专利名称:含水树脂分散体的生产方法
技术领域:
本发明涉及一种含水树脂分散组合物的生产方法,更具体地说,涉及一种其优点是即使当溶剂与其共存时也能保持稳定乳液状态的含水树脂分散体组合物。这种含水树脂分散体组合物有利地可用作例如油漆和粘合剂。
为解决该问题,作为第一篇现有技术,日本公开特许公报3-76765公开了使用阴离子活性乳化剂作为乳化剂。这种活性乳化剂可与其它单体共聚。形成的共聚物单元作为组成单元掺入目的聚合物中。与采用低分子量乳化剂进行乳液聚合而生产的含水树脂分散体组合物获得的树脂产品相比,以上述方式获得的树脂产品其耐水性得到改善。
通常,为改善树脂产品的质量和性能,根据用途要向含水树脂分散体组合物中加入溶剂。但是,如上现有技术文献中公开的采用活性乳化剂的树脂分散体组合物的稳定性还不能令人满意。基于此原因,这种树脂分散体组合物的缺点是,当加入溶剂时,树脂可能会聚合并沉积。
作为第二篇现有技术文献,日本公开特许公报7-506392公开了一种方法,其中,乙烯基单体在含水介质中在一端具有烯属不饱和键的大分子单体存在下进行聚合。上述大分子单体基本上是采用由钴等组成的金属化合物等产生的。因此,由上述方法获得的聚合物包含金属化合物。这种金属化合物可能会变色,从而需要从获得的聚合物中除去金属化合物。这种除去步骤使生产率降低。此外,上述大分子单体还会在与乙烯基单体的聚合反应中用作链转移剂,从而使形成的聚合物的分子量相对较低。为此,这种大分子单体和聚合物的应用受到限制。
作为第三篇现有技术文献,日本公开特许公报9-3144公开了一种含水树脂分散体组合物的生产方法,其中,在含水介质中使具有中和后的羧基的自由基聚合的大分子单体和烯属不饱和单体进行乳液聚合。上述大分子单体在其末端具有甲基丙烯酰基。当不采用乳化剂进行这种大分子单体与烯属不饱和单体的聚合时,聚合稳定性不能令人满意。
作为第四篇现有技术文献,日本公开特许公报8-3256公开了一种低聚物的生产方法,这种低聚物可有利地用作洗涤剂。这种低聚物主要是通过酸性单体进行高温聚合生产的。此外,日本公开特许公报2000-80288公开了一种含水树脂分散体组合物的生产方法。在该方法中,在由酸性单体高温聚合而制备的低聚物存在下进行乳液聚合。由于这些低聚物是较差的乳化剂,这些低聚物的用途仅仅限于在乳液聚合中用作乳化剂。
为实现这一目的,本发明的第一个方面是一种生产含水树脂分散体组合物的方法。该方法包括制备一种单体混合物,其包含第一种具有羧基的单体和第二种具有疏水基团的单体;在180-350℃下对单体混合物进行自由基聚合反应形成一种大分子单体;将大分子单体中和;在含水溶剂中采用中和后的大分子单体作为乳化剂使至少一种乙烯基单体进行乳液聚合。单体混合物中第一种单体的比例为10-75mol%。中和后的大分子单体在其至少一端具有烯属不饱和键。
优选地,乳液聚合包括制备中和后的大分子单体的水溶液;和向中和后的大分子单体的水溶液中连续或间歇性地加入至少一种乙烯基单体。
优选地,乳液聚合包括制备一种包含中和后的大分子单体、至少一种乙烯基单体和水的分散体;和向充有水的反应容器中连续或间歇性地加入分散体溶液。
优选地,乳液聚合包括通过向反应容器中加入中和后的大分子单体、一种乙烯基单体和水启动乳液聚合反应。
优选地,乳液聚合包括制备一种中和后的大分子单体的溶液;将水和部分中和后的大分子单体的溶液放置在反应容器中;和向反应容器中连续或间歇性地加入乙烯基单体和其余的中和后的大分子单体的溶液。
