树脂组合物和多层容器的制作方法

文档序号:3670699阅读:470来源:国知局
专利名称:树脂组合物和多层容器的制作方法
技术领域
本发明涉及具有清除氧功能的树脂组合物。本发明还涉及,除具有上述清除氧功能之外,还具有气体屏蔽性、防湿性、保香性、和香味屏蔽性地树脂组合物,以及使用该树脂组合物制成的多层容器。
背景技术
气体屏蔽性树脂,例如乙烯-乙烯醇共聚物(以下简称为EVOH)等,是可以熔融成型的,并对氧或二氧化碳具有优异的气体屏蔽性。因此,含有例如由EVOH构成的层和耐湿性、机械特性等优良的热塑性树脂(例如,热塑性聚酯,以下有时把热塑性聚酯简称为PES)的层的多层结构体,被用于要求气体屏蔽性的各种成型体(例如,薄膜、片材、瓶、容器等)中。例如,这样的多层结构体,作为多层容器,特别是以袋子、瓶子、杯子、小口袋等形态被用于各种领域。例如,广泛用于食品、化妆品、医药化学品、洗浴用品等各种领域。
上述多层容器,虽然对氧、二氧化碳等的屏蔽性良好,但是如同用于罐装等的金属材料、和用于瓶装等的玻璃之类一样,对于氧等的气体的透过性不仅不能限制到接近零,而且还透过不可忽视的量。尤其是在食品等的容器中,担心长期保存时的内容物因氧化而变质,因此强烈期望氧屏蔽性的改良。
另一方面,在填充内容物时,也有氧与内容物一起混入容器中的情况。当内容物是容易氧化的情况下,即使是微量的氧,也有使内容物变质的危险,为了防止因微量氧而变质,曾提出对容器的材料赋予清除氧的功能。这种情况下,从容器外部浸入到容器内部的氧也被清除,所以也具有提高包装材料的气体屏蔽性之类的优点。
例如,作为赋予构成容器材料的气体屏蔽性树脂清除氧功能的方法,已知的有①通过在EVOH中加入过渡金属等的氧化催化剂,使EVOH成为易氧化状态而赋予清除氧功能的方法(特开平4-211444号公报);②通过在聚氯乙烯中加入金属催化剂,使聚氯乙烯成为易氧化状态而赋予清除氧功能的方法(特开平4-45144号公报);③由聚烯烃和氧化催化剂构成的树脂组合物,即将易氧化状态的聚烯烃分散在EVOH中来赋予EVOH清除氧功能的方法(特开平5-156095号公报)等;④配合EVOH、聚烯烃和氧化催化剂,使EVOH和聚烯烃成为易氧化状态而赋予清除氧功能的方法(特开平5-170980)等。然而,上述①和②的方法氧屏蔽性的提高效果不充分,而③和④的方法则存在严重损害气体屏蔽性树脂透明性的问题。
另外,在上述多层容器中,尤其是层间不设置粘接性树脂层的场合,将饮料、食品等填充到容器中并使其下落等给以冲击时,热塑性树脂层(例如,PES层)和EVOH层之间容易发生剥离(脱层),则成为外观上的大问题。
发明的内容
本发明的目的在于提供具有清除氧功能的组合物。本发明的其他目的在于提供除具有清除氧功能之外,还具有优良的气体屏蔽性、透明性、防湿性、保香性、和香味屏蔽性的树脂组合物。本发明的再一个目的在于提供含由上述树脂组合物构成的层的、耐冲击剥离性优良、外观、尤其是透明性良好的多层容器。
本发明的第1种树脂组合物,是含有气体屏蔽性树脂(A)、和该气体屏蔽性树脂(A)以外的热塑性树脂(B)、和互容剂(C)的树脂组合物,该气体屏蔽性树脂(A)的氧透过速度是等于或小于500ml·20μm/m2·day·atm(20℃,65%RH),该热塑性树脂(B)具有碳-碳双键,而且该树脂组合物的氧吸收速度是等于或大于0.001ml/m2·day。
在优选的实施方案中,上述第1种树脂组合物还含有过渡金属盐(D)。
本发明的第2种树脂组合物,是含有气体屏蔽性树脂(A)、和该气体屏蔽性树脂(A)以外的热塑性树脂(B)、和互容剂(C)、和过渡金属盐(D)的树脂组合物,该气体屏蔽性树脂(A)的氧透过速度是等于或小于500ml·20μm/m2·day·atm(20℃,65%RH),而且,该热塑性树脂(B)具有碳-碳双键。
在优选的实施方案中,上述第1种树脂组合物含有过渡金属盐(D)的场合的该过渡金属盐在组合物中的含量,和第2种树脂组合物中含有的过渡金属盐(D)在组合物中的含量,以上述气体屏蔽性树脂(A)、热塑性树脂(B)和互容剂(C)的合计重量为基准,换算成金属元素计是1~5000ppm。
在优选的实施方案中,上述过渡金属盐(D),具有选自铁、镍、铜、锰、和钴中的至少一种的过渡金属。
在优选的实施方案中,上述热塑性树脂(B),以0.0001eq/g或大于0.0001eq/g的比例含有碳-碳双键。
在优选的实施方案中,上述热塑性树脂(B),具有用下述结构式(I)表示的单元
式中,R1是氢原子或是碳原子数1~5的烷基、R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4分别独立地是氢原子、碳原子数1~10的烷基、可被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基。
在优选的实施方案中,上述热塑性树脂(B)的数均分子量是1000~500000。
在优选的实施方案中,上述气体屏蔽性树脂(A),是乙烯含量5~60mol%、皂化度是90%或大于90%的乙烯-乙烯醇共聚物。
在优选的实施方案中,上述气体屏蔽性树脂(A)和上述热塑性树脂(B)的折射率之差是0.01或小于0.01。
在优选的实施方案中,上述热塑性树脂(B)构成的粒子分散在上述气体屏蔽性树脂(A)的基料中。
在优选的实施方案中,本发明的第1种树脂组合物和第2种树脂组合物,以上述气体屏蔽性树脂(A)为40~99.8wt%、上述热塑性树脂(B)为0.1~30wt%、和上述互容剂(C)为0.1~30wt%的比例含有。
本发明的第3种树脂组合物,是含有热塑性树脂(B)和互容剂(C)的树脂组合物,该热塑性树脂(B)具有用下述结构式(I)表示的单元
式中,R1是氢原子或碳原子数1~5的烷基,R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4各自独立地是氢原子、碳原子数1~10的烷基、可以被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,而且碳-碳双键的含量比例是0.0001eq/g或大于0.0001eq/g,且该热塑性树脂(B)的数均分子量是1000~500000,而且该树脂组合物的氧吸收速度是0.1ml/m2·day或大于0.1ml/m2·day。
在优选的实施方案中,上述第3种树脂组合物,含有过渡金属盐(D)。
本发明的第4种树脂组合物,是含有热塑性树脂(B)、互容剂(C)和过渡金属盐(D)的树脂组合物,该热塑性树脂(B)具有以下述结构式(I)表示的单元
式中,R1是氢原子或碳原子数1~5的烷基,R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4各自独立地是氢原子、碳原子数1~10的烷基、可被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,且含有0.0001eq/g或多于0.0001eq/g比例的碳-碳双键,而且该热塑性树脂(B)的数均分子量是1000~500000。
在优选的实施方案中,上述第3种树脂组合物含过渡金属盐(D)的场合的该过渡金属盐在组合物中的含量,和第4种树脂组合物中含有的过渡金属盐(D)在组合物中的含量,以热塑性树脂(B)和互容剂(C)的合计重量为基准,换算成金属元素计为1~50000ppm。
在优选的实施方案中,上述第3种树脂组合物含过渡金属盐(D)的场合的该过渡金属盐(D),和第4种树脂组合物中含有的过渡金属盐(D)具有选自铁、镍、铜、锰和钴中的至少一种过渡金属。
在优选的实施方案中,上述互容剂(C)是具有选自羧基、硼酸基、和在水存在下可转化成硼酸基的含硼基中的至少一个官能基的热塑性树脂。
在优选的实施方案中,上述热塑性树脂(B),含有芳香族乙烯系化合物单元和二烯化合物单元。
在优选的实施方案中,上述二烯化合物单元是异戊二烯单元和丁二烯单元中的至少一方。
在优选的实施方案中,上述芳香族乙烯系化合物单元是苯乙烯单元。
在优选的实施方案中,上述热塑性树脂(B)是嵌段共聚物。
本发明的多层结构体,含有至少一层是由上述第1~第4中的任一种树脂组合物构成的层。
本发明的多层容器,含有由上述第1~第4中的任一种树脂组合物构成的层,和热塑性聚酯层至少各一层。
本发明的盖子,安装有由上述第1~第4中的任一种树脂组合物构成的密封垫片。
附图的简单说明


图1是以实施例1的第1单层薄膜的氧吸收量对时间作图的曲线图
图2是以实施例1~4和比较例1~4的单层薄膜的氧吸收量对时间作图的曲线图。但是实施例1是第2单层膜的结果。
图3是以实施例1~4和比较例1~4的多层薄膜的氧透过速度对时间作图的曲线图。
图4是以实施例5~7,和比较例5和6的单层膜的氧吸收量对时间作图的曲线图。
图5是实施例5,和比较例5和6的多层薄膜的氧透过速度对时间作图的曲线图。
实施发明的最佳方案
下面,详细地说明本发明。
在本说明书中,所说的“清除”氧,指的是从参与的环境中吸收消耗氧,或使氧量减少。
对于本发明的第1种树脂组合物和第2种树脂组合物中所含有的气体屏蔽性树脂(A)的种类没有特殊的限定,只要是具有良好的气体屏蔽性的树脂都可以使用。具体地说,可以使用氧透过速度是等于或小于500ml·20μm/m2·day·atm(20℃,65%RH)的树脂。这意味着,在20℃,相对湿度65%的环境下进行测定时,在具有一个气压的氧压差的状态下,对于面积1m2、20μm厚的薄膜在1天内透过的氧的体积是等于或小于500ml。氧透过速度超过500ml·20μm/m2·day·atm时,得到的树脂组合物的气体屏蔽性不充分。气体屏蔽性树脂(A)的氧透过速度优选等于或小于100ml·20μm/m2·day·atm,较优选等于或小于20ml·20μm/m2·day·atm,更优选等于或小于5ml·20μm/m2·day·atm。
