燃烧的最高催化剂床温度限制在1000至IIO(TC;在本质上并未区别于先验的均匀燃烧。对比之下,热中和重整是在相同催化剂表面上进行,在该催化剂表面上,燃烧功能和蒸汽重整功能具有良好的平衡。于是,燃烧的热就直接地即刻用于重整的热,且热损失最小。本方法优选使用四组分的复合催化剂Ni-Ce203-Pt-Rh(Ni:Ce:Pt:Rh原子比值^00:20:3:l),该催化剂具有重整功能,但是它也促进催化燃烧。还可以使用具有相似特性的其它催化剂。催化燃烧所产生的大量放热使催化剂的温度提高到约80(TC至约90(TC的范围。蒸汽重整和/或C02重整瞬间增加,以阻止催化剂温度过度上升。因此这种热中和方法提高了反应速度和催化剂稳定性。TNR方法非常快,大于约25,00011-1,而且加工含硫量小于200ppm且芳香族物质少于1%的液态烃时,不会导致明显的焦炭形成。优选地,燃料处理器或反应器入口处的启动温度为约38(TC至约450。C,该温度比常规蒸汽重整的温度低约50(TC。最优选地,入口温度为约41(TC至约420°C。在稳定状态运作期间,没有必要额外供热以维持该反应体系,因为蒸汽重整所需的热在原处由催化燃烧反应供给。所述催化剂在相同催化剂表面上拥有催化燃烧功能及蒸汽和/或。02重整功能。通过对氧气和氢气的独特的溢流功能,焦炭形成和硫中毒的前体即刻被氧化和/或氢化,防止催化钝化。通过在约41(TC至约420°C的温度范围下供给适当比率的燃料、空气和蒸汽混合物,催化剂床的温度在稳态下非常短的时间内(20秒内)增加到约80(TC至约90(TC范围的反应温度。在此温度下蒸汽重整反应进行不需要外部加热。本发明方法示意图如图2所示。与已有的技术方法比较,通过这种使用燃烧/重整催化剂的方法,使用液体进料时显著增加了合成气的产率,且没有焦炭形成的有害结果。燃料的催化燃烧所引起的放热可以自动地被烃的蒸汽重整所引起的吸热中和及补偿。这样防止了催化剂温度的过度上升以及由此而产生的催化剂金属烧结和催化剂载体转化为无孔态。这些功能增强了催化剂的稳定性。放热和吸热之间的传热直接发生在催化剂床上。因此,依照本发明方法,液态烃重整所需的催化反应器的体积小于常规蒸汽重整反应器大小的1/20,并且小于自热重整装置大小的1/10。此外,本方法不需要常规烃蒸汽重整中加热反应器所需的大炉子。与使用已有技术方法时只有85%的液体进料转化率相比,本方法实施中,超过96.5%的进料转化为合成气(H2/CO/CCyCH4)。有很多种燃料可用于本发明,包括基于气体的燃料,如天然气(NG)和液化石油气(LPG),还有基于石油的液态烃,包括石脑油、汽油、煤油和柴油。本方法也可以适用于非石油燃并牛,如曱醇、乙醇、生物柴油和合成的燃料(合成燃料)。本方法可适用于多种应用,包括合成气(一氧化碳+氢气)的生产、使用费-托反应(Fischer-Tropschreaction)的经至液体的转化(HTL)、曱醇的生产、加氢处理用的氢进料、用于各种应用的高纯氢的生产、特殊化学品,以及供燃料电池应用的液态烃燃料的重整,所述燃料电池的容量范围从100瓦(W)至几兆瓦(MW),使用低温燃料电池(例如,质子交换膜燃料电池(PEMFC))和高温燃料电池(例如,固体氧化物燃料电池(SOFC)以及熔融碳酸盐燃料电池(MCFC))。这些系统可应用于小型商品、家用热电联产系统和燃料电池车辆。它们还可用于生产内燃机氢富集用的富氢重整油,以减少冷启动的散发并扩展废气再循环的有用范围。实施例1在固定床流动反应器系统中进行了一系列试验来证明本发明方法。该反应系统由气体和液体进料部分、预热部分、反应器部分和产物收集部分组成。气体通过质量流量控制器进料;液体进料用精确的HPLC泵抽送。反应器管子的直径为12.6毫米且由Haynes230合金材料制成。以三区电炉加热反应器部分,该电炉的温度受温度控制器监测和控制。用热电偶测量反应器的内部温度。在进入反应器之前,水和烃在预热器中汽化并且在静态混合器中与空气混合。产物收集部分由压力控制阀、气液分离器、液面调节器和产物罐组成。将10毫升Ni-Ce203-Pt-Rh催化剂组成的进料加入反应器。使催化剂床位于惰性金刚砂层间的反应器管子的中央。金刚砂层的顶部也作为预热区。将进料混合物在预热区加热至350。C。在201/h的氮气流下将反应器加热至410。C的起始温度。打开水泵,使水在预热器中汽化,并使蒸汽流速为88.01/h。在产物罐中收集到足量的水后,引进烃进料。然后以111Vh的速度将空气加入到反应器内。反应器内的温度在几秒钟内上升至约80(TC至900°C。获得稳态后该试验继续2小时。