优选地,在中和过程中采用选自氨和沸点为140℃或更低的低沸点胺化合物的碱。
优选地,中和后的大分子单体的数均分子量为500-5000。
优选地,乳液聚合中的中和后的大分子单体的用量为0.5-80重量份,以100重量份乙烯基单体计。
优选地,第一种单体为选自下述的至少一种化合物丙烯酸、甲基丙烯酸、巴豆酸、乙烯基乙酸、丙烯酰氧基丙酸、马来酸、富马酸、中康酸、柠康酸、衣康酸和马来酸酐。
优选地,第二种单体为选自下述的至少一种化合物在20℃下于水中的溶解度为2wt%或更低的单体。
优选地,大分子单体在其至少两端具有烯属不饱和键。
图2为表明本发明的比较例16中测量结果的图。
最佳实施方式以下更详细地说明本发明。中和后的大分子单体的生产用于本发明中的用碱中和的大分子单体的中和产物(即中和后的大分子单体)在大分子单体分子链的末端具有烯属不饱和键,并且,至少一个中和后的羧基基团键合至大分子单体的分子链上。
中和后的大分子单体是这样产生的在预定条件下将包含羧基基团的单体(羧基单体)和疏水单体进行共聚,用碱中和形成的共聚物。优选中和后的大分子单体的数均分子量为500-5000。
羧基单体的分子具有烯属不饱和键和羧基。羧基单体例如可以是,不饱和的一元酸,如丙烯酸、甲基丙烯酸、巴豆酸、乙烯基乙酸、丙烯酰氧基丙酸;不饱和二元酸,如马来酸、富马酸、中康酸、柠康酸、衣康酸;或不饱和酸酐,如马来酸酐。由于易于与其它各种单体共聚,特别优选采用丙烯酸。
在本说明书中,术语疏水单体是指在20℃下于水中的溶解度为2wt%或更低的单体。疏水单体例如可采用具有C1-C22烷基的(甲基)丙烯酸酯和具有C2-C22骨架的丙烯酸酯,如甲基丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基丙烯酸)丁酯、(甲基丙烯酸)2-乙基己酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸硬脂基酯、(甲基)丙烯酸月桂基酯、(甲基)丙烯酸异龙脑酯、(甲基)丙烯酸全氟烷基酯;丙酸乙烯基酯;和苯乙烯。优选采用丙烯酸酯,其原因在于,由其可获得具有高聚合度的大分子单体。
除了上述疏水单体外,亲水单体也可与羧基单体共聚,只要不损害所获得的大分子单体作为表面活性剂的效果。这种亲水单体的实例包括(甲基)丙烯酰胺、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、烯丙基磺酸、苯乙烯磺酸、乙烯基磺酸、烯丙基膦酸、乙烯基膦酸和乙酸乙烯酯。
在大分子单体中具有丙烯酰基的单体单元的量优选为20wt%或更多,更优选40wt%或更多,首选60wt%或更多,以构成单体单元的所有单元重量计。
那些在构成单体单元中丙烯酰基大比例的单体单元的大分子单体很难造成链转移反应,最可能进行共聚反应。即,具有大量丙烯酰基的大分子单体更加有效地与乙烯基单体共聚。因此,可获得具有相对大分子量的共聚物和接枝共聚物。这种共聚物的耐水性和耐久性优异,因此,它们有利地用作涂料和油漆。
特别优选那些在两端具有烯属不饱和键的大分子单体。当包含该大分子单体的大分子单体混合物用于乙烯基单体共聚时,形成的共聚物具有优良的耐水性和耐久性。因此,它们有利地用作涂料和油漆。
大分子单体是在180-350℃下,在自由基聚合引发剂存在下,使羧基单体与疏水单体进地共聚反应生产的。在共聚反应中,可加入亲水单体。
