专利名称:三组件嵌合的反义寡核苷酸的制作方法
本申请要求了美国专利申请No.60/026,732(1996年9月26日提交)和08/754,580(1996年11月21日提交)的优先权。
1.发明领域本发明涉及反义寡核苷酸,该寡核苷酸的靶标是细胞内作为细胞酶RNA酶H底物的mRNA,从而使所靶向的mRNA特异性降解。该寡核苷酸有四个组件RNA酶H激活区;互补区;5′末端和3′末端。本发明优化了每个组件,以抗胞内核酸酶,提高与靶mRNA的杂交,特异性地灭活细胞中的靶mRNA,并降低胞毒性。
2.发明背景反义多核苷酸可用来特异性地抑制哺乳动物细胞内不需要基因的表达。它们可用来与RNA分子(通常是信使RNA)杂交,并通过激活的RNA酶H来抑制RNA分子的功能。
反义寡核苷酸应用的出现为治疗某些疾病提供了一种有效的新方法。迄今绝大部分工作侧重于反义寡核苷酸作为抗病毒剂或抗癌剂的应用(Wickstrom,E.编辑,Prospects for antisense Nucleic Acid Therapy of Cancer and AIDS,New YorkWiley-Liss,1991;Crooke,S.T.和Lebleu,B.编辑,Antisense Research andApplication,Boca RatonCRC Press,1993,pp.154-182;Baserga,R.和Denhardt,D.T.,1992,Antisense Strategies,New YorkThe New York Academy of Sciences,Vol.660;Murray,J.A.H.,编辑,Antisense RNA and DNA,New YorkWiley-Liss,1993)。
已发表了许多将反义寡核苷酸用作抗病毒剂的文献。例如,Agrawal等报道了用亚磷酰胺寡核苷酸和硫代磷酸酯寡核苷酸作为HIV的反义抑制剂。Agrawal等,Proc.Natl.Acad.Sci.USA 857079-7083(1988)。Zamecnik等公开了用反义寡核苷酸作为鸡成纤维细胞中Rous肉瘤病毒复制的抑制剂。Zamecnik等,Proc.Natl.Acad.Sci.USA 834143-4146(1986)。
反义寡核苷酸影响所靶向RNA分子的主要机制是通过激活能断裂DNA/RNA杂交体中的RNA链的细胞酶RNA酶H。磷酸二酯和硫代磷酸酯连接的DNA可激活内源RNA酶H,从而使所靶向的RNA断裂(Agrawal,S.等,Proc.Natl.Acad.Sci.USA 871101-5(1990);Woolf,T.M.,等,Nucleic Acids Res.181763-9(1990))。然而,连接磷酸二酯的DNA会被细胞核酸酶迅速降解,连接硫代磷酸酯的DNA则例外,能抵抗核酸酶,非天然存在的DNA衍生物在与RNA杂交时不会激活RNA酶H。尽管连接硫代磷酸酯的DNA有激活RNA酶H的优点,但是它与非特异性胞毒效应有关而且对RNA亲和力较低(Stein,C.A.等,Aids ResHum Retroviruses 5639-46(1989);Woolf,T.M.等,Nucleic Acids Res.181763-9(1990);Kawasaki,A.M.,等,J.Med.Chem.36831-41(1993))。
用具有硫代磷酸酯DNA短延伸序列(3-9个碱基)的嵌合反义寡聚物实现了RNA酶H介导的RNA靶断裂(Dagle,J.M.,等,Nucleic Acids Res.184751-7(1990);Agrawal,S.等,Proc.Natl.Acad.Sci.USA 871401-5(1990);Monia,B.P.等,1993,J.Biol.Chem.26814514)。激活细菌RNA酶H最少需要3个DNA碱基(Futdon,P.J.