气体屏蔽性树脂(A)的折射率,优选1.50~1.56的范围。超出该范围时,如下面所述,气体屏蔽性树脂(A)的折射率与热塑性树脂(B)的折射率之差变大,得到的树脂组合物的透明性有下降之虑。通常,具有氧吸收性的热塑性树脂(B)的折射率大多在上述范围,所以容易使热塑性树脂与气体屏蔽性树脂(A)的折射率之差变小,其结果可以得到透明性优异的树脂组合物。气体屏蔽性树脂(A)的折射率,优选等于或大于1.51,更优选等于或大于1.52,另外优选等于或小于1.55,更优选等于或小于1.54。
作为上述的气体屏蔽性树脂(A)的实例,可例示聚乙烯醇类树脂、聚酰胺树脂、聚氯乙烯树脂、聚丙烯腈树脂等作为代表性的树脂,但是并不限于这些树脂。
上述气体屏蔽性树脂(A)中,聚乙烯醇类树脂,是使用碱催化剂等将乙烯酯均聚物,或乙烯酯与其他单体的共聚物(特别是乙烯酯与乙烯的共聚物)进行皂化得到的。作为乙烯酯可以举出乙酸乙烯酯作为代表性的化合物,但是其他的脂族酸乙烯酯(丙酸乙烯酯、三甲基乙酸乙烯酯等)也可以使用。
上述聚乙烯醇类树脂的乙烯酯成分的皂化度,优选等于或大于90%,更优选等于或大于95%,特别优选的是等于或大于96%。皂化度不到90mol%时,在高湿度下的气体屏蔽性下降。另外,上述聚乙烯醇类树脂(A)是EVOH时,热稳定性不充分,在成型物中容易含有所产生的凝胶·麻点。
在聚乙烯醇类树脂(A)是由皂化度不同的2种或多于2种的聚乙烯醇类树脂的混合物构成时,从混合重量比算出的平均值作为皂化度。
如上所述的聚乙烯醇类树脂(A)中,从可熔融成型、和高湿度下的气体屏蔽性优良的观点看,EVOH是合适的。
EVOH的乙烯含量优选5~60mol%。乙烯含量不足5mol%时,高湿度下的气体屏蔽性下降,并且熔融成型性也有恶化的现象。故EVOH的乙烯含量优选是等于或大于10mol%,较优选是等于或大于15mol%,更优选是等于或大于20mol%。另一方面,当乙烯含量超过60mol%时,有时还得不到充分的气体屏蔽性。故乙烯含量优选是等于或小于55mol%,更优选是等于或小于50mol%。
适用的EVOH,上述的乙烯含量是5~60mol%,而且皂化度是等于或大于90%。对于含有本发明的树脂组合物的多层容器,在希望具有优异的耐冲击剥离性时,优选使用乙烯含量为25mol%~55mol%,皂化度等于或大于90%而小于99%的EVOH。
在EVOH由乙烯含量不同的2种或多于2种的EVOH的混合物构成时,以从混合重量比计算出的平均值作为乙烯含量。在此情况下,优选乙烯含量差别最大的EVOH之间的乙烯含量之差是等于或小于30mol%,且皂化度之差是等于或小于10%。在这些条件以外时,有时会损害树脂组合物层的透明性。乙烯含量之差更优选等于或小于20mol%,最优选等于或小于15%。另外,皂化度之差更优选等于或小于7%,最优选等于或小于5%。对于含有本发明的树脂组合物的多层容器,在希望耐冲击剥离性和气体屏蔽性以更高水准取得平衡时,优选将乙烯含量为25mol%~55mol%,皂化度等于或大于90%而小于99%的EVOH(a1),与乙烯含量为25mol%~55mol%,皂化度等于或大于99%的EVOH(a2),以重量比a1/a2为5/95~95/5进行混合后使用。
EVOH的乙烯含量和皂化度可以采用核磁共振(NMR)法求得。
如上所述,在该EVOH中,在不损害本发明目的的范围内,还可以少量含有乙烯和乙烯醇以外的单体作为共聚成分。作为这样的单体的例子,可以举出以下的化合物丙烯、1-丁烯、异丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯等的α-烯烃;衣康酸、甲基丙烯酸、丙烯酸、马来酸酐等的不饱和羧酸、其盐、其部分酯或全酯、其腈、其酰胺、其酐;乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基-乙氧基)硅烷、r-甲基丙烯酰氧基丙基三甲氧基硅烷等的乙烯基硅烷类化合物;不饱和磺酸或其盐;烷基硫醇类;乙烯基吡咯烷酮类等。
其中,作为EVOH中的共聚成分含有乙烯基硅烷化合物0.0002~0.2mol%时,将含该EVOH的本发明的组合物与要成为基材的树脂(例如PES)一起,进行共挤出成型或共注塑成型获得多层结构体时,可以改善与该基材树脂的熔体粘性的一致性,则可以制造均质的成型制品。作为乙烯基硅烷类化合物,优选使用乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷。
另外,在EVOH中添加硼化合物时,也可以改善EVOH的熔体粘性,并且在获得均质的共挤出或共注塑成型制品方面也是有效的。这里作为硼化合物,可以举出硼酸类、硼酸酯、硼酸盐、氢化硼类等。具体地说,作为硼酸类,可以举出原硼酸(以下,有时简称为硼酸)、偏硼酸、四硼酸等,作为硼酸酯,可举出硼酸三乙酯、硼酸三甲酯等,作为硼酸盐,可举出作为上述的各种硼酸类的碱金属盐、碱土类金属盐、硼砂等。这些化合物中优选原硼酸。
在添加硼化合物时,其含量换算成硼元素计,优选20~2000ppm,更优选50~1000ppm。只要在此范围就可以得到控制了加热熔融时的扭矩变动的EVOH。在不足20ppm时,有时硼化合物的添加效果不充分。另一方面,超过2000ppm时容易发生凝胶化,成型性有时变差。
在EVOH中,将碱金属盐换算成碱金属元素计,适宜地添加5~5000ppm时,对改善层间粘结性和相容性是有效果的。碱金属盐的添加量,换算成碱金属元素计,较适宜的是20~1000ppm,更适宜的是30~500ppm。作为碱金属,可以举出锂、钠、钾等,作为碱金属盐,可以举出碱金属的脂族羧酸盐、芳族羧酸盐、磷酸盐、金属配合物等。例如,乙酸钠、乙酸钾、磷酸钠、磷酸锂、硬脂酸钠、硬脂酸钾、乙二胺四乙酸的钠盐等,这些当中,优选乙酸钠、乙酸钾、磷酸钠。
相对于EVOH,添加磷酸化合的优选比例是,换算成磷酸根计,添加20~500ppm为适宜,30~300ppm较为适宜,50~200ppm更为适宜。通过用上述范围配合磷酸化合物,可以改善EVOH的热稳定性。尤其是,可以抑制在长时间进行熔融成型时的凝胶状麻点的发生和着色。
在EVOH中添加的磷化合物的种类没有特别的限定,可以使用磷酸、亚磷酸等的各种酸或其盐等。磷酸盐可以是磷酸二氢盐、磷酸氢盐、磷酸盐的任何一种形式。磷酸盐的阳离子种类也没有特别的限定,但优选的阳离子种类是碱金属、碱土类金属。其中,优选添加磷酸二氢钠、磷酸二氢钾、磷酸氢二钠、磷酸氢二钾形式的磷化合物。
EVOH的合适的熔体流动速率(MFR),在210℃,2160g荷重下,根据JIS K7210测定时,是0.1~100g/10分钟,较合适的是0.5~50g/10分钟,更合适的是1~30g/分钟。
气体屏蔽性树脂(A)中,聚酰胺树脂的种类没有特殊的限制,例如,聚己内酰胺(尼龙-6)、聚-ω-氨基十一酰胺(尼龙-11)、聚十二内酰胺(尼龙-12)、聚酰胺-66(尼龙-6,6)、聚酰胺-612(尼龙-6,12)等脂肪族聚酰胺均聚物;己内酰胺/十二内酰胺共聚物(尼龙-6/12)、己内酰胺/氨基十一(烷)酸共聚物(尼龙-6/11)、己内酰胺/ω-氨基壬酸共聚物(尼龙-6/9)、己内酰胺/六亚甲基己二酰二胺共聚物(尼龙-6/6,6)、己内酰胺/六亚甲基己二酰胺/六亚甲基癸二酰胺共聚物(尼龙-6/6,6/6,12)等脂肪族聚酰胺共聚物;聚间二甲苯基己二酰胺(MX-尼龙)、六亚甲基对苯二甲酰胺/六亚甲基间苯二甲酰胺共聚物(尼龙-6T/6I)等芳香族聚酰胺。这些聚酰胺树脂,可以分别单独使用,也可以将2种或多于2种混合起来使用。这些当中,聚己内酰胺(尼龙-6)、聚酰胺-66(尼龙-6,6)从气体屏蔽性的观点上看是优选的。
作为聚氯乙烯树脂,除了氯乙烯或偏氯乙烯的均聚物以外,还可举出与乙酸乙烯酯、马来酸衍生物、高级烷基乙烯基醚等的共聚物。
作为聚丙烯腈树脂,除了丙烯腈均聚物以外,还可举出与丙烯酸酯等的共聚物。
作为气体屏蔽性树脂(A),可以使用这些中的1种,也可以将其中的2种或多于2种混合起来使用。其中,优选聚乙烯醇类树脂,更优选乙烯含量5~60mol%,皂化度等于或大于90%的EVOH。气体屏蔽性树脂(A)是这样的EVOH,且后述的互容剂(C)具有羧基时,可以显著地改进所得树脂组合物的热稳定性。
在本发明中,在不损害本发明目的的范围内,还可以预先将热稳定剂、紫外线吸收剂、防氧化剂、着色剂、填料、其他树脂(聚酰胺、聚烯烃等)与气体屏蔽性树脂(A)进行共混。
本发明的树脂合物中含有的热塑性树脂(B),含有碳-碳双键。由于碳-碳双键与氧高效地进行反应,故这样的热塑性树脂(B)具有清除氧功能。而且,在本发明中,所说的碳-碳双键包括共轭双键,但是不包括芳香环中所含的多重键。
本发明的第1种树脂组合物和第2种树脂组合物中,作为热塑性树脂(B)的种类,只要是具有上述特征的树脂,而且是上述的气体屏蔽性树脂(A)以外的树脂即可,没有特别的限定。另外,在本发明的第3种树脂组合物和第4种树脂组合物中,热塑性树脂(B)的种类,只要是具有上述特征的树脂即可,没有特别的限定。
在本发明的第3种树脂组合物和第4种树脂组合物中,该碳-碳双键,在热塑性树脂(B)中含有等于或大于0.0001eq/g(当量/g)是必要的,含等于或大于0.0005eq/g为适宜,含等于或大于0.001eq/g为更适宜。碳-碳双键的含量不足0.0001eq/g时,得到的树脂组合物的清除氧功能不充分。另外,本发明的第1种树脂组合物和第2种树脂组合物中,碳-碳双键的含量也优选上述的数值或大于上述数值。