大分子单体是一种在其末端具有烯属不饱和键的化合物,由下式(1)表示,其数均分子量为500-5000。 在式(1)中,X表示极性基团,如COOR基团、苯基、羟基烷基。R表示氢原子或烷基。M表示单体单元。字符n代表表示聚合度的自然数。
羧基单体与进行共聚反应的所有单体之和的比例优选为10-75mol%,更优选15-60mol%。当羧基单体的比例低于10mol%时,获得的中和后的大分子单体作为乳化剂的性能不能令人满意。另一方面,当羧基单体的比例高于75mol%时,获得的中和后的大分子单体作为乳化剂的性能也不能令人满意。
疏水单体与进行共聚反应的所有单体之和的比例优选为30-95wt%,更优选50-90wt%。当疏水单体的比低于30wt%或高于95wt%时,获得的中和后的大分子单体作为乳化剂的性能不能令人满意。
作为自由基聚合引发剂,可采用常规公知的引发剂。自由基聚合引发剂例如可以是,过氧化氢、烷基氢过氧化物、二烷基过氧化物、过酸酯、过碳酸酯、过硫酸、过酸、酮过氧化物或偶氮引发剂。优选在90-100℃下半衰期为1-10小时的聚合引发剂。此外,也可采用在低至低于90℃下半衰期为1-10小时的聚合引发剂。
更优选的引发剂为脂族偶氮化合物,如1-叔戊基偶氮-1-氰基环己烯、偶氮-二异丁腈(AIBN)或1-叔丁基偶氮氰基环己烯。另一种更优选的引发剂为过氧化物或氢过氧化物,如过辛酸叔丁酯、过苯甲酸叔丁酯、二枯基过氧化物、二叔丁基过氧化物、叔丁基氢过氧化物、叔戊基氢过氧化物或氢过氧化枯烯。
优选自由基聚合引发剂的用量为0.05-10wt%,以单体总重量计。
在聚合反应中,可采用或不采用溶剂。当采用溶剂时,优选采用能够溶解于上述单体中并溶解于通过聚合反应获得的聚合物中的溶剂。进而,优选具有高沸点的溶剂。例如,可采用芳族醇,如苯甲醇;或者脂族醇,如异丙醇或丁醇;乙二醇单烷基醚,如甲基溶纤剂、乙基溶纤剂;或者二甘醇单烷基醚,如卡必醇;或者乙二醇二烷基醚,如乙二醇二甲醚;或二甘醇烷基醚,如二甘醇甲基醚。
聚合反应温度为180-350℃,更优选270-320℃。当聚合反应在低于180℃下进行时,形成大量在末端具有非烯属不饱和键的聚合物,造成所需大分子单体纯度降低。
聚合反应在60分钟内基本完成。
通过用一种碱中和以上生产的大分子单体,获得用于本发明的在末端具有烯属不饱和键的中和后的大分子单体。
用于中和大分子单体的碱优选采用氨、低沸点的胺化合物,其沸点为140℃或更低。例如,低沸点的胺的实例为三甲胺、二乙胺、三乙胺、二甲基乙基胺、N-甲基吗啉、叔丁醇胺、吗啉或二甲基乙醇胺。当采用经低沸点胺中和的中和后的大分子单体生产的本发明含水树脂分散体组合物用作涂料时,在涂敷涂料后,低沸点胺易于蒸发,形成的涂层膜具有优异的耐水性。
用碱中和大分子单体可进行部分中和或完全中和。优选中和率为50-100%。
中和后的大分子单体的分子链具有羧基单体单元,其是一种亲水性单体单元,还具有疏水单体单元,其是亲脂单体单元。因此,中和后的大分子单体可用作乳化剂。进而,由于中和后的大分子单体具有烯不饱和键的末端,其可与各种单体进行共聚。含水树脂分散体组合物的生产本发明的含水树脂分散体组合物是在含水溶剂中,采用中和后的大分子单体作为乳化剂,使乙烯基单体经乳液聚合生产的。