等,Nucleic Acids Res.179193-9204;Quartin,R.S.,等,Nucleic Acids Res.177235-7262),而激活哺乳动物RNA酶H则最少需要5个碱基(Monia,B.P.等,J.Biol.Chem.26814514-14522(1993))。在这些嵌合寡核苷酸中有一个形成RNA酶H底物的中心区域,该区域侧接了杂交“臂”,该杂交“臂”包含不形成RNA酶H底物的经修饰的核苷酸。另外,已经报道了采用含RNA酶H的HeLa细胞抽提物的胞外试验,其中RNA酶H激活区在寡聚物的5′或3′侧。这些试验具体地报道了由磷酸二酯2′-脱氧核苷酸组成的、连接到与甲基膦酸酯连接的互补区上的5′或3′端的RNA酶H激活区域有全部活性,但由硫代磷酸酯2′-脱氧核苷酸组成的、连接到与甲基膦酸酯连接的互补区上的5′端的RNA酶H激活区只有部分活性。参见Col 10,美国专利No.5,220,007(T.Pederson等)。
现已采用2′-O-甲基或2′-氟代修饰的寡核苷酸作为嵌合寡聚物的杂交臂。Inoue,H.,等,1987,Nucleic Acids Res.156131-48。2′-O-甲基基团提高了寡聚物对所靶向RNA的亲和力,并且提高了寡聚物在细胞培养中的活性。然而,具有磷酸二酯键的2′-O-甲基碱基会被外切核酸酶降解,因此它不适用于反义寡核苷酸在细胞内的应用或治疗应用。Shibahara,S.,等,1989,Nucleic Acids Res.17239-52。如硫代磷酸酯均一修饰的寡聚物(Monia B.P.,等,1993,J.Biol.Chem.26814514-14522)和末端用硫代磷酸酯取代的2′-O-甲基核糖-寡核苷酸(Shibahara,S.,等,1989,Nucleic Acid Res.17239-252)中显示的,硫代磷酸酯2′-O-甲基核苷酸有抗核酸酶的能力。然而,硫代磷酸酯完全取代的寡聚物可能会引起非特异性的效应,包括细胞毒性。Stein,C.A.,等,1989,Aids Res.Hum.retrov.5639-646;Woolf,T.M.,等,1990,Nucleic Acids Res.181763-69;Wagner,R.W.,1995,Antisense Res.Dev.5113-115;Krieg,A.M.,&Stein,C.A.1995,Antisense Res.Dev.5241。
在Crooke,S.T.等,1995,Bioch.J.312599-608和Iwai,S.等,1995,FEBS Lett(Neth.)368315-20中讨论了2′-氟代寡核苷酸对细菌RNA酶H的作用。
已经用其它几种化学物质来制作非RNA酶H底物的嵌合寡聚物的“臂”或区域。第一种嵌合寡聚物在臂中采用的是甲基膦酸酯或亚磷酰胺键(Dagle,J.M.,Walder,J.A.&Weeks,K.L.,Nucleis Acids Res.181751-7(1990);Agrawal,S.,等,Proc.Natl.Acad.Sci.USA 871041-5(1990)。尽管这些化合物在缓冲系统和非洲爪蟾卵母细胞中有很好的作用,但是臂会降低杂交亲和力。亲和力的降低大大降低了嵌合寡聚物在哺乳动物细胞培养中的反义活性。
许多研究报道了乙基化和甲基化磷酸三酯寡核苷酸的合成及其理化和生化评价。二核苷酸的甲基和乙基三酯表现出具有对具有互补序列的多核苷酸有更高的亲和力(Miller,P.S.等,J.Am.Chem.Soc.936657(1971)。然而,几年前,另一研究组报道了寡核苷酸的七乙酯对互补多核苷酸没有结合亲和力或亲和力相当低(Pless,R.C.,和Ts′O,P.O.P.,Biochemistry 161239-1250(1977))。合成磷酸甲基化(P-甲氧基)的寡核苷酸,发现其具有抗内切核酸酶消化的能力(Gallo,K.L.,等,Nucl.Acid Res.187405(1986)) P-甲氧基18聚寡核苷酸在与天然DNA形成的双体中表现出较高的Tm值,并在室温下阻断了DNA复制过程(Moody,H.M.等,Nucl.Acid Res.174769-4782(1989))。Moody等认为磷酸乙基化(P-乙氧基)寡核苷酸的反义性能差。