碳-碳双键可以含在热塑性树脂(B)的主链上,也可以含在侧链上,但在侧链上含有的双键量多者(即,具有碳-碳双键的基在侧链上多者),从与氧的反应效果的观点考虑是优选的。作为在侧链上所含的碳-碳双键,优选的是在用下述结构式(I)表示的结构单元上含有的双键
式中,R1是氢原子或碳原子数1~5的烷基,R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4各自独立地是氢原子、碳原子数1~10的烷基、可被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基。上述芳基的碳原子数优选的是6~10,烷芳基或芳烷基的碳原子数优选的是7~11,烷氧基的碳原子数优选的是1~10。作为烷基的例子可以举出甲基、乙基、丙基、丁基,作为芳基的例子可以举出苯基,作烷芳基的例子可举出甲苯基,作为芳烷基的例子可举出苄基,作为烷氧基的例子可举出甲氧基、乙氧基,作为卤原子的例子可举出氯原子。
在用结构式(I)表示的结构单元中,优选来自二烯化合物的结构单元。因为具有该结构的热塑性树脂的制造容易。作为这样的二烯化合物,可举出异戊二烯、丁二烯、2-乙基丁二烯、2-丁基丁二烯等。可以只使用这些中的一种,也可以将2种或多于2种并用。该二烯化合物的例子、与由该二烯化合物衍生的结构式(I)表示的基的种类的关系示于表1中
表1
在这些当中,从与氧的反应效率的观点来看,优选R2是碳原子数1~5的烷基者,更优选R2是甲基者(即,来自异戊二烯的结构单元)。异戊二烯即容易得到又可以与其他单体共聚,所以从热塑性树脂(B)的制造成本上考虑也是适宜的。另外,从容易获得,和可以与其他单体共聚的观点看,丁二烯也是适宜的。
用结构式(I)表示的结构单元是来自二烯化合物时,用结构式(I)表示的结构单元相对于来自二烯化合物的全部结构单元的比例,以等于或大于10%为佳,等于或大于20%为较佳,等于或大于30%为更佳。为使上述比例达到等于或大于10%,采用在惰性有机溶剂中,以路易斯碱用作共催化剂使二烯化合物进行阴离子聚合的、本领域通常使用的方法。
为得到具有用结构式(I)表示的结构单元的热塑性树脂(B),使含二烯化合物的单体进行聚合时,优选使用路易斯碱作为共催化剂。作为路易斯碱,可以举出,例如二甲基醚、二乙基醚、甲基乙基醚、四氢呋喃等的醚类、乙二醇二乙醚、乙二醇二甲醚等的二醇醚类、N,N,N’,N’-四甲基乙二胺(TMEDA)、三亚乙基二胺等的叔胺类、N-甲基吗啉、N-乙基吗啉等的含醚胺类等。这些路易斯碱,通常,相对于每100重量份后述的引发剂可以使用0.1~400重量份。
用于本发明的树脂组合物中的热塑性树脂(B),优选的是芳香族乙烯系化合物与上述二烯化合物的共聚物。热塑性树脂(B)是该共聚物时,来自二烯化合物的碳-碳双键部分容易与氧反应,故提高所得树脂组合物的氧气屏蔽性和清除氧功能。而且,通过调节芳香族乙烯系化合物与二烯化合物的共聚比,可以控制热塑性树脂(B)的熔融行为和硬度。进一步,还可以通过调节该共聚比,使热塑性树脂(B)的折射率达到所希望的值。因此,可使气体屏蔽性树脂(A)的折射率与热塑性树脂(B)的折射率之差缩小,结果可得到透明性优异的制品。
作为上述芳族乙烯系化合物,可以举出苯乙烯、1-乙烯基萘、2-乙烯基萘、3-乙烯基萘、2-甲基苯乙烯、3-甲基苯乙烯、4-甲基苯乙烯、4-丙基苯乙烯、4-环己基苯乙烯、4-(十二烷基)苯乙烯、2-乙基-4-苄基苯乙烯、4-(苯基丁基)苯乙烯等。这些当中,从成本和容易聚合的观点看,苯乙烯最佳。另一方面,作为二烯化合物,可以举出上述的化合物作为例子。
作为芳香族乙烯系化合物与二烯化合物的共聚物的形态,可以是无规共聚物、嵌段共聚物、接枝共聚物、或者这些的复合物等任何一种形态。但从制造容易、得到的热塑性树脂(B)的机械特性、处理容易、和清除氧功能的观点看,嵌段共聚物为佳。
在上述嵌段共聚物中,芳香族乙烯系化合物嵌段的分子量适宜的是300~100000,较适宜的是1000~50000,更适宜的是3000~50000.芳香族乙烯系化合物嵌段的分子量不足300时,热塑性树脂(B)的熔融粘度低,得到的树脂组合物的成型性、加工性和运输性方面有时会发生问题。而且,制成成型制品时的机械特性有时会下降。此外,热塑性树脂(B)向气体屏蔽性树脂(A)中的分散性下降,也有透明性、气体屏蔽性和清除氧功能下降的情况。另一方面,芳香族乙烯系化合物嵌段的分子量超过100000的场合,热塑性树脂(B)的溶融粘度升高有损热塑性,故有时会使得到的树脂组合物的成型性和加工性下降。另外,与上面所述相同地使热塑性树脂(B)向气体屏蔽性树脂(A)中的分散性下降,也有降低透明性、气体屏蔽性和清除氧功能的情况。
作为嵌段共聚物的嵌段形态,可举出,例如X(YX)n、(XY)n等。其中,X表示芳香族乙烯系化合物嵌段、Y表示二烯化合物嵌段,n是等于或大于1的整数。这些当中,优选2元嵌段共聚物和3元嵌段共聚物,从机械特性的观点看,更优选3元嵌段共聚物。其中,从成本和聚合容易的观点看,优选的是芳香族乙烯系化合物嵌段是聚苯乙烯嵌段,二烯化合物嵌段是聚异戊二烯嵌段。
上述嵌段共聚物的制造方法没有特别的限定,但是适合的是阴离子聚合法。具体地可以举出,以烷基锂化合物作为引发剂使芳香族乙烯系化合物与二烯化合物进行共聚,再用耦联剂进行耦联的方法,以二锂系化合物作为引发剂使二烯化合物与芳香族乙烯系化合物进行逐步聚合的方法等,但是并不限于这些。作为烷基锂化合物,优选烷基的碳原子数1~10的烷基锂化合物,例如,甲基锂、乙基锂、苄基锂、正丁基锂、仲丁基锂、叔丁基锂等。
作为耦联剂,可以使用二氯甲烷、二溴甲烷、二氯乙烷、二溴乙烷等。作为二锂化合物可举出,例如,萘二锂、低聚苯乙烯基二锂、二锂己基苯等。使用量,相对于用于聚合中的全部单体100重量份,引发剂0.01~0.2重量份,耦联剂0.04~0.8重量份为适宜。
上述热塑性树脂(B)还可以具有含杂原子的官能基。特别是,对于本发明的第1种树脂组合物和第2种树脂组合物中,使树脂组合物全体形态稳定,进而,制造含有由树脂组合物构成的层的多层的容器时,可以改进该容器中的多层结构体的耐冲击剥离性故是优选的。具有含杂原子的官能基的热塑性树脂(B)的制造方法没有特殊的限定。可以例示的有,将至少一个末端上含有碱金属的聚合物,与可与该末端的碱金属反应的特定的末端处理剂进行反应的方法等。
作为热塑性树脂(B)中可含有的含杂原子的官能基,可举出以下的基。[I]含有活泼氢的极性基-SO3H、-SO2H、-SOH、-NH2、-NHR、>C=NH、-CONH2、-CONHR、-CONH-、-OH、-SH[II]含氮不含有活泼氢的极性基-NR2、-NR-、>C=N-、-CN、-NCO、-OCN、-SCN、-NO、-NO2、-NCS、-CONR2、-CONR-[III]含环氧基或硫代环氧基的极性基[IV]含羰基或硫羰基的极性基-CHO、-COOH、-COOR、-COR、>C=O、>C=S、-CHS、-CSOR、-CSOH[V]含磷极性基-P(OR)2、-P(SR)2、-PO(OR)2、-PO(SR)2、-PS(OR)2、-PS(SR)2、-PO(SR)(OR)、-PS(SR)(OR)[VI]含M(M是Si、Ge、Sn、Pb中的任1种)的极性基-MX3、-MX2R、-MXR2、-MR3上述通式中,R表示烷基、苯基、或烷氧基,X表示卤原子。
作为制造热塑性树脂(B)的溶剂,使用对于上述引发剂,耦联剂和路易斯碱是惰性的有机溶剂。这些当中,优选碳原子数6~12的饱和烃、环状饱和烃、芳族烃。可举出,例如,己烷、庚烷、辛烷、癸烷、环己烷、甲苯、苯、二甲苯等。为制造热塑性树脂(B)的聚合反应,通常在-20~80℃的温度范围内,进行1~50小时。
例如,将聚合反应液滴入甲醇等不良容剂中,使反应生成物析出后,加热或减压干燥该反应生成物,或将聚合反应液滴入沸腾的水中,将溶液共沸·除去后,通过加热或减压干燥得到热塑性树脂(B)。而且,聚合后存在的双键,在不损害本发明的树脂组合物的效果的范围内,其一部分用氢还原也没关系。
如此得到的嵌段共聚物的、来自二烯化合物嵌段的tanδ的主分散峰温度,从得到的树脂组合物的清除氧功能的观点看,优选-40℃~60℃,更优选-20℃~40℃,特别优选取-10℃~30℃。tanδ的主分散峰温度不到-40℃时,得到的树脂组合物的清除氧功能有下降的现象。另一方面,tanδ的主分散峰温度超过60℃时得到的树脂组合物在特别低温下的清除氧功能有下降的现象。
热塑性树脂(B)的分子量,适宜的是1000~500000,较适宜的是10000~250000,更适宜的是40000~200000。热塑性树脂(B)的分子量不足1000时,向气体屏蔽性树脂(A)中的分散性低,有时透明性、气体屏蔽性和清除氧功能会下降。而分子量超过500000时,除存在上述同样问题之外,有时也会使树脂组合物的加工性变差。
热塑性树脂(B),即可以是单一的树脂,也可以是多种树脂构成的混合物。在任何一种情况下,要想得到透明性良好的成型制品时,对于厚度20μm的薄膜,其内部雾度值优选等于或小于10%。
本发明的第1种树脂组合物和第2种树脂组合物中,用于本发明的热塑性树脂(B)的折射率,与气体屏蔽性树脂(A)的折射率之差优选是等于或小于0.01。气体屏蔽性树脂(A)和热塑性树脂(B)的折射率之差超过0.01时,得到的树脂组合物的透明性有时会变差。故折射率之差优选是等于或小于0.007,更优选等于或小于0.005。但是,气体屏蔽性树脂(A)是由2种或多于2种的气体屏蔽性树脂构成的场合(例如,由不同的2类EVOH构成的场合),是将从各气体屏蔽性树脂的折射率和重量比算出的折射率的平均值作为气体屏蔽性树脂(A)的折射率。