作为乙烯基单体,可采用常规用于乳液聚合反应的任一种乙烯基单体。例如,可采用具有C1-C22烷基的(甲基)丙烯酸烷基酯,如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸环己酯或(甲基)丙烯酸辛酯;或者可采用具有C1-C12羟基烷基的(甲基)丙烯酸羟基烷基酯;或者可采用乙酸乙烯酯、丙酸乙烯酯、丁二烯、异戊二烯、苯乙烯、烷基苯乙烯、(甲基)丙烯酸缩水甘油酯、N-烷氧基乙基丙烯酰胺或N-羟甲基丙烯酰胺。
大分子单体的用量应使得乙烯基单体可稳定乳化。进而,大分子单体的用量应根据含水树脂分散体组合物的用途来适当地设置。
通常,每100重量份的乙烯基单体采用0.5-80重量份的大分子单体。当大分子单体的用量低于上述范围的下限时,含水树脂分散体组合物不能保持稳定乳化状态。例如,当向含水树脂分散体组合物中加入溶剂时,乳化状态会被破坏。另一方面,当大分子单体的用量高于上述范围的上限时,很难进行稳定的聚合,进而,采用所形成的含水树脂分散体组合物获得的产品的耐水性也很差。
大分子单体的优选用量为0.5-40重量份,以100重量份乙烯基单体计,更优选5-30重量份。在此情形下,含水树脂分散体组合物处于极其稳定的乳化状态,例如,即使加入与含水树脂分散体组合物相同体积的有机溶剂时,树脂组分也不会聚集。
本领域技术人员公知的第二种乳化剂可与上述大分子单体组合使用。在此情形下,第二种乳化剂的用量应限制在一定范围内,以不损害本发明的作用。具体说来,优选第二种乳化剂的用量为10wt%或更低,以大分子单体重量计。作为第二种乳化剂,可采用阴离子表面活性剂,如烷基苯磺酸钠、聚氧乙烯烷基硫酸钠、二烷基磺基琥珀酸钠或者萘磺酸的福尔马林缩合产物;或者,可以采用非离子表面活性剂,如聚氧乙烯烷基苯基醚、聚乙二醇脂肪酸酯或脱水山梨醇脂肪酸酯。
公知的自由基聚合引发剂用于乳液聚合反应中。聚合引发剂可为水溶性聚合引发剂或油溶性聚合引发剂。例如,可采用有机过氧化物,如苯甲酸过氧化物、叔丁基过氧化物、过氧化二枯基;或者,可采用偶氮化合物,如偶氮二-(异丁腈)、偶氮二-(2-甲基丁腈)或偶氮二氰基戊酸;或者,可采用无机过氧化物,如过硫酸钠、过硫酸钾或过硫酸铵;或者,可采用包含有上述过氧化物和还原剂如亚硫酸盐的氧化还原聚合引发剂。
聚合引发剂的用量优选为0.01-5wt%,更优选0.1-3wt%,以大分子单体与乙烯基单体的总重量计。
聚合反应温度优选20-95℃,更优选40-90℃。聚合时间优选1-10小时。
含水树脂分散体组合物例如可用于清漆、涂料或粘合剂。此外,通过使其它物质与含水树脂分散体组合物混合而获得的混合物具有其它用途。
基于上述的缺陷,现有技术材料的含水树脂分散体组合物仅于于用作油漆、涂料和粘合剂。以下推测造成这些缺陷的原因。例如,在第二种现有技术材料中,由于构成大分子单体的单体单元包含大量的异丁烯酰基基团,大分子单体起到链转移剂作用。第四种现有技术材料的乳化稳定性差的原因是,低聚物基本上不具有疏水单体单元。
以下,参考实施例和比较例进一步说明本发明。在下述实施例和比较例中,所采用的材料的用量(“份数”和“%”)均以重量给出。
以与(1-2)所述基本相同的方式通过氨中和AAM1,制备AAM1-N的水溶液。(7-1)生产非反应性低聚物BAO4在备有搅拌器、冷凝管和温度计的烧瓶中,将134份的甲乙酮和0.8份的巯基乙醇混合在一起。在用氮气吹扫烧瓶下,用水浴将烧瓶加热至78℃。在保持78℃的温度下,加入作为引发剂的1.6份AIBN。然后,在3小时内向烧瓶中滴加包含79.4份的BA、16.6份的AA和1.6份的AIBN的单体混合物液体和包含10份甲乙酮及3.2份巯基乙醇的链转移剂溶液,从而进行聚合反应。