以FMOC作为环外氨基的临时保护基团,合成了DNA碱基的P-甲氧基二聚物(Koole,L.H.,等,J.Org.Chem.541657-1664(1989))。另外还合成了部分P-甲氧基寡脱氧核糖核苷酸并测定了其理化性质。用甲基磷酸三酯只能制得胸苷和胞苷寡聚物,因为保持甲基三酯完整遇到困难。另外,发现甲基基团对经修饰的寡聚物与其互补序列的杂交性能有去稳定作用(与未经修饰的亲代寡脱氧核糖核苷酸相比)(Vinogradeov,S.,Asseline,U.,Thoung,N.T.,Tet.Let.345899-5902(1993))。
其它报告建议,P-甲氧基寡核苷酸是比P-乙氧基寡核苷酸更佳的反义寡核苷酸,因为P-甲氧基寡核苷酸表现出强于甲基膦酸酯或P-乙氧基寡核苷酸的杂交能力(van Genderen,M.H.P.,等,Kon.ned.akad.van Wetensch.B90155-159(1987);van Genderen,M.H.P.,等,Trav.Chim.Pays Bas 10828-35(1989))。van Genderen等报道说,P-乙氧基寡核苷酸与DNA的杂交能力较差,因此它被认为不适合用作反义寡核苷酸(Moody,H.M.,等,Nucl.Acid Res.174769-4782(1989))。已经从一些核苷酸合成了P-异丙氧基亚磷酰胺(Stec.W.J.,等,Tet.Let.262191-2194(1985)),一些含有P-异丙氧基磷酸三酯的短的寡核苷酸,并且进行杂交研究。
美国专利No.5,525,719(Srivastava,S.,和Raza,s.K.,1996年6月11日)建议采用由连接磷酸二酯和/或P-乙氧基或P-甲氧基磷酸三酯的2′-O-甲基核苷酸组成的反义寡核苷酸。
目前还没有开发出能最优化地达到有效反义寡核苷酸必需的所有特征(即毒性低、特异性高、有抗核酸酶的能力、易合成和RNA酶H相容性)的核酸类化学物质或嵌合体。
3.发明概述本发明描述了一类寡核苷酸,该类寡核苷酸经过优化可靶向RNA酶H降解的特异性靶RNA,并同时保留了抗血浆和真核细胞中(尤其是哺乳动物细胞中)核酸酶降解的能力。本发明的寡核苷酸含有非天然存在的5′→3′连接的核苷酸。另外,本发明还提供了有以下两类核苷酸的寡核苷酸激活RNA酶H的2′-脱氧硫代磷酸酯和不激活酶H的2′-修饰的寡核苷酸。2′-修饰的核苷酸之间的连接键可以是磷酸二酯、硫代磷酸酯或P-乙氧基磷酸二酯。
除了5′和3′端外,本发明描述的寡核苷酸还包含RNA酶H激活区和促进与靶序列杂交的互补区。RNA酶H激活区通常是一个无间隔毗连序列,其含有3-5个2′-脱氧硫代磷酸酯核苷酸(来激活细菌RNA酶H),或,通常含有约3-12个(更典型的有5-12个,更佳的有5-10个)2′-脱氧硫代磷酸酯核苷酸(来激活真核生物(尤其是哺乳动物)RNA酶H)。
通过掺入高度抗核酸酶(尤其是外切核酸酶)的经修饰的5′和3′端碱基,并且任选地放入3′端封闭基团,从而可保护本发明所述的寡核苷酸的5′和3′端免受外切核酸酶降解。
在一个较佳的实例中,RNA酶H激活区由位于寡核苷酸5′端的高度抗核酸酶的硫代磷酸酯核苷酸组成。
据此,本发明的一个例子是一种嵌合的寡核苷酸,该寡核苷酸包含一个具有3-12个无隔的连接2′-脱氧硫代磷酸酯的碱基(即,与硫代磷酸酯连接的2-脱氧核糖核苷酸)的RNA酶H激活区;一个具有约9-50个2′-修饰碱基、基本上抗内切核酸酶的互补区;一个基本上抗外切核酸酶的5′端;和一个基本上抗外切核酸酶的3′端。