收集气体样品,并用两台气相色语仪分析,一台配有热导检测器(TCD)而另一台配有火焰离子化检测器(FID)。从GC结果计算转化百分率和产物气体组成。一项试验以异辛烷作为进料,催化剂床的起始温度为410°C。气时空速为34,129h",,压力为2巴,蒸汽/碳比例为2.1,氧气/碳比例为0.507。结果见表1。表l:异辛烷进料结果的总结<table>tableseeoriginaldocumentpage9</column></row><table>实施例2该实施例说明将硫含量为20Oppm的石脑油进料催化转化为合成气的方法,该方法的细节如实施例1所述。气时空速为26,507h",蒸汽流速为146.11/h,空气流速为1111/h,压力为2巴,蒸汽对碳的比率为2.1且氧气/碳的比率为0.367。将结果制成表2。表2:轻石脑油进料(硫含量小于200ppm)的实验结果总结<table>tableseeoriginaldocumentpage10</column></row><table>实施例3本实施例说明使硫含量小于lppm的轻石脑油进料催化转化为合成气的方法,该方法的细节如实施例1所述。气时空速为24,997h—1,蒸汽流速为69.71/h,空气流速为75.3l/h,压力为2巴,蒸汽对碳的比率为2.1,且氧气/碳的比率为0.486。将结果制成表3。表3.轻石脑油进料实验结果的总结<table>tableseeoriginaldocumentpage10</column></row><table><table>tableseeoriginaldocumentpage11</column></row><table>实施例4:本实施例阐明使硫含量小于10ppm的重石脑油进料催化转化为合成气的方法,该方法的细节如实施例1所述。气时空速为39,144h",蒸汽流速为118.51/h,空气流速为1101/h,压力为2巴,蒸汽对碳的比率为2.1,氧气/碳的比率为0.42。将结果制成表4。表4.石脑油进料实验结果的总结<table>tableseeoriginaldocumentpage11</column></row><table>权利要求1.一种用于由液态烃燃料生成富含氢气的合成气的热中和重整方法,所述方法包括a)向反应器内部区域提供烃燃料、富含O2的气体和蒸汽的混合物,所述内部区域包括由Ni-Ce2O3-Pt-Rh催化剂组成的催化剂床,该催化剂是结合了燃烧及蒸汽和/或CO2重整的催化剂;b)在约380℃至约450℃的温度下,使所述燃料、富含O2的气体和蒸汽预热;和c)在约25,000h-1或更高的气时空速下,使预热的混合物与所述催化剂床接触,引起放热燃烧反应,使反应温度升高到约800℃至约900℃,并且还使吸热的蒸汽重整反应进行一段时间,该段时间足以使所述液体燃料重整,产生富含氢气的合成气。2.权利要求1的方法,其中所述液态烃燃料为基于石油的燃料。3.权利要求2的方法,其中所述基于石油的液体选自异辛烷、轻石脑油、重石脑油、煤油和柴油。4.权利要求1的方法,其中所述气时空速为约25,000h"至约40,000h'1。5.权利要求1的方法,其中所迷预热温度为约41(TC至约420。C。6.权利要求1的方法,其中所迷放热燃烧反应所产生的热;波相同催化剂床上的吸热反应中和及补偿。7.权利要求1的方法,其中所迷反应的进行不需要外部的热供给。8.权利要求l的方法,其中避免了焦炭形成。9.权利要求3的方法,其中超过96.5%的异辛烷和轻石脑油进料转化为合成气(H2/CO/CCyCH4)。10.权利要求3的方法,其中超过99%的重石脑油进料转化为合成气(H2/co/ccycH4)。11.权利要求1的方法,其中用所述方法产生的合成气可进一步被纯化以产生高纯度氢气。12.权利要求1的方法,其中所述富含氢气的合成气用作包含高温或低温燃料电池的车辆中车载重整装置的进料。13.权利要求1的方法,其中所述富含氢气的合成气用作内燃机中氢富集的进料。14.权利要求1的方法,其中所述富含氢气的合成气用于静止的应用。全文摘要一种用于液态烃燃料的热中和重整的方法,该方法使用具有完成燃烧和蒸汽重整双重功能的Ni-Ce<sub>2</sub>O<sub>3</sub>-Pt-Rh催化剂。文档编号C07C27/00GK101460437SQ200580048223公开日2009年6月17日申请日期2005年12月23日优先权日2004年12月23日发明者A·沙基尔,B·O·达布西,F·I·阿尔-穆海什,M·A·西迪奎,T·伊努伊申请人:沙特阿拉伯石油公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1