在完成滴加后,再加入0.8份的AIBN,使形成的混合物在80℃下放置4小时。在减压下从反应溶液中除去MEK,然后,采用薄膜蒸发器除去包含未反应的单体等的挥发性成分,从而获得一种非反应性低聚物BAO4。就获得的BAO4而言,其数均分子量Mn为1530,重均分子量Mw为3330。双末端键的比例为0%,酸值为2.1meq/g。由双末端键的比例可清楚看出,BAO4在其末端不具有活性的不饱和键。(7-2)用氨生产BAO4的中和产物(BAO4-N)以与(1-2)所述基本相同的方式通过氨中和BAO4,制备BAO4-N的水溶液。(8-1)生产非反应性低聚物BAO5按照与(7-1)所述基本相同的过程生产BAO5,只是充入反应器中的巯基乙醇的量变为1.2份,滴加加入反应器中的巯基乙醇的量变为4.8份。就获得的BAO5而言,其数均分子量Mn为1300,重均分子量Mw为2290。双末端键的比例为0%,酸值为2.2meq/g。由双末端键的比例可清楚看出,BAO5在其末端不具有活性的不饱和键。(8-2)用氨生产BAO5的中和产物(BAO5-N)以与(1-2)所述基本相同的方式通过氨中和BAO5,制备BAO5-N的水溶液。(9-1)生产非反应性低聚物BAO8按照与(7-1)所述基本相同的过程生产BAO8,只是充入反应器中的单体的量变为65份BA和35份AA,巯基乙酸辛酯用于巯基乙醇,且充入反应器中的巯基乙酸辛酯的量为2.0份,滴加加入反应器中的巯基乙酸辛酯的量为5.0份。就获得的BAO8而言,其数均分子量Mn为2500,重均分子量Mw为5060。双末端键的比例为0%,酸值为4.3meq/g。由双末端键的比例可清楚看出,BAO8在其末端不具有活性的不饱和键。(9-2)用氨生产BAO8的中和产物(BAO8-N)以与(1-2)所述基本相同的方式通过氨中和BAO8,制备BAO8-N的水溶液。(10-1)生产非反应性低聚物CHAO1按照与(7-1)所述基本相同的过程生产CHAO1,只是充入反应器中的单体的量变为77份CHA和23份AA。就获得的CHAO1而言,其数均分子量Mn为2070,重均分子量Mw为3540。双末端键的比例为0%,酸值为3.1meq/g。由双末端键的比例可清楚看出,CHAO1在其末端不具有活性的不饱和键。在此点上,CHAO1与CHAM5不同。(10-2)用氨生产CHAO1的中和产物(CHAO1-N)以与(1-2)所述基本相同的方式通过氨中和CHAO1,制备CHAO1-N的水溶液。[2]生产含水树脂分散体组合物
ADEKALIA SOAP SE-10N是一种由化学式(2)表示的化合物 在比较例2中的含水树脂分散体组合物中形成聚集物的原因可推定为是乳化剂用量太少。具体而言,按照Asahi Denka Kogyo K.K.的生产目录,ADEKALIA SOAP SE-10N在乳液聚合反应中的适宜用量为2.5-10g,以100g的单体计。由此,发现在本发明的实施例1-3中的含水树脂分散体组合物是通过稳定的乳液聚合反应获得的,虽然乳化剂的用量比乳化剂的常规用量要小。[3]对溶剂的稳定性实验作为用于对溶剂稳定性进行实验的样品,单独制备含水树脂分散体组合物,采用大量的乳化剂,比较上述实施例1-3的分散体和比较例1和2的分散体。