4.发明详述4.1.寡核苷酸的结构本发明的寡核苷酸通常包含抗5′端外切核酸酶的5′端核酸或连接键;长约3-10个碱基的无隔RNA酶H激活区;5′→3′连接的(或任选的,3′→3′连接的,如“反向”)3′端核苷酸;以及约9-50个5′→3′连接的核苷酸,这些核苷酸可促进该寡核苷酸与靶mRNA杂交的2′-脱氧核苷酸或2′-修饰的核苷酸,如2′-氟代、2′-甲氧基、2′-乙氧基、2′-甲氧基乙氧基、2′-烯丙氧基(-OCH2CH=CH2)核苷酸(下称“2′-修饰核苷酸”)。3′端核苷酸可以任选地为2′-修饰的核苷酸。本领域技术人员应理解,3′端碱基的3′-OH可以(非必须)是酯化成磷酸酯或磷酸酯类似物。3′端残基指核苷,甚至它可以是核苷酸。
本发明的寡核苷酸中核苷酸间连键可以是磷酸二酯、硫代磷酸酯或P-乙氧基磷酸二酯部分(moiety)。寡核苷酸有基本上保护其免受核酸酶攻击的3′端和5′端。3′端是通过具有最3′端的5′→3′键为硫代磷酸酯或P-烷氧基磷酸三酯键和/或具有取代的3′端羟基(如3′→3′连接的核苷酸)来得到保护的,其中烷氧基是甲氧基、乙氧基或异丙氧基,最好是乙氧基。两个或三个3′端核苷酸之间的键宜为硫代磷酸酯或P-烷氧基磷酸三酯键。为了减少核酸酶降解,最5′端的3′→5′键宜为硫代磷酸酯键或P-烷氧基磷酸三酯键。两个最5′端的3′→5′键宜为硫代磷酸酯键或P-乙氧基磷酸三酯键。5′端羟基部分可以任选地被含磷物质(如磷酸,硫代磷酸或P-乙氧基磷酸(没有限制))酯化。
3′端5′→3′连接的核苷酸有3′-O基团,该基团可任选地以封闭基团取代,从而防止寡核苷酸被3′外切核酸酶降解。在一个实例中,3′羟基通过3′→3′核苷酸间连键被酯化到核苷酸上。任选地,3′端的3′→3′连接的核苷酸可以硫代磷酸酯部分连接。通过掺入上述化学物质,本发明所述的寡核苷酸能基本上抗5′和3′外切核酸酶和内切核酸酶。为了便于本发明的描述,当寡聚物抗内源细胞核酸酶攻击的能力比包含未经修饰的DNA或RNA的相应寡聚物高至少3倍时,则称寡聚物“基本上”抗给定的内切或外切核酸酶;当寡聚物比包含未经修饰的DNA或RNA的相应寡聚物高至少6倍时,则称寡聚物“高度”抗核酸酶。
在一个较佳的实例中,除任选的封闭核苷酸外,本寡核苷酸还含有15-50个碱基,更佳地有20-30个碱基,在最佳的一个实例中,寡核苷酸长度为25个碱基。本发明的寡核苷酸含有一个具有3-10个2′-脱氧硫代磷酸酯核苷酸的无隔RNA酶H激活区。激活细菌RNA酶H的RNA酶H激活区长度宜在3-5个核苷酸间;激活真核RNA酶H的该激活区宜为大约5-10或12个核苷酸。激活哺乳动物RNA酶H的该RNA酶H激活区的长度宜为9个核苷酸。
寡核苷酸中非RNA酶H激活区部分的所有5′→3′连接的核苷酸是2′修饰的核苷酸,其作用是与靶结合,从而形成互补决定区。互补区可以是无隔的区域,或可以被RNA酶H激活区隔开。在一个较佳的实例中,互补区是无隔的区域,更佳地,互补区位于RNA酶H激活区的3′端。
在一个较佳的实例中,除了3′端的1-3个核苷酸和/或核苷、5′端核苷酸和RNA酶H激活区核苷酸外,所有碱基均以磷酸二酯键连接。大量无隔的硫代磷酸酯键的存在对本发明寡核苷酸的功能是不利的。因此,寡核苷酸含有的无隔硫代磷酸酯键或无隔的硫代磷酸酯连接的脱氧核苷酸不宜超过12个。
本文描述的嵌合寡核苷酸的其它例子有以下结构5′ABC或5′CBABC,其中A是有大约3-12个核苷酸的RNA酶H激活区,该区域最好有长度大约3-10个或5-12个对核酸酶也是稳定的核苷酸(如硫代磷酸酯DNA);B表示对内切核酸酶稳定的化学物质(如2′O-甲基取代的RNA)(大约长4-40个核苷酸);C表示1-4个核苷酸长的外切核酸酶封闭物,它通常不含硫代磷酸酯DNA(即,硫代磷酸酯2′-O-甲基键、反向碱基、甲基膦酸酯、亚磷酰胺、非核苷酸连接物、氨基连接物、偶联物或本领域中与核苷酸合成相容的、或已发现不被细胞外切核酸酶识别的任何其它化学物质)。或者,构型可以如下所示那样反向5′CBA.
如果应用场合不需要激活RNA酶H(位阻(stearic)封闭或三链灭活(triplestrand inactivation)),则下列构型是有用的5′CBC.