热塑性树脂(B),可以含有防氧化剂。作为防氧化剂,例如可举出下列化合物2,5-二叔-丁基氢醌、2,6-二-叔-丁基-对-甲酚、4,4’-硫代双-(6-叔-丁基苯酚)、2,2’-亚甲基-双-(4-甲基-6-叔-丁基苯酚)、十八烷基-3-(3’,5’-二-叔-丁基-4’-羟苯基)丙酸酯、4,4’-硫代双-(6-叔-丁基苯酚)、2-叔-丁基-6-(3-叔-丁基-2-羟基-5-甲基苄基)-4-甲基苯基丙烯酸酯、季戊四醇四(3-月桂基硫代丙酸酯)、2,6-二-(叔-丁基)-4-甲基苯酚(BHT)、2,2-亚甲基双-(6-叔-丁基-对-甲酚)、亚磷酸三苯酯、亚磷酸三-(壬基苯基)酯、硫代二丙酸二月桂酯等。
防氧化剂的加量,要根据树脂组合物中的各成分的种类、含量、树脂组合物的使用目的、保存条件等进行适宜地选定。通常,热塑性树脂(B)中含有的防氧化剂的量,是以热塑性树脂(B)和防氧化剂的合计重量为基准计,优选的是0.01~1wt%,更优选的是0.02~0.5wt%。防氧化剂的量过多时,妨碍热塑性树脂(B)与氧的反应,所以有时使本发明的树脂组合物的氧气屏蔽性和清除氧功能变得不充分。另一方面,防氧化剂的量过少时,在保存时或熔融混炼时,热塑性树脂(B)就与氧反应了,结果在本发明的树脂组合物实际应用之前清除氧功能就已下降了。
例如,将热塑性树脂(B)在比较低的温度下,或在惰性气氛中保存时,或在氮气密封的状态下进行熔融混炼制造树脂组合物的场合等,防氧化剂的量可以少。另外,为了促进氧化,在熔融混合时添加氧化催化剂时,热塑性树脂(B)即使含有某种程度量的防氧化剂,也可以得到具有良好的清除氧功能的树脂组合物。
本发明的树脂组合物中含有的互容剂(C),可提高气体屏蔽性树酯(A)和热塑性树脂(B)的互容性,所以对于所得树酯组合物是可形成稳定形态的化合物。互容剂(C)的种类没有特别的限制,可以根据所用的气体屏蔽性树酯(A)和热塑性树脂(B)的组合进行适宜选择。
气体屏蔽性树酯(A)是像聚乙烯醇类树脂那样极性高的树酯时,作为互容剂(C),优选的是含有极性基的烃类聚合物或乙烯-乙烯醇共聚物。例如,是含有极性基的烃类聚合物时,由于构成聚合物基体的烃聚合物部分,使该互容剂(C)与热塑性树脂(B)的亲合性变好。由于极性基,使该互容剂(C)与气体屏蔽性树酯(A)的亲合性变好。其结果,在所得树酯组合物中可以形成稳定的形态。
作为形成构成上述的具有极性基的烃类聚合物基体的烃聚合物的单体,可举出下列化合物乙烯、丙烯、1-丁烯、异丁烯、3-甲基戊烯、1-己烯、1-辛烯等α-烯烃类;苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、4-甲基苯乙烯、4-丙基苯乙烯、4-叔-丁基苯乙烯、4-环己基苯乙烯、4-月桂基苯乙烯、2-乙基-4-苄基苯乙烯、4-(苯基丁基)苯乙烯、2,4,6,三甲基苯乙烯、一氟苯乙烯、二氟苯乙烯、一氯苯乙、二氯苯乙烯、甲氧基苯乙烯、叔-丁基苯乙烯等苯乙烯类;1-乙烯基萘、2-乙烯基萘等乙烯基萘类;茚、苊等含1,2-亚乙烯基的芳香族化合物;丁二烯、异戊二烯、2,3-二甲基丁二烯、戊二烯、己二烯等共轭二烯等。上述烃类聚合物,可以含有这些单体中的1种作为主要成分,也可以含其中的2种或多于2种作为主要成分。
使用上述单体,如下所述地调制含有极性基的烃类聚合物,并且该单体形成构成下面那样的聚合物的烃聚合物部分产物有聚乙烯(超低密度、低密度、直链低密度、中密度、高密度)、乙烯-(甲基)丙烯酸酯(甲酯、乙酯等)共取物、乙烯-乙酸乙烯酯共聚物、乙烯-乙烯醇共聚物、聚丙烯、乙烯-丙烯共聚物等烯烃类共聚物;聚苯乙烯、苯乙烯-丙烯腈共聚物、苯乙烯-丙烯腈-丁二烯共聚物、苯乙烯-二烯类嵌段共聚物(苯乙烯-异戊二烯嵌段共聚物、苯乙烯-丁二烯共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物等)、其加氢物等苯乙烯类聚合物;聚丙烯酸甲酯、聚丙烯酸乙酯、聚甲基丙烯酸甲酯等(甲基)丙烯酸酯类聚合物;聚氯乙烯、偏氟乙烯等卤代乙烯类聚合物;聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯等半芳香族聚酯;聚戊内酯;聚己内酯;聚丁二酸乙二醇酯、聚丁二酸丁二醇酯等脂肪族聚酯等。这些当中,多数情况下优选含有构成热塑性树脂(B)的单体作为构成成分。例如,热塑性树脂(B)含有聚苯乙烯时,作为构成互容剂(C)的烃聚合物部分的聚合物,优选聚苯乙烯、苯乙烯-二烯类嵌段共聚物(苯乙烯-异戊二烯嵌段共聚物、苯乙烯-丁二烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物等)、其加氢物等苯乙烯类聚合物。
作为互容剂(C)中所含的极性基没有特别的限定,但是优选含氧原子的官能基。具体地,可以举出
含活发氢的极性基(-SO3H、-SO2H、-SOH、-CONH2、-CONHR、-CONH-、-OH等)、含氮不含活泼氢的极性基(-NCO、-OCN、-NO、-NO2、-CONR2、-CONR-等)、环氧基、含羰基的极性基(-CHO、-COOH、-COOR、-COR、>C=O、-CSOR、-CSOH等)、含磷极性基(-P(OR)2、-PO(OR)2、-PO(SR)2、-PS(OR)2、-PO(SR)(OR)、-PS(SR)(OR)等)、含硼极性基等。上述通式中,R表示烷基、苯基或烷氧基。
含极性基的烃类聚合物的制造方法没有特殊的限定。例如,可举出以下的方法1)使可以形成上述烃聚合物部分的单体,与含有极性基(或者,可形成该极性基的基)的单体进行共聚的方法;2)在使可形成上述烃聚合物部分的单体进行聚合时,利用含有上述极性基(或者,可形成该极性基的基)的引发剂或链转移剂的方法;3)使可形成上述烃聚合物部分的单体进行活性聚合,利用具有上述极性基(或者,可形成该极性基的基)的单体作为终止剂(末端处理剂)的方法;和4)使可形成上述烃聚合物部分的单体聚合得到聚合物,再使含有上述极性基(或者,可形成该极性基的基)的单体与该聚合物中的反应性部分,例如碳-碳双键部分反应而导入的方法。对于上述1)的方法,在进行共聚合时,可以采用无规共聚、嵌段共聚、接枝共聚中的任何1种聚合方法。
互容剂(C)是烃类聚合物时,特别优选的极性基,可以举出羧基和含硼极性基(硼酸基、和在水存在下可转化成硼酸基的含硼极性基)。下面对于这些极性基、和含有该极性基的烃类聚合物依次进行说明。
在本说明书中,所说的「羧基」,除了羧基以外,还包括羧酸酐基和羧酸盐基。其中所说的羧酸盐基,指的是羧酸的全部或一部分是以金属盐的形式存在的羧酸的残基。作为上述金属盐的金属,可以举出锂、钠、钾等碱金属;镁、钙等碱土类金属;锌、锰、钴等过渡金属等。这些当中,从相容性的观点考虑,优选锌。作为互容剂(C),使用具有羧基的烃系聚合物时,可以显著地改善所得树脂组合物的热稳定性。
调制含有羧基的烃系聚合物的方法没有特殊的限定,采用上述1)的方法,使可形成烃聚合物部分的单体,与含有羧基或羧酸酐基的单体进行共聚是合适的。可用于该方法的单体中,作为具有羧基的单体,可以举出丙烯酸、甲基丙烯酸、马来酸、马来酸单甲酯、马来酸单乙酯、衣康酸等。其中,优选丙烯酸和甲基丙烯酸。聚合物中的羧基含量优选的是0.5~20mol%,较优选的是2~15mol%,更优选的是3~12mol%。
另外,作为具有羧酸酐基的单体,可以举出衣康酸酐、马来酸酐等,特别合适的是马来酸酐。作为聚合物中的羧酸酐基的含量,优选的是0.0001~5mol%,较优选的是0.0005~3mol%,更优选的是0.001~1mol%。
例如,通过由上述方法调制的具有羧基或羧酸酐基的聚合物与低分子金属盐的盐交换反应,将羧酸盐基导入聚合物中。此时的低分子金属盐可以含有上述的金属中的1种,或含有2种或多于2种。
作为低分子金属盐中的金属的平衡离子,可举出来自有机酸或氯化物的阴离子。作为有机酸,可举出,例如,乙酸、硬脂酸、二甲基二硫代氨基甲酸、棕榈酸、2-乙基己酸、新癸酸、亚油酸、妥尔酸(ト-ル酸)、油酸、树脂酸、癸酸、环烷酸等。作为特别优选的低分子金属盐,可举出2-乙基己酸钴、新癸酸钴、硬脂酸钴和乙酸钴。
得到的羧酸盐基的中和度,适宜的是不到100%,较适宜的是等于或小于90%,更适宜的是等于或小于70%。另外适宜的是等于或大于5%,较适宜的是等于或大于10%,更适宜的是等于或大于30%。例如,适宜的是5~90%,更适宜的是10~70%。
含有羧基的烃系聚合物的种类没有特殊的限制,但是,使用α-烯烃作为可形成烃聚合物部分的单体,通过与上述具有羧基或羧酸酐基的单体的共聚合所得到的共聚物是优选的。其中,从所得树脂组合物的热稳定性的观点考虑,优选无规共聚物。
作为上述无规共聚物,可举出乙烯-丙烯酸共聚物(EAA)、乙烯-甲基丙烯酸共聚物(EMAA)、和它们的金属盐。其中,优选EMAA和其金属盐。
另外,将上述的具有羧基或羧酸酐基的单体接枝到聚烯烃上的共聚物也是优选使用的。作为这时的聚烯烃,可举出聚乙烯(例如,高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、直链低密度聚乙烯(LLDPE)、超低密度聚乙烯(VLDPE)等)、聚丙烯、丙烯共聚物以及乙烯-乙酸乙烯酯共聚物作为合适的聚烯烃。作为进行接枝的单体,优选马来酸酐。
含有羧基的烃类聚合物,可以含有如下单体作为共聚成分乙酸乙烯酯、丙酸乙烯酯等乙烯酯;丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、丙烯酸正丁酯、丙烯酸2-乙基己酯、甲基丙烯酸甲酯、甲基丙烯酸异丁酯、马来酸二乙酯等不饱和羧酸酯;一氧化碳等。