采用预定量的BAM6-N,200g的各种乙烯基单体在1L水中进行乳液聚合。加入作为聚合引发剂的1.25g过硫酸钾,然后,在50℃下聚合4小时,从而获得含水树脂分散体组合物。将含水树脂分散体组合物放置在试管中,加入与含水树脂分散体组合物相同体积的异丙醇(IPA)或丁基溶纤剂(Bce)。观察含水树脂分散体组合物的乳液状态,结果概括于表1中。当未观察到发生聚集的形成时,结果由符号“○”表示。当观察到发生聚集的形成时,结果由符号“×”表示。比较例3-11以与如上所述基本相同的方式进行乙烯基单体的乳液聚合,只是采用非反应性的乳化剂BAO5-N代替中和后的大分子单体BAM6-N。比较例3-11的观察结果示于表2中。
表1
表2
在实施例4-12的每一种含水树脂分散体组合物中,即使当加入溶剂且将分散体继续搅拌时,乳液状态仍然保持稳定。此外,在1个月后,每种含水树脂分散体组合物仍然为稳定的乳液状态。
另一方面,在比较例3-11的每一种含水树脂分散体组合物中,在加入溶剂后立即附形成聚集物。进而,当溶剂的用量减少1/3时,类似地仍形成聚集。
与此相反,在每一实施例中的大分子单体包含了在其共聚的单元中的疏水性单体,从而,其显示出作为乳化剂的优异性能。
对于在实施例14和15及比较例14和15中的每一种树脂分散体组合物,测量其不溶性颗粒和不挥发性物含量(NV)。此外,当将与树脂分散体组合物相同体积的IPA混入树脂分散体组合物中时,观察形成的混合物的状态(IPA实验)。当乳液状态保持稳定时,结果由符号“○”表示。当观察到发生聚集的形成时,结果由符号“×”表示。各种情况下的结果示于表3中。
表3
实施例16以与实施例1基本相同的方式进行乳液聚合,只是将BAM6-N的量变成20g。在聚合反应中,反应液体以适宜的时间间隔取样。测量相对于苯乙烯和BAM6-N的反应率。反应率的测量如下进行。首先,精确地称重两个样品。向第一个样品中加入对苯二酚的水溶液,以完全终止聚合反应。从形成的混合物中经减压除去未反应的苯乙烯和水,随后干燥。测量干重,计算苯乙烯的反应率。另一方面,向第二份样品中加入特定量的四氢呋喃(THF),从而使产生的聚合物可充分溶解,制备具有已知反应液体浓度的THF溶液。在THF溶液中观察到可能具有桥结构的某些不溶性物质。采用0.45μm的盒式过滤器对THF溶液进行过滤,进行凝胶渗透色谱(GPC)实验以测量BAM6-N的浓度。以通过折光率检测器获得的图表的峰高度为基准计算BAM6-N的浓度。采用相对于BAM6-N浓度的校准曲线,由峰高度测量未反应的BAM6-N的浓度。进而,由所采用的原料量,计算在THF溶液中总的BAM6-N的浓度(B)。按照公式1-(A/B),计算BAM6-N的反应率。结果示于
图1中。GPC测量在下述条件下进行。
洗脱溶剂THF,流速1mL/min柱Shodex KF807/KF80M/KF802(35℃)注射样品量100μL比较例16以与实施例16基本相同的过程进行,只是用BVAO4-N代替BAM6-N。在THF溶液中观察到不溶性物质。相对于苯乙烯和BAO4-N的反应率如图2所示。
BAM6-N难于进行均聚,即,很难形成均聚物。因而,图1表明,在BAM6-N与苯乙烯间进行共聚。另一方面,图2表明,BAO4-N不能与苯乙烯共聚。由实施例16和比较例16,可以推断,由于在实施例16中的大分子单体具有乳化作用,因而与分散体颗粒结合,因此,即使当在分散体中混入溶剂时,采用实施例16中的大分子单体产生的含水树脂分散体组合物仍然保持稳定分散体状态。
实施例16的含水树脂分散体组合物具有优异的分散稳定性且其中具有桥结构。当分散体组合物用作油漆、涂料、粘合剂等时,增强了产品的耐水性和耐久性。