4.2寡核苷酸的合成本发明的寡核苷酸可以通过固相或液相核苷酸合成方法来合成,但是,固相合成是较佳的。采用标准的试剂和方法,在自动化合成仪上用本领域熟知的方法可以合成磷酸二酯和硫代磷酸酯连接的寡核苷酸,这些熟知的方法例如公开在Stec等,J.Am.Chem.Soc.1066077-6089(1984);Stec等,J.Org.Chem.50(20)3908-3913(1985);Stec等,J.Chromatog.326263-280(1985);LaPlanche等,Nuc.Acid.Res.149081-9093(1986);和Fasman,G.D.,Practical Handbook of Biochemistry andMolecular Biology1989,CRC Press,Boca Raton,Florida中,这些内容纳入本文作参考。
Lamond在Biochem.Soc.Trans.211-8(1993)中总结了2′-O-烷基寡核糖核苷酸的合成,其中烷基是甲基、丁基、烯丙基或3,3-二甲基烯丙基。美国专利No.5,013,830,5,525,719和5,214,135中描述了2′-O-甲基寡核糖核苷酸合成中有用的中间产物,它们均纳入本文作参考。
2′-氟代磷酸二酯和2′-氟代硫代磷酸酯寡核苷酸可以根据Karasaki,A.M.等,1993.J.Med.Chem.36831-41和WO 92/03568中的教导来合成;连接P-烷氧基磷酸三酯-寡核苷酸和2′-修饰的寡核苷酸可根据美国专利No.5,525,719来进行合成,所述这些文献均纳入本文作参考。美国专利No.5,276,019和No.5,264,423中教导了硫代磷酸酯寡脱氧核苷酸的合成,该部分内容纳入本文作参考。2′-取代的寡核苷酸可根据其中公开的方法加以变化来合成。
在合成本发明的寡核苷酸时必须非常注意控制质量。特别重要的是,硫代磷酸酯键不应被磷酸二酯键污染。建议对各个批号的试剂预先进行试验,以确保能从中获得高效的偶联,并且应做好所有可能的预防工作以保持无水环境。
用毛细管电泳和变性强阴离子HPLC(SAX-HPLC)测试寡核苷酸,就可验证寡核苷酸合成的质量。Bergot&Egan,1992,J.Chrom.59935-42的方法是合适的。SAX-HPLC特别适用于验证硫代磷酸酯核苷酸是否完全被硫代(即没有被少量磷酸二酯污染)。
既有磷酸二酯又有硫代磷酸酯键的寡核苷酸的合成伴随了一个副反应,使得硫代磷酸酯键被用来氧化氰乙基亚磷酰胺的I2标准处理步骤氧化。通过将I2的浓度降低至低达0.001M,可以尽量减小该问题,但不能完全消除。因此,在一个较佳的实例中,发现本发明的寡核苷酸中所有硫代磷酸酯均在5′端,因此没有硫代磷酸酯碱暴露在I2下。
4.3.寡核苷酸的应用本发明的寡核苷酸可作为反义寡核苷酸用于各种体外实验情况,以特异性地降解未知功能的mRNA,从而测定mRNA的生理功能。
本发明的寡核苷酸还可用于任何疾病的临床实践,以及用来针对已知适于采用反义治疗的或有待鉴定的任何RNA靶。已报道的适于用反义治疗的病征包括呼吸道合胞病毒感染(WO 95/22553,Kilkuskie)、流感病毒感染(WO 94/23028)和恶性肿瘤(WO 94/08003)。Glaser,V.,1996,Genetic Engineering News16,1中总结归纳了反义寡核苷酸临床应用的其它例子。临床实验对象中的反义寡核苷酸的靶包括蛋白激酶Cα、ICAM-1、c-raf激酶、p53、c-myb和慢性粒细胞性白血病中发现的bcr/abl融合基因。
实施例5.1.实验条件用瞬时表达测试系统来证明本发明的寡核苷酸具有反义活性,该系统包括编码萤光素酶的mRNA,该mRNA经修饰加入了从ras基因衍生的测试序列。通过比较测试细胞与对照细胞(有相同的表达质粒,只是没有从ras衍生的序列)的萤光素酶产量,就可测定寡核苷酸的特异性反义活性。进行测试的本发明寡核苷酸有以下序列5′-TTGCCCACACCGACGGCGCCCACCA-3′(SEQ ID NO1)。