上述的含有羧基的聚合物的熔体流动速率(MFR),(190℃,2160g荷重下)通常是0.01g/10分钟或大于0.01g/10分钟,优选0.05g/分钟或大于0.05g/10分钟,更优选的是0.1g/分钟或大于0.1g/分钟。另外,MFR通常是50g/10分钟或小于50g/10分钟,优选的是否30g/10分钟或小于30g/10分钟,更优选的是10g/10钟或小于10g/10钟。
互容剂(C)中所含的极性基是含硼极性基时,如上所述,硼酸基,和在水存在下可转化成硼酸基的含硼基是合适的。硼酸基,相当于从硼酸上除去OH基后的残基,是用下述式(II)表示的基
上面所说的在水存在下可转化成硼酸基的含硼基,指的是在水存在下被水解而可以转化成用上述式(II)表示的硼酸基的含硼基。更具体地讲,指的是,以水单独地、水和有机溶剂(甲苯、二甲苯、丙酮等)的混合物、或5%的硼酸水溶液和有机溶剂的混合物作为溶剂,在室温~150℃的条件下水解10分钟~2小时水解时,则可转化成硼酸基的官能基。作为这样的官能基的代表例,可举出用下述式(III)表示的硼酸酯基、用下述式(IV)表示的硼酸酐基、用下述式(V)表示的硼酸盐基等。
式中,X1和X2表示氢原子,脂族烃基(碳原子数1~20的直链、或支链烷基、或链烯基等),脂环式烃基(环烷基、环链烯基等),芳族烃基(苯基、二苯基等),X1和X2可以相同也可以不同。但是,X1和X2都是氢原子的情况除外。另外,X1和X2可以结合。另外R5、R6和R7与上述的X1和X2同样地表示氢原子、脂肪族烃基、脂环式烃基、芳族烃基,R5、R6和R7可以相同也可以不同。另外,Mt表示碱金属。而且,上述X1、X2、R5、R6和R7还可以具有其他的基,例如羧基、卤原子等。
具有上述含硼极性基的烃类聚合物,作为互容剂显示非常优异的性能。例如,在制作由含这样聚合物的树脂组合物构成的层与PES层直接接触构成多层容器时,可以显著地改善耐冲击剥离性。
作为用通式(III)表示的硼酸酯基的具体例,可举出下列的基硼酸二甲基酯基、硼酸二乙基酯基、硼酸二丙基酯基、硼酸二异丙基酯基、硼酸二丁基酯基、硼酸二己基酯基、硼酸二环己基酯基、硼酸乙二醇酯基、硼酸丙二醇酯基、硼酸1,3-丙二醇酯基、硼酸1,3-丁二醇酯基、硼酸新戊二醇酯基、硼酸儿茶酚酯基、硼酸甘油酯基、硼酸三羟甲基乙烷酯基等。
作为上述式(V)表示的硼酸盐基,可以举出硼酸的碱金属盐基等。具体地,可举出硼酸钠盐基、硼酸钾盐基等。
具有上述含有硼极性基作为含杂原子的官能基的热塑性树脂(B)中的上述含硼极性基的含量没有特别的限制,但优选0.0001~1meq/g(毫当量/g),特别优选0.001~0.1meq/g。
具有上述含有硼极性基的烃类聚合物的制法没有特殊的限定。上述1)~4)方法中的任何一种方法都可以适用。关于其中的方法1)、2)、和4)的方法的代表例,如下所述。
用上述1)的方法(将可形成烃聚合物部分的单体,与具有极性基,或具有可形成该极性基的基的单体共聚的方法),将具有含硼极性基的单体,与可形成上述烃聚合物部分(烯烃类聚合物、乙烯系聚合物、二烯系聚合物等)的单体进行共聚,由此则可以得到具有含硼极性基的烃系聚合物。作为上述具有含硼极性基的单体,例如,3-丙烯酰氨基苯硼酸、3-丙烯酰氨基苯硼酸乙二醇酯、3-甲基丙烯酰氨基苯硼酸、3-甲基丙烯酰氨基苯硼酸乙二醇酯、4-乙烯基苯基硼酸、4-乙烯基苯基硼酸乙二醇酯等。
具有含硼极性基的烃类聚合物,还可以用上述2)的方法,并以具有含硼极性基的硫醇作为链转移剂,使可形成烃聚合物部分的单体(可形成烯烃类聚合物、乙烯系聚合物、二烯系聚合物等的单体),进行自由基聚合而得到。得到的聚合物在末端具有含硼极性基。
具有上述含硼极性基(例如,硼酸基)的硫醇,例如,可以在氮气气氛下使具有双键的硫醇与乙硼烷或甲硼烷配合物反应后,通过加入醇类和水而得到。作为具有双键的原料硫醇,可以举出,2-丙烯-1-硫醇、2-甲基-2-丙烯-1-硫醇、3-丁烯-1-硫醇、4-戊烯-1-硫醇等。其中,2-丙烯-1-硫醇和2-甲基-2-丙烯-1-硫醇为优选。作为甲硼烷配合物,优选甲硼烷-四氢呋喃配合物、甲硼烷-二甲基硫醚配合物、甲硼烷-吡啶配合物、甲硼烷-三甲基氨配合物、甲硼烷-三乙基氨配合物等。其中优选甲硼烷-四氢呋喃配合物、甲硼烷-二甲基硫醚配合物。乙硼烷或甲硼烷配合物的添加量,相对于具有双键的硫醇,优选等量程度。作为反应温度优选室温~200℃的范围。作为溶剂,可以举出四氢呋喃(THF)、二甘醇二甲醚等醚系溶剂;己烷、庚烷、乙基环己烷、萘烷等饱和烃系溶剂。这些当中,优选THF。作为在反应后添加的醇类,优选甲醇、乙醇等的低级醇,更优选甲醇。
作为要得到末端具有含硼极性基的聚合物的聚合条件,优选使用偶氮系或过氧化物系的引发剂,聚合温度为室温~150℃。作为具有上述含硼极性基的硫醇的添加量,优选每1g单体为0.001~1mmol左右。作为该硫醇的添加方法,没有特殊的限定,但是作为单体,在使用易发生链转移的乙酸乙烯酯、苯乙烯等时,优选在聚合时添加硫醇,而在使用不易发生链转移的甲基丙烯酸甲酯等时,则优选在聚合反应之前加入硫醇。
作为使可形成上述4)的烃聚合物部分的单体进行聚合得到聚合物,然后在该聚合物中的反应性部分通过反应导入具有上述极性基(含硼极性基)的单体的方法,可举出下面的2种方法。
4-1)的方法在氮气氛下,使甲硼烷配合物和硼酸三烷基酯对于具有碳-碳双键的聚合物进行反应,由此得到具有硼酸二烷基酯基的热塑性树脂后,根据需要使水或醇类反应,由此得到上述具有含硼极性基的烃系聚合物。该方法中,通过加成反应,将含硼极性基导入到上述具有碳-碳双键的聚合物的碳-碳双键处。在该制法中,作为原料使用末端具有碳-碳双键的聚合物时,则可以得到末端具有含硼极性基的烃系聚合物,而使用侧链或主链上具有双键的聚合物作为原料时,则得到在侧链上具有含硼极性基的烃系聚合物。
通常的烯烃系聚合物,由于其末端都或多或少地具有双键,所以可以用作上述制法的原料。作为其他获得具有碳-碳双键的聚合物的方法,可以举出,在无氧条件下,使通常的烯烃类聚合物进行热分解,得到末端具有双键的烯烃类聚合物的方法、以烯烃类单体和二烯类聚合物作为原料,获得它们的共聚合物的方法等。
作为上述反应中使用的甲硼烷配合物,可以举出,在上述2)的方法中所述的甲硼烷配合物。其中,优选甲硼烷-三甲基胺配合物和甲硼烷-三乙基胺配合物。甲硼烷配合物的加入量,相对于热塑性树脂的碳-碳双键1mol,优选1/3~10mol的范围。
作为上述的硼酸三烷基酯,优选硼酸三甲酯、硼酸三乙酯、硼酸三丙酯、硼酸三丁酯等的硼酸低级烷基酯。硼酸烷基酯的加入量,相对于热塑性树脂的碳-碳双键1mol,优选1~100mol的范围。溶剂不特别需要使用,但是使用时,优选己烷、庚烷、辛烷、癸烷、十二碳烷、环己烷、乙基环己烷、萘烷等饱和烃类溶剂。
反应温度,通常是室温~300℃,优选100~250℃,在此温度范围的条件下,可以进行1分钟~10小时,优选5分钟~5小时反应。
通过上述的反应导入热塑性树脂的硼酸二烷基酯基,可以采用本领域通用的方法进行水解来作成硼酸基。或者,采用通常的方法与醇类进行酯交换反应也可以作成任意的硼酸酯基。另外,通过加热脱水缩合可以作成硼酸酐基。而且,采用通常的方法与金属氢氧化物或金属醇化物反应可以作成硼酸盐基。
这样的含硼官能基的转化反应,通常,使用甲苯、二甲苯、丙酮、乙酸乙酯等有机溶剂进行。作为醇类,可以举出,甲醇、乙醇、丁醇等一元醇类;乙二醇、丙二醇、1,3-丙二醇、1,3-丁二醇、新戊二醇、丙三醇、三羟甲基乙烷、季戊四醇、二季戊四醇等多元醇类等。作为上述金属氢氧化物,可以举出,钠、钾之类的碱金属氢氧化物等。另外,作为上述金属醇盐,可以举出上述金属和上述醇构成的金属醇盐,但并不限于所例示的这些中的任何一种。它们的用量,通常相对于硼酸二烷基酯基1mol,是1~100mol。
4-2)的方法是采用通常的方法,使间-氨基苯基苯硼酸、间-氨基苯基硼酸乙二醇酯等含氨基的硼酸或含氨基的硼酸酯,与本领域公知的含羧基的聚合物进行酰胺化反应,由此获得具有含硼极性基的烃系聚合物。在反应时,可以使用碳化二亚胺等缩合剂。
作为上述含羧基的聚合物,可以举出,是半芳香族聚酯树脂(PET等)、脂肪族聚酯树脂等的末端含羧基的聚合物;通过共聚将丙烯酸、甲基丙烯酸、衣康酸、柠康酸、富马酸、马来酸酐等含羧基的单体单元导入到聚烯烃树脂、苯乙烯系树脂、(甲基)丙烯酸酯系树酯、卤化乙烯系树脂等的聚合物中的聚合物;通过加成反应将马来酸酐等导入到上述的含烯烃性双键的热塑性树脂中的聚合物等,但是并不限于这些。
上述的具有含硼极性基的烃系聚合物的熔体流动速率(MFR)(230℃,荷重2160g),合适的是0.1~100g/10分钟,更合适的是0.2~50g/10分钟。
作为互容剂(C),如上所述,也可以使用乙烯-乙烯醇共聚物,尤其,气体屏蔽性树脂(A)是EVOH时,能充分发挥作为互容剂的效果。其中,乙烯含量70~99mol%,皂化度40%或大于40%的乙烯-乙烯醇共聚物,从互容性改善的观点看是优选的。较合适的乙烯含量是72~96mol%,更合适的是72~94mol%。乙烯含量不到70mol%时,与热塑性树脂(B)的亲合性有时会下降。另外,乙烯含量超过99mol%时,与EVOH的亲合性有时会下降。另个,皂化度更合适的是45%或大于45%。皂化度的上限没有特殊的限定,实质上也可以使用100%皂化度的。皂化度不到40%时,有时与EVOH的亲合性下降。