在本发明中,含水树脂分散体组合物是通过采用大分子单体的中和产物使乙烯基单体进行乳液聚合而生产的,所述大分子单体具有烯属不饱和键,其中,大分子单体是在180-350℃的反应温度下进行自由基聚合而生产的。按照本发明的生产方法生产出具有优异聚合稳定性的含水树脂分散体组合物。因此,该分散体组合物可保持在稳定的乳液状态下。具体而言,即使当向含水树脂分散体组合物中加入溶剂时,含水树脂分散体组合物的乳液状态仍然保持稳定,不会产生树脂的聚集物。
权利要求
1.一种生产含水树脂分散体组合物的方法,包括制备一种单体混合物,其包含第一种具有羧基的单体和第二种具有疏水基团的单体,单体混合物中第一种单体的比例为10-75mol%;在180-350℃下对单体混合物进行自由基聚合反应形成一种大分子单体;将大分子单体中和以获得一种在其至少一端具有烯属不饱和键的中和后的大分子单体;和在含水溶剂中采用中和后的大分子单体作为乳化剂使至少一种乙烯基单体进行乳液聚合。
2.根据权利要求1的方法,其中,乳液聚合包括制备中和后的大分子单体的水溶液;和向中和后的大分子单体的水溶液中连续或间歇性地加入至少一种乙烯基单体。
3.根据权利要求1的方法,其中,乳液聚合包括制备一种包含中和后的大分子单体、至少一种乙烯基单体和水的分散体;和向充有水的反应容器中连续或间歇性地加入分散体溶液。
4.根据权利要求1的方法,其中,乳液聚合包括通过向反应容器中加入中和后的大分子单体、至少一种乙烯基单体和水启动乳液聚合反应。
5.根据权利要求1的方法,其中,乳液聚合包括制备一种中和后的大分子单体的溶液;将水和部分中和后的大分子单体的溶液放置在反应容器中;和向反应容器中连续或间歇性地加入乙烯基单体和其余的中和后的大分子单体的溶液。
6.根据权利要求1-5任一项的方法,其中,在中和过程中采用选自氨和沸点为140℃或更低的低沸点胺化合物的碱。
7.根据权利要求1-5任一项的方法,其中,中和后的大分子单体的数均分子量为500-5000。
8.根据权利要求1-5任一项的方法,其中,乳液聚合中的中和后的大分子单体的用量为0.5-80重量份,以100重量份乙烯基单体计。
9.根据权利要求1-5任一项的方法,其中,第一种单体为至少一种选自下述的化合物丙烯酸、甲基丙烯酸、巴豆酸、乙烯基乙酸、丙烯酰氧基丙酸、马来酸、富马酸、中康酸、柠康酸、衣康酸和马来酸酐。
10.根据权利要求1-5任一项的方法,其中,第二种单体为至少一种选自下述的化合物在20℃下于水中的溶解度为2wt%或更低的单体。
11.根据权利要求1-5任一项的方法,其中,大分子单体在其至少两端具有烯属不饱和键。
全文摘要
本发明公开了一种生产稳定的含水树脂分散体的方法。在该方法中,首先制备一种单体混合物,其包含具有羧基单体和疏水单体。单体混合物包含10-75mol%的羧基单体。然后,在180-350℃下对单体混合物进行自由基聚合反应形成一种大分子单体。将大分子单体中和。中和后的大分子单体在其至少一端具有烯属不饱和键。采用中和后的大分子单体作为乳化剂,在含水溶剂中使至少一种乙烯基单体进行乳液聚合。因此,生产出基本上均匀的含水树脂分散体。即使当向该含水树脂分散体中加入溶剂时,也可保持分散体的乳液状态。
文档编号C08F220/04GK1360599SQ00810226
公开日2002年7月24日 申请日期2000年7月6日 优先权日1999年7月12日
发明者佐内康之, 松崎英男, 河合道弘, 栢森聪 申请人:东亚合成株式会社