试验的具体内容如下质粒构建物。用于研究的质粒含有一部分与萤光素酶融合的ras基因(Monia,B.P.,等,J.Biol.Chem.26719954-19962(1992))。对照的萤光素酶质粒不含ras靶序列。
细胞培育试验。使HeLa细胞在补加谷氨酰胺、青霉素和链霉素的DMEM/10%FBS中、涂有明胶的24孔板上生长至40-90%铺满。明胶涂层是细胞在转染时保持粘附所需的。在转染前,用PBS(含有镁和钙)洗涤细胞两次。轻轻混合LIPOFECTINTM,在每微升减少血清的培养基(OPTI-MEMTM,Gibco/BRL,Gaithersberg,MD)中加入6.6μl。从50-100μM浓贮备液中加入寡聚物,获得总混合物。将Opti-MEM/LIPOFECTIN/寡聚物溶液加入细胞中(24孔板的每个孔中约0.5ml),培育4小时。
首先将5μl Lipofectin稀释在每毫升OPTI-MEM中,并混合,制得靶转染混合物。然后在每微升OPTI-MEM/LIPOFECTINTM混合物中加入5μg萤光素酶靶和5μg CMV β-半乳糖苷酶。轻轻混合此转染混合物,使其复合大约15分钟。确保对照和试验细胞接受完全相同的阳离子脂质/质粒复合物,以减少总混合物的误差。所有试验中,培养基中寡核苷酸的浓度均在200mM-400mM之间。从细胞中去除含寡核苷酸的培养基,用生长培养基代替,再培育9-18小时。用无钙镁的培养基洗涤细胞,除去培养基。使平板在-70℃下冷冻超过20分钟,并加入100-300μl报道裂解缓冲液(Promega,Madison WI)。
使细胞再经历两个冻融循环,以保证完全裂解。根据生产商(Promega,Madison WI)的说明书进行萤光素酶试验,用96孔发光仪(Packard,Meriden CT)检测发光。根据生产商(Galacton Plus,Tropix)的说明书进行β-半乳糖苷酶试验,并在Packard发光仪上检测。
5.2.实验结果表I示出了萤光素酶试验的结果。结果报道了特异性抑制百分数,从公式100×(1-LUCT/LUCC)寡聚物)/(LUCT/LUCC)没有寡聚物计算获得;其中LUCT和LUCC是用含有和不含ras基因插入物(SEQ ID NO1)的萤光素酶质粒转染的细胞中所见的萤光素酶水平;上标“寡聚物”和“没有寡聚物”指反义寡核苷酸的存在和不存在。
表I寡聚物化学式 特异性抑制对照(“C”)C1 25Mo26%C2 25Ms15%C3 9Ds16Mo 15%C4 9Do16MoInvT 0%C5 9Dp16MoInvT 18%C6 9Dp13Mo3Ms 14%所有“S”的对照S1 25Ds93%S2 16Ms8DsD100%S3 8Ms9Ds7MsM 97%S4 9Ds15MsM95%3′端的9Ds("3′T")3′I1 InvTMs15Mo9DsInvT 59%3′I2 2Ms14Mo9DsInvT 57%3′I3 4Ms12Mo9DsInvT 65%中间的9Ds("MI")MI1 5Ms3Mo9Ds4Mo3MsM64%MI2 2Ms6Mo9Ds7(MsMo)InvT71%
MI3 3Ms6Mo9Ds6MoMsInvT87%5′端的9Ds("5′I")5′I1 9Ds16MoInvT 83%5′I2 9Ds15MoMsInvT 85%5′I3 9Ds16MoBiotin 90%5′I4 9Ds16Mp 91%5′I5 9Ds14MoMpD90%5′I6 9Ds13Mo2MpD 94%5′I7 9Ds12Mo3MpD 94%5′I8 9Ds14MoMsD93%5′I9 9Ds13Mo2MsD 97%5′I109Ds12Mo3MsD 95%关键词M和D分别指2′-O-甲基和2′-脱氧核糖核苷酸。字母"o"、"s"和"p"指磷酸二酯、硫代磷酸二酯和P-乙氧基-磷酸三酯连接的核苷酸。"InvT"指位于寡聚物3′或5′末端的3′→3′或5′→5′连接的胸苷。