上述乙烯-乙烯醇共聚物的熔体流动速率(MFR)(210℃,荷重2160g),合适的是0.1g/10分钟或大于0.1g/10分钟,更合适的是0.5g/10分钟或大于0.5g/10分钟。另外合适的是100g/10分钟或小于100g/10分钟,更合适的是50g/10分钟或小于50g/10分钟,最合适是等于或小于30g/10分钟。
以上所述的互容剂(C),可以单独使用,也可以将2种或多于2种混合使用。
例如通过共注坯拉伸吹塑制造,用含上述互容剂(C)的本发明树脂组合物构成的层,与PES层直接接触的多层体构成的瓶等多层容器时,树脂组合物与PES的密合性提高,从而可得到高的耐冲击剥离性。从这样的观点看,本发明的意义重大。
另外上述互容剂(C)具有羧基时,得到的树脂组合物具有高的热稳定性。如下所述,树脂组合物中含过量的下述过渡金属盐(D)时,该树脂组合物的热稳定性有时会下降。但是与过渡金属盐(D)一起含具有羧基的互容剂(C)时,可以保持该树脂组合物的热稳定性。虽然这样显著效果的理由还不太清楚,但是,可以认为是由于该互容剂(C)与下述的过渡金属盐(D)之间的某种相互作用所致。
本发明的第2种树脂组合物和第4种树脂组合物,需要含过渡金属盐(D)。本发明的第1种树脂组合物和第3种树脂组合物优选含有过渡金属盐(D)。过渡金属盐(D),通过促进热塑性树脂(B)的氧化反应而具有提高树脂组合物的清除氧功能的效果。例如,促进由本发明的树脂组合物得到的包装材料内部存在的氧和渗透到包装材料中的氧与热塑性树脂(B)的反应,提高包装材料的氧屏蔽性和清除氧功能。
本发明的第1种树脂组合物和第2种树脂组合物中,过渡金属盐(D),适宜的含量比例换算成金属元素计为1~5000ppm。即,过渡金属盐(D)的含量比例,相对于气体屏蔽性树脂(A)、热塑性树脂(B)、和互容剂(C)的合计量1000000重量份,换算成金属元素计为1~5000重量份。过渡金属盐(D)的较适宜的含量范围是5~1000ppm,更适宜的含量范围是10~500ppm。过渡金属盐(D)的含量不到1ppm时,有时其添加效果不充分。另一方面,过渡金属盐(D)的含量超过5000ppm时,树脂组合物的热稳定性下降,有时分解气体的发生和凝胶·麻点的发生变得显著。
另一方面,本发明的第3种树脂组合物和第4种树脂组合物中,过渡金属盐适宜的含量比例,以热塑性树脂(B)、和互容剂(C)的合计量为础准,换算成金属元素计为1~50000ppm,过渡金属盐(D)的较适宜的含量范围是5~10000ppm,更适宜的含量范围是10~5000ppm。过渡金属盐(D)的含量不到1ppm时,有时其添加效果不充分。另一方面,过渡金属盐(D)的含量超过50000ppm时,树脂组合物的热稳定性下降,有时分解气体的发生和凝胶·麻点的发生变得显著。
作为用于过渡金属盐(D)的过渡金属,可以举出铁、镍、铜、锰、钴、铑、钛、铬、钒、钌等,但是,并不限于这些。其中,优选铁、镍、铜、锰、钴,较优选锰和钴,更优选钴。
作为在过渡金属盐(D)中所含的金属的平衡离子,可举出来自有机酸或氯化物的阴离子。作为有机酸,,可举出,乙酸、硬脂酸、乙酰丙酮、二甲基二硫代氨基甲酸、棕榈酸、2-乙基己酸、新癸酸、亚油酸、妥尔酸(ト-ル酸)、油酸、树脂酸、癸酸、环烷酸等,但是并不限于这些。作为特别优选的盐,可以举出,2-乙基己酸钴、新癸酸钴和硬脂酸钴。金属盐也可以是具有聚合物性平衡离子的、所谓的离聚物。
本发明的第1种树脂组合物和第2种树脂组合物中,优选含有气体屏蔽性树脂(A)是40~99.8wt%、热塑性树脂(B)是0.1~30wt%、和互容剂(C)是0.1~30wt%。气体屏蔽性树脂(A)的含量比例不到40wt%时,使用该树脂组合物的多层容器等的成形物中的透明性差,对于氧气、二氧化碳气等的气体屏蔽性有下降之虑。另一方面,含有比例超过99.8wt%时,热塑性树脂(B)和互容剂(C)的含有比例变少,所以除了氧气屏蔽性和氧清除功能下降以外,还有损害树脂组合物全体的形态稳定性之虑。气体屏蔽性树脂(A)的含有比例优选的是60~99wt%,较优选的是80~98wt%,更优选的是85~97wt%。
热塑性树脂(B)含有比例较优选的是1~20wt%,更优选的是2~15wt%。互容剂(C)的含有比例较优选的是0.5~20wt%,更优选的是1.0~10wt%。
本发明的第3种树脂组合物和第4种树脂组合物中,优选含有热塑性树脂(B)是1~99wt%,而且互容剂(C)是1~99wt%。热塑性树脂(B)的含有比例较优选的是5~95wt%,更优选的是30~90wt%,最优选的是50~90wt%。互容剂(C)的含有比例较优选的是5~95wt%,更优选的是10~70wt%,最优选的是10~50wt%。
本发明的第1种树脂组合物的氧吸收速度为0.001ml/m2·day或大于0.001ml/m2·day是必要的,0.01ml/m2·day或大于0.01ml/m2·day是优选的,0.05ml/m2·day或大于0.05ml/m2·day是更优选的。氧吸收速度不到0.001ml/m2·day时,得到的树脂组合物构成的成形制品的氧气屏蔽性和氧清除效果有不充分之虑。另外,本发明的第2种树脂组合物的氧吸收速度也优选等于或大于上述的数值。
另外,本发明的第3种树脂组合物的氧吸收速度为0.1ml/m2·day或大于0.1ml/m2·day是必要的,0.5ml/m2·day或大于0.5ml/m2·day是优选的,1ml/m2·day或大于1ml/m2·day是更优选的,10ml/m2·day或大于10ml/m2·day是进一步更优选的。另外,本发明的第4种树脂组合物的氧吸收速度也优选等于或大于上述的数值。氧吸收速度是指,将树脂组合物的薄膜在一定容量的空气中放置时,在每单位面积单位时间该薄膜吸收氧的体积。关于具体的测定方法,示于后述的实施例中。
本发明的第1种树脂组合物和第2种树脂组合物,在不损害本发明效果的程度上,除了气体屏蔽性树脂(A)、热塑性树脂(B)和互容剂(C)以外,还可以含有热塑性树脂(E)。另外,本发明的第3种树脂组合物和第4种树脂组合物,在不损害本发明效果的程度上,也可以含有热塑性树脂(B)和互容剂(C)以外的热塑性树脂(E)。作为热塑性树脂(E),没有特殊的限制,例如,可举出下列的化合物聚乙烯、聚丙烯、乙烯-丙烯共聚物、乙烯或丙烯共聚物(乙烯或丙烯与下列单体中的至少一种的共聚物1-丁烯、异丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯等的α-烯烃;衣康酸、甲基丙烯酸、丙烯酸、马来酸酐等的不饱和羧酸、其盐、其部分酯或全酯、其腈、其酰胺、其酐;甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯、辛酸乙烯酯、十二烷酸乙烯酯、硬脂酸乙烯酯、花生四烯酸乙烯酯等羧酸乙烯酯类;乙烯基三甲氧基硅烷等乙烯基硅烷类化合物;不饱和磺酸或其盐;烷基硫醇类;乙烯基吡咯烷酮类等)、聚4-甲基-1-戊烯、聚1-丁烯等聚烯烃;聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯等聚酯类;聚苯乙烯、聚碳酸酯、聚丙烯酸酯等。
在选择本发明树脂组合物中所含的热塑性树脂(E)时,优先考虑该热塑性树脂(E)与气体屏蔽性树脂(A)和热塑性树脂(B)的混合性。由于这些树酯的混合性,将影响所得制品的气体屏蔽性、清净性、作为除氧剂的有效性、机械特性、制品的结构等。
在本发明的树脂组合物中,在不阻碍本发明作用效果的范围内,也可以含有各种添加剂。作为这种添加剂的例子,可举出防氧化剂、增塑剂、热稳定剂(熔融稳定剂)、光引发剂、脱臭剂、紫外线吸收剂、抗静电剂、润滑剂、着色剂、填料、干燥剂、填充剂、颜料、染料、加工助剂、阻燃剂、防雾剂、其他高分子化合物等。下面对于上述中的(i)热稳定剂、(ii)光引发剂、和(iii)脱臭剂进行说明。
上述添加剂中,作为(i)的热稳定剂,可以使用水滑石化合物、高级脂肪族羧酸的金属盐的1种或等于或大于2种。这些化合物,在树脂组合物的制造时,可以防止凝胶和鱼眼的发生,还可以进一步改善长时间的运转稳定性。这些化合物的配合比例以占树脂组合物总量的0.01-1wt%为合适。
所说的高级脂族羧酸的金属盐是碳原子8-22的高级脂肪酸的金属盐。作为碳原子数8-22的脂肪酸,可举出月桂酸、硬脂酸、十四烷酸等。作为构成盐的金属,可举出钠、钾、镁、钙、锌、钡、铝等。其中镁、钙、钡等碱土类金属为佳。这样的高级脂族羧酸的金属盐中,优选硬脂酸钙、硬脂酸镁。
上述添加剂中的(ii)的光引发剂,在由本发明的树脂组合物构成的成形制品、包装用薄膜、多层结构体等中,为引发或促进清除氧而使用的。尤其是,树脂组合物含防氧化剂时,优选同时含有光引发剂。通过对于含有光引发剂的树脂组合物,在预定时期照射光,则可促进热塑性树脂(B)与氧反应的开始,从而可使树脂组合物清除氧的诱导期减少或消失,其结果,则可迅速地表现出树脂组合物的清除氧功能。这里所说的诱导期,是指本发明树脂组合物达到开始充分捕获氧的时间。
作为上述光引发剂,可以举出下列的化合物,但并不限于这些二苯甲酮、邻-甲氧基二苯甲酮、苯乙酮、邻-甲氧基苯乙酮、二氢苊醌、甲基乙基甲酮、戊酰苯、己酰苯、α-苯基丁酰苯、对-吗啉代苯丙酮、二苯并环庚酮、4-吗啉代二苯甲酮、苯偶因、苯偶因甲基醚、4-邻-吗啉代脱氧苯偶因、对-二乙酰基苯、4-氨基二苯甲酮、4’-甲氧基乙酰苯、α-萘满酮、9-乙酰基菲、2-乙酰基菲、10-噻吨酮、3-乙酰基菲、3-乙酰基吲哚、9-芴酮、1-茚满酮、1,3,5-三乙酰基苯、噻吨-9-酮、呫吨-9-酮、7-H-苯并[de]蒽-7-酮、苯偶因四氢吡喃醚、4,4’-双-(二甲基氨基)二苯甲酮、1’-乙酰萘、2’-乙酰萘、2,3-丁二酮、苯并[a]蒽-7,12-二酮、2,2-甲氧基-2-苯基乙酰苯、α,α-二乙氧基乙酰苯、α,α-二丁氧基乙酰苯等。除这些化合物以外,还可以使用例如玫瑰红、亚甲蓝、四苯基卟啉等单态氧发生光增感剂、以及聚-(乙烯-一氧化碳)和齐聚-[2-羟基-2-甲基-1-[4-(1-甲基乙烯基)-苯基]-丙酮]等聚合引发剂也可以作为光引发剂。