表I显示了对照寡聚物C1-C6、所有硫代磷酸酯寡聚物S1-S4以及在3′端(3′I1-3′I3)、中间(MI1-MI3)和5′端(5′I1-5′I10)有RNA酶激活区的寡聚物的结果。对照寡聚物C1、C2、C5和C6显示出低水平的特异性抑制,因为这些寡聚物缺少RNA酶H激活区。寡聚物C3和C4没有活性,这是分别因为3′端没有保护以及天然的ssDNA不稳定。所有的硫代磷酸酯寡核苷酸(S1-S4)表现出93%-100%间的特异性抑制,具有位于5′端的RNA酶H激活区以及2个或3个3′端2′O-甲基-修饰的P-乙氧基或硫代磷酸酯连接的核苷酸(分别是Mp和Ms)的寡核苷酸5′I6-5′I10也有相同抑制。当采用RNA酶H激活区位于3′端或中间的寡核苷酸时,或当次优的3′保护基团存在时,观察到有较低水平的特异性抑制。
尽管具有5′端RNA酶激活区的本发明的寡核苷酸达到的特异性抑制水平与均一硫代磷酸酯寡核苷酸达到的相当,本发明的寡核苷酸却更佳,因为它们在应用时基本没有毒性。表II显示了常规("C")、所有硫代磷酸酯("S")、3′I、MI和5′I寡核苷酸的特异性抑制、平均代谢活性与无寡聚物对照的百分数(经MTS试验测定)、存活细胞数(经台盼蓝排除试验测定)。
表II寡聚物 抑制的萤光素酶%对照的代谢活性% 存活细胞%所有"O"寡聚物C1-C6 15%94%76%所有"S"寡聚物S1-S4 96%25%21%3′I(1-4) 60%70%61%MI(1-3) 74%77%67%5′I(1-10)91%71%60%表中最佳的寡聚物在所有栏中有较高的百分数。
结果表明,本发明的寡核苷酸实现了比常规寡核苷酸高4倍的特异性抑制水平,并且表现出毒性水平明显低于硫代磷酸酯寡核苷酸。最优组5′I显示特异性抑制与硫代磷酸酯寡核苷酸相当。
5.3.RNA酶H激活区的位置的影响下面研究3′I和MI类寡核苷酸中所见的较低特异性活性的原因。一个可能性是当磷酸二酯连接的核苷酸将5′加到硫代磷酸酯键上时,采用0.02M I2的氧化步骤会使硫代磷酸酯键氧化成磷酸二酯。发现事实正是如此。通过分析性HPLC分析,比较具有试验寡核苷酸序列的寡核苷酸9Ds15DoD("5′S")和15Do9DsD("3′S")寡核苷酸,发现约85%的5′S寡核苷酸被完全硫化,相反,只有26%的3′S寡核苷酸被完全硫化(36%为S-1,24%为S-2,14%为S-3)。
表III显示了完全硫化的以及一、二和三氧化的副产物的分布随寡核苷酸中硫代磷酸区域位置的作用。用0.02M I2作为15个核苷酸的氧化剂和9个核苷酸的硫化剂,合成四个胸苷五糖十二聚物(pentadodecamer)。
表IIITs [I2] S S-1 S-2 S-35′-9Ds15DoD03′ 0.02M 96% 4% - -5′-1Do9Ds14DoD-3′ 0.02M 85% 15%- -5′-8Do9Ds7DoD-3′0.02M 41% 46%12.50.55′-15Do9DsD-3′ 0.02M 32% 43%20%5%5′-15Do9DsD-3′ 0.001M 78% 14%8% -结果表明,96%的5′S寡核苷酸完全硫化,随着硫代磷酸酯区域更经常地暴露在氧化反应下,该百分数逐渐降低。当氧化剂浓度降低至0.001M时,78%完全硫化的3′S 25-T寡核苷酸以及大约60%的具有SEQ ID NO1序列的寡核苷酸被合成。
上述说明书中提及的所有的出版物和专利均纳入本文作参考。对于本领域技术人员来说,对本发明所述的方法和系统所作的各种变化和改动显然没有脱离本发明范围和精神。虽然本发明结合了具体的较佳的实例进行了描述,但是应当理解,本发明要求的范围不应受这些具体实例的限制。事实上,对实施本发明的上述方式所作的对分子生物学或相关领域的技术人员来说显而易见的各种变化均包括在下列权利要求范围内。
权利要求