上述使用的光引发剂的量,可以根据使用的热塑性树脂(B)的种类、使用的光的波长和强度、使用的防氧化剂的性质和量、使用的光引发剂的种类、以及,本发明的树脂组合物的使用时的形态进行适宜地选择。例如,在本发明的树脂组合物构成的成型制品是某种不透明的制品时,则要求较多量的光引发剂。通常,光引发剂的使用量以占树脂组合物全体的0.01~10wt%的范围为隹。
作为照射的光,例如,有用的是具有大约200~750纳米(nm)的,优选大约200~400nm的波长的紫外线或可见光。这些光由于具有较长的波长,所以从成本和对人体等的影响等的观点看是优选的。作为光的照射量,相对于本发明树脂组合物中所含的热塑性树脂(B)的每1g,等于或大于0.1焦耳(J)为优选,通常是10~100J的范围。除了上述光以外,还可以使用具有大约0.2~2 0兆拉德(Mrad)的,优选大约1~10Mrad的放射量的电子束、离子化放射线、例如γ射线、X射线和电晕放电等。光的照射,优选在氧的存在下进行。光的照射时间,只要根据光引发剂的量和种类、成型制品的形状(厚度等)、防氧剂的量、以及光的波长和强度等,进行适宜选择既可。
作为上述光的照射时期,没有特别的限定,只要在本发明的树脂组合物的清除氧功能要求的时间点之前既可。例如,本发明的树脂组合物用作包装材料时,光的照射可以在将要包装之前,包装过程中,或包装之后均可。但从均匀地照射光的观点看,将树脂组合物作成例如平坦的板状进行照射为优选。
由于上述添加剂中的脱臭剂(或消臭剂、吸附剂;含以下这些脱臭剂等)的使用则可减少伴随本发明的树脂组合物清除氧而发生的低分子副产物而导致的臭味。
作为上述(iii)的脱臭剂的种类没有特殊的限定,可举出锌化合物、铝化合物、硅化合物、铁(II)化合物、含锌化合物和硅化合物的组合物、含锌化合物和铝化合物的组合物、有机酸类、铁(II)化合物-有机酸组合物等。这些可以单独使用,也可以是多种的混合物或复盐。
作为锌化合物,可以举出,硅酸锌、氧化锌、硫酸锌、氯化锌、磷酸锌、硝酸锌、碳酸锌、乙酸锌、草酸锌、柠檬酸锌、富马酸锌、甲酸锌等。
作为铝化合物,可以举出,硫酸铝、磷酸铝、硅酸铝、硫酸铝钾等。
作为硅化合物,可以举出,二氧化硅、正磷酸硅、焦磷酸硅-I型、焦磷酸硅-II型等磷酸硅化合物、活性硅胶等。
作为铁(II)化合物,没有特殊的限定,只要是可形成二价铁离子既可,例如,可以举出,硫酸铁(II)、氯化铁(II)、硝酸铁(II)、溴化铁(II)、碘化铁(II)等的无机盐,没食子酸铁(II)、苹果酸铁(II)、富马酸铁(II)等有机盐。其中优选硫酸铁(II)、氯化铁(II)。
含锌化合物和硅化合物的组合物(混合物或复盐)更适于使用。作为该组合物的具体例,优选氧化锌与二氧化硅的重量比为1∶5~5∶1,且大部分具有非晶结构的、硅酸锌实质上是不定型的微粒。氧化锌与二氧化硅的比例优选1∶4~4∶1,更优选1∶3~3∶1的范围。
锌化合物和铝化合物的组合物更适合使用。作为该组合物的具体例,优选氧化锌和/或碳酸锌,与硫酸铝和/或硫酸铝钾的混合物,相对于锌化合物100重量份,铝化合物的含有比例为1~1000重量份,优选30~300重量份。
作为有机酸类,优选碳原子数等于或大于8的有机酸,例如,脂肪族单羧酸、脂肪族多羧酸、芳香族单羧酸、香族芳多羧酸,特别优选芳香族多羧酸。作为香族芳多羧酸实例,可以举出,邻苯二甲酸、对苯二甲酸、间苯二甲酸、偏苯三酸、1,2,3-苯三羧酸、1,3,5-苯三羧酸、1,2,4,5-苯四酸、苯六羧酸、萘二羧酸、萘三羧酸、萘四羧酸、二苯基四羧酸、二苯基醚四羧酸、偶氮苯四羧酸、其酐等。其中,优选苯三羧酸,特别优选偏苯三酸。
作为用于铁(II)化合物-有机酸组合物中的铁(II)化合物,可以使用如上所述的溶解在水中形成2价铁离子的化合物。另外,作为有机酸,没有特别地限制,只要可溶于水既可,例如,可举出,抗坏血酸(D体和L体)、异抗坏血酸、其金属盐等抗坏血酸类、柠檬酸、异柠檬酸、乳酸、酒石酸、苹果酸等羧酸类。其中,优选L-抗坏血酸。此时将等于或多于2种的铁(II)化合物和/或等于或多于2种的有机酸混合使用也没关系。
铁(II)化合物-有机酸组合物,优选两者是键合的。这样的组合物的调制方法是,例如,将两成分混合、溶解,再采用喷雾干燥、冷冻干燥将所得的水溶液进行干燥,作成粉体。铁(II)化合物与有机酸的比率,以重量比计,优选1∶0.01~1∶1,更优选1∶0.02~1∶0.8。有机酸是抗坏血酸时,铁(II)化合物与有机酸的比率,以重量比计,优选1∶0.02~1∶0.3,较优选1∶0.02~1∶0.13,更优选1∶0.05~1∶0.13。另外,在铁(II)化合物-有机酸组合物中,相对于铁(II)化合物和有机酸的合计量,添加2~20wt%明矾作为脱臭功能的稳定剂是优选的。作为明矾没有特殊的限定,可以使用甲明矾、铵明矾、钠明矾。
作为其他的脱臭剂,可以使用使由锌化合物和多羧酸构成的金属化合物稳定化的组合物;铁(II)-酞菁衍生物等的生物酶模型化合物;泡桐、冬青、美国樨、日本银叶树、蜂斗叶树、丁香、中国连翘树、栗树、赤杨等植物的树木的汁或抽出成分;沸石等硅酸铝盐、海泡石、シロタイル(silotile)、波缕石、ラフリナイト(raphrynite)等含水硅酸镁质粘土矿物、活性腐殖酸、活性氧化铝、活性炭等,多孔吸附剂也可以使用。
脱臭剂的含量,合适的是等于或大于树脂组合物总量的0.1wt%,较适宜的是0.2~50wt%,更适宜是0.5~10wt%。
本发明的树脂组合物的合适的熔体流动速率(MFR)(210℃,2160g荷重下,根据JISK7210)是0.1~100g/10分钟,较适宜是0.5~50g/10分钟,更适宜是1~30g/10分钟。本发明的树脂组合物的熔体流动速率在上述范围以外时,多数情况下熔融成型时的加工性变差。
本发明的第1种树脂组合物和第2种树脂组合物中,热塑性树脂(B)构成的粒子优选分散在气体屏蔽性树脂(A)构成的基料中。这样的树脂组合物构成的成型制品,透明性、气体屏蔽性和清除氧功能优异。此时,热塑性树脂(B)构成的粒子的平均粒径等于或小于10μm为宜。平均粒径超过10μm时,热塑性树脂(B)和气体屏蔽性树脂(A)等构成的基料的界面的面积变小,氧气屏蔽性和清除氧功能有时会下降。故较优选热塑性树脂(B)粒子的平均粒径等于或小于5μm,更优选等于或小于2μm。
将本发明的树脂组合物的各成分加以混合,并加工成所需要的制品。本发明的树脂组合物的各种成分的混合方法,没有特别的限定。将各成分混合时的顺序也没有特别的限定。例如,在混合气体屏蔽性树脂(A)、热塑性树脂(B)、互容剂(C)和过渡金属盐(D)时,可以同时将它们混合,也可以先混合热塑性树脂(B)、互容剂(C)和过渡金属盐(D),然后再与气体屏蔽性树脂(A)进行混合。还可以将热塑性树脂(B)和互容剂(C)先混合,然后与气体屏蔽性树脂(A)和过渡金属盐(D)进行混合,或者也可以先将气体屏蔽性树脂(A)和过渡金属盐(D)混合,然后再与热塑性树脂(B)和互容剂(C)进行混合。或者先将气体屏蔽性树脂(A)、热塑性树脂(B)和互容剂(C)进行混合,然后再与过渡金属盐(D)混合也可以。或将互容剂(C)和过渡金属盐(D)进行混合,然后与气体屏蔽性树脂(A)和热塑性树脂(B)进行混合。还可以将气体屏蔽性树脂(A)、热塑性树脂(B)和互容剂(C)进行混合得到的混合物与气体屏蔽性树脂(A)和过渡金属盐(D)混合得到的混合物进行混合。
作为混合的具体方法,从工序简单和成本方面考虑熔融混炼法为佳。这种情况下,使用可达到高混炼度的装置,和使各成分细而均匀的分散时,不仅可达到良好的氧吸收性能和透明性,同时从防止凝胶、麻点的发生和混入方面考虑也是优选的。
作为混炼度高的装置,可举出连续式高功率炼胶机、捏合型双轴(同向或异向)挤出机、双辊混合机、蜗杆捏合机等的连续型混炼机;高速混炼机、班伯里混炼机、高功率炼胶机、加压捏合机等的间歇型混炼机;使用(株)KCK制的KCK混炼挤出机等石磨那样的具有磨碎机构的旋转圆盘的装置,单轴挤出机中设置混炼部件(ダルメ-ジ、CTM等)的装置、螺旋桨式混合机、布拉本德混炼机等简易型混炼机等。这些当中,优选连续型混炼机。作为市售的连续式高功率混胶机,可举出的有Farrel社制的FCM、(株)日本制钢所制的CIM、(株)神户制钢所制的KCM、LCM、ACM等。优选这些混炼机的下部设置单轴挤出机,同时进行混炼和挤出造粒的装置。另外,作为具有捏合盘或混炼用转子的双轴混炼挤出机,例如可举出(株)日本制钢所制的TEX、Werner & Pfleiderer社制的ZSK、东芝机械(株)制的TEM、池贝铁工(株)制的PCM等。
这些连续型混炼机中,转子、研磨盘的形状起着重要的作用。尤其是混合室与转子片或研磨盘片的间隙(片余隙)是重要的,过窄或过宽都得不到分散性良好的混合物。作为片余隙1~5mm最佳。
混炼机的转子的转数通常是100~1200rpm,优选150-1000rpm,更优选200~800rpm。另外,混炼机混炼室内径(D)通常等于或大于30mm,优选50~400mm。而且,混炼机的混炼室长度(L)与内径(D)之比L/D是4-30为宜。混炼机可以是一台,也可以是2台或多于2台连接起来使用。
混炼温度通常是50~300℃。为了防止热塑性树脂(B)氧化,优选进行氮气密封进料口,并在低温下挤出。混炼时间长者会得到好的结果,但是,从防止热塑性树脂(B)的氧化和生产效率的观点考虑,通常是10~600秒,优选的是15~200秒,更优选的是15~150秒。
本发明的树脂组合物,通过采用合适的成型方法,可以成型成各种成型制品,例如,薄膜、片材、容器等和其他的包装材料等。这时,可以将本发明的树脂组合物暂时造粒之后供给成型,或者将树脂组合物的各成分干混,直接供给成型也可以。
作为成型方法和成型制品,例如,可以采用熔融挤出成型制成薄膜、片材、管子等,而通过注塑成型作成容器形状,还可以采用中空成型作成瓶子形状等的中空容器。作为中空成型是通过挤出成型作成型坯,然后将型坯进行吹塑成型的挤出中空成型,和通过注塑成型来成型预塑型坯,然后将该预塑型坯进行吹塑成型的注塑中空成型是优选的。
在本发明中,通过上述的成型得到的成型制品也可以是单层的,但是从赋予机械特性、水蒸气屏蔽性、还有氧气屏蔽性等特性的观点考虑,与其他的层进行叠层作成多层结构体来使用是优选的。
作为多层结构体的层结构,在令本发明的树脂组合物以外的树脂构成的层为X层,本发明的树脂组合物构成的层为Y层,粘合性树脂层为Z层时,可例示的有X/Y、X/Y/X、X/Z/Y、X/Z/Y/Z/X、X/Y/X/Y/X、X/Z/Y/Z/X/Z/Y/Z/X等,但并不限于这些。在设置多个X层时,其种类可以相同也可以不同。另外,还可由其他途径设置使用由成型时发生的边角废料等构成的回收树脂的层,将回收树脂混合到其他树脂构成的层中也可以。多层结构体的各层的厚度构成,没有特别的限定,但从成型性和成本的观点考虑,Y层的厚度对于全层厚度之比优选的是2-20%。
作为上述的X层中使用的树脂,从加工性等观点考虑,热塑性树脂为佳。作为该热塑性树脂,可举出下列树脂,但没有特别的限定聚乙烯、聚丙烯、乙烯-丙烯共聚物、乙烯或丙烯的共聚物(乙烯或丙烯与下列单体中的至少一种的共聚物1-丁烯、异丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯等的α-烯烃;衣康酸、甲基丙烯酸、丙烯酸、马来酸酐等的不饱和羧酸、其盐、其部分酯或全酯、其腈、其酰胺、其酐;甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯、辛酸乙烯酯、十二烷酸乙烯酯、硬脂酸乙烯酯、花生四烯酸乙烯酯等羧酸乙烯酯类;乙烯基三甲氧基硅烷等乙烯基硅烷类化合物;不饱和磺酸或其盐;烷基硫醇;乙烯基吡咯烷酮类等)、聚4-甲基-1-戊烯、聚1-丁烯等聚烯烃类;聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯等聚酯类;聚ε-己内酰胺、聚六亚甲基己二酰二胺、聚亚间二甲苯基己二酰二胺等聚酰胺;聚偏氯乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈、聚碳酸酯、聚丙烯酸酯等。该热塑性树脂层可以是未拉伸的,也可以是单轴或双轴拉伸或压延的。
这些热塑性树脂中,聚烯烃从耐湿性、机械特性、经济性、热密封性等方面考虑是优选的,而从机械特性、耐热性上看聚酯是优选的。
另一方面,作为用于Z层的粘合性树脂,只要能将各层粘合起来即可,没有特别的限定。聚氨酯类或聚酯类的一液型或二液型固化性粘合剂、羧酸改性聚烯烃树脂等适于使用。羧酸改性聚烯烃树脂,是含不饱和羧酸或其酐(马来酸酐等)作为共聚成分的烯烃类聚合物或共聚物;或者是将不饱和羧酸或其酐接枝到烯烃类聚合物或共聚物上得到的接枝共聚物。
其中,羧酸改性聚烯烃树脂最佳。尤其是,X层是聚烯烃树脂的场合,使与Y层的粘合性变好。作为该羧酸改性聚烯烃类树脂的例子,可举出聚乙烯{低密度聚乙烯(LDPE)、直链状低密度聚乙烯(LLDPE)、超低密度聚乙烯(VLDPE)}、聚丙烯、共聚聚丙烯、乙烯-乙酸乙烯酯共聚物、乙烯-(甲基)丙烯酸酯(甲酯或乙酯)共聚物等被羧酸改性得到的产物。
作为获得多层结构体的方法,可例示出挤出叠层法、干叠层法、共注塑成型法、共挤出成型法等。但没有特别的限定。作为共挤出成型法,可举出共挤出叠层法、共挤出片材成型法、共挤出充气成型法、共挤出吹塑成型法等。
将如此得到的多层结构体的片材、薄膜、型坯等在低于或等于所含树脂的熔点的温度下再加热,然后通过轧制成型等的热成型法、轧辊拉伸法、缩放式拉伸法、充气拉伸法、吹塑成型法等进行单轴或双轴拉伸,也可以得到拉伸的成型制品。
通过选择适宜的树脂可使本发明的树脂组合物透明性优异。因此,通过选择透明性优异的树脂作为叠层的其他树脂,则可得到容易识别内容物的包装容器。从此观点出发,具有本发明的树脂组合物层的多层结构体的雾度值,优选的是等于或小于10%,较优选的是等于或小于5%,更优选的是等于或小于3%。
使用上述多层结构体的成型制品可用于各种用途。尤其是,作成多层容器时,本发明的多层结构体的效果可以更大地发挥。而且,在本发明的树脂组合物层的两侧或高湿度一侧,设置了水蒸气屏蔽性高的层的多层结构体,可以使清除氧功能的持续时间延至特别长,作为其结果,使极高度的气体屏蔽性持续更长的时间,就这一点而言是优选的。另一方面,在最内层具有树脂组合物层的多层容器,从容器内的清除氧功能可迅速地发挥这一观点上看是优选的。
另外,本发明的树脂组合物通过选择适宜的树脂可使其透明性优良。因此,这样的组合物,最适用于作为容易识别内容物的包装容器的用途中。在该包装容器内对于透明性的性能要求严格时,作为使用本发明的树脂组合物的有用性大的方案,可以举出下面的2种方案。即,方案之一是含由本发明的树脂组合物构成的层、且总层厚度为等于或小于300μm的多层薄膜构成的容器;另一方案是含由本发明的树脂组合物构成的层和热塑性聚酯(PES)层各至少1层的多层容器。下面对这些实施方案顺序地进行说明。
含由本发明的树脂组合物构成的层、且总层厚度是等于或小于300μm的多层膜构成的容器,是由总层厚度比较薄的多层结构体构成的柔软性的容器,通常加工成口袋等形态。该容器的气体屏蔽性优异,而且具有持续性的清除氧功能,而且制造简单,所以对氧敏感性高而易于变质的制品的包装方面是极其有用的。
通常作为要求良好透明性的容器,由于构成多层结构体的各树脂层的厚度薄,所以可制成作为全体的总厚度也是薄的容器。例如,在使用聚烯烃等结晶性树脂的场合,厚度大时,来自结晶引起的散射使透明性恶化的情况居多,相反只要是厚度薄的容器就可以得到良好的透明性。另外一般地,无拉伸而结晶化的树脂即使透明性不好,但经拉伸取向而结晶化了的树脂则透明性变好。该单轴或双轴拉伸的薄膜通常厚度是薄的,正因如此,多数情况下厚度薄的多层结构体能赋予良好的透明性。
本发明的树脂组合物通过选择适宜的树脂可使其透明性良好,因此,可以适用于要求透明性高的、厚度薄的多层薄膜构成的容器中。对于这样薄的薄膜的透明性随时间变化即使恶化其程度也小。这样的多层薄膜的厚度,没有特别的限制,但从维持透明性和柔软性的观点考虑,合适的厚度是等于或小于300μm,较适合的厚度是等于或小于250μm,最适合的厚度是等于或小于200μm。另一方面,在考虑作为容器的机械特性时,总层厚度优选是等于或大于10μm,较优选是等于或大于20μm,更优选是等于或大于30μm。
由多层薄膜制造上述的多层容器时,对于该多层薄膜的制造方法没有特别的限制,例如,可以通过采用干叠层、共挤出叠层等的方法将本发明的树脂组合物层和其他热塑性树脂层进行叠层而获得多层薄膜。
在进行干叠层的场合,可以使用未拉伸膜、单轴拉伸膜、双轴拉伸膜、压延膜等。其中,从机械强度的观点看,优选双轴拉伸聚丙烯薄膜、双轴拉伸聚对苯二甲酸乙二醇酯膜、双轴拉伸聚ε-己内酰胺膜,但从防湿性考虑时,特别优选双轴拉伸聚丙烯膜。在使用未拉伸膜或单轴拉伸膜时,在叠层后对多层膜进行再加热、通过轧制成型等的热成型法、轧辊拉伸法、缩放式拉伸法、充气拉伸法等进行单轴或双轴拉伸,由此也可以得到拉伸的多层薄膜。
为了密封得到的多层容器,在制造多层薄膜的阶段,优选在至少其中一方的最外层表面上设置由可热封的树脂构成的层。作为该树脂,可举出聚乙烯、聚丙烯等聚烯烃。
如此得到的多层膜,例如加工成袋状,然后可以作成为充填内容物的包装容器。由于是柔软而简便的,而且透明性和氧清除性优良,故在因氧存在而容易变质劣化的内容物,尤其是食品等的包装方面是极其有用的。
含有本发明的树脂组合物构成的层和PES层至少各1层的多层容器,气体屏蔽性和清除氧功能优异,而且通过选择适宜的树脂还可以得到优异的透明性。因此,可以以袋状容器、杯状容器、中空成型容器等各种形态被使用。其中,中空成型容器,尤其是瓶子是重要的。
由PES构成的瓶子,目前广泛地被用作饮料容器。在该用途中除了要求必须防止内容物变质劣化以外,还要求消费者能充分地识别作为内容物的饮料。但是,充填例如啤酒之类极易受氧的作用而使风味变差的内容物的场合,则希望具有极高的气体屏蔽性和氧清除性能的容器。
含有由本发明的树脂组合物构成的层和PES层至少各1层的多层容器,由于即能得到高的透明性,又具有极好的保持内容物品质的性能,因此最适于该用途中。作为多层容器的层结构,优选在树脂组合物层和PES层之间设置粘合性树脂层,但是以PES层与树脂组合物层的两面直接接触的方式设置构成的多层容器是特别优选,因为除可得到更高的透明性之外,还可以充分发挥树脂组合物层和PES层之间的耐冲击剥离性优异之类的本发明的效果。
上述本发明的树脂组合物形成的层与PES层构成的本发明的多层容器中,作为所用的PES,可以使用芳香族二羧酸或其烷基酯、和二元醇作为主要成分的缩聚物。特别是,为达到本发明的目的,优选以对苯二甲酸乙二醇酯成分为主的PES。具体地有对苯二甲酸单元和乙二醇单元的合计比例(mol%),相对于构成PES的全部结构单元的合计摩尔数,以等于或大于70mol%为佳,而等于或大于90mol%为更佳。对苯二甲酸单元和乙二醇单元的合计比例不足70mol%时,