1.一种嵌合的反义寡核苷酸,它包含一个5′端;一个3′端;以及11-59个5′到3′连接的核苷酸,这些核苷酸独立选自2′-脱氧硫代磷酸酯核苷酸、2′-修饰的硫代磷酸酯核苷酸、2′-修饰的磷酸二酯核苷酸、2′-修饰的P-烷氧基磷酸三酯核苷酸,其中a)所述寡核苷酸掺入了RNA酶H激活区,该激活区有3-12个无隔的2′-脱氧硫代磷酸酯连接的碱基;b)最5′端的5′到3′核苷酸键是硫代磷酸酯键或P-烷氧基磷酸二酯键;c)最3′端的5′到3′核苷酸键是硫代磷酸酯键或P-烷氧基磷酸二酯键,或3′端被封闭;和d)寡核苷酸含有不超过12个无隔的2′-脱氧硫代磷酸酯键。
2.根据权利要求1所述的寡核苷酸,其中3′端不受3′到3′硫代磷酸酯连接的核苷酸封闭。
3.根据权利要求1所述的寡核苷酸,其中3′端被含有3′到3′硫代磷酸酯连接的核苷酸部分封闭。
4.根据权利要求1所述的寡核苷酸,其中3′端被含有3′到3′磷酸二酯连接的核苷酸的部分封闭。
5.根据权利要求4所述的寡核苷酸,其中最3′端的5′到3′核苷酸键是硫代磷酸酯键或P-乙氧基磷酸三酯键。
6.根据权利要求4所述的寡核苷酸,其中最5′端的5′到3′核苷酸键是硫代磷酸酯键或P-乙氧基磷酸三酯键。
7.根据权利要求1所述的寡核苷酸,其中2′-修饰的硫代磷酸酯核苷酸在3′端和5′端。
8.根据权利要求1所述的寡核苷酸,其中RNA酶H激活区位于5′端。
9.根据权利要求8所述的寡核苷酸,其中最3′端的5′到3′核苷酸键是硫代磷酸酯键或P-乙氧基磷酸三酯键。
10.根据权利要求9所述的寡核苷酸,其中最3′端的两个5′→3′核苷酸间连键是独立的硫代磷酸酯键或P-乙氧基磷酸三酯键。
11.根据权利要求9所述的寡核苷酸,其中RNA酶H激活区与最3′端的5′→3′核苷酸键毗连。
12.根据权利要求11所述的寡核苷酸,其中2′-修饰的磷酸二酯核苷酸是2′-甲氧基或2′-氟代核苷酸。
13.根据权利要求11所述的寡核苷酸,它还包含至少13个2′-甲氧基磷酸二酯核苷酸。
14.根据权利要求11所述的寡核苷酸,它有15-50个核苷酸。
15.根据权利要求14所述的寡核苷酸,它还包含至少8个2′-甲氧基磷酸二酯核苷酸。
16.根据权利要求14所述的寡核苷酸,它还包含至少13个2′-甲氧基磷酸二酯核苷酸。
17.根据权利要求1所述的寡核苷酸,其中RNA酶H激活区包括3′端。
18.根据权利要求1所述的寡核苷酸,其中2′-修饰的磷酸二酯核苷酸选自2′氟代和2′-甲氧基核苷酸。
19.根据权利要求4所述的寡核苷酸,其中RNA酶H激活区在5′端,其后是4-40个5′到3′连接的2′-甲氧基核苷酸,且3′端被3′到3′磷酸二酯连接的脱氧核糖核苷酸封闭。
20.一种在含RNA酶H的细胞中特异性地断裂RNA的方法,该方法包括给予有效量的与RNA互补的寡核苷酸,所述寡核苷酸包含一个5′端;一个3′端;以及11-59个5′到3′连接的核苷酸,这些核苷酸独立选自2′-脱氧硫代磷酸酯核苷酸、2′-修饰的硫代磷酸酯核苷酸、2′-修饰的磷酸二酯核苷酸、2′-修饰的P-烷氧基磷酸三酯核苷酸,其中a)所述寡核苷酸掺入了RNA酶H激活区,该激活区有3-12个无隔的硫代磷酸酯连接的2′-脱氧核苷酸;b)最5′端的5′到3′核苷酸键是硫代磷酸酯键或P-烷氧基磷酸二酯键;c)最3′端的5′到3′核苷酸键是硫代磷酸酯键或P-烷氧基磷酸二酯键,或3′端被封闭;和d)寡核苷酸含有不超过12个无隔的硫代磷酸酯连接的2′-脱氧核苷酸。
全文摘要
本申请描述了一类新的寡核苷酸化合物,该化合物具有各种经修饰的核苷酸和经修饰的化学键的新组合。本申请还揭示了通过限制寡聚物中特定的经修饰的核苷酸/经修饰的键的存在及存在程度,可以提高激活内源性RNA酶H的活性。
文档编号C07H21/00GK1230998SQ97198124
公开日1999年10月6日 申请日期1997年9月26日 优先权日1996年9月26日
发明者托德·M·伍尔夫, A·阿罗, R·M·K·戴尔 申请人:奥利哥斯Etc股份有限公司, 托德·M·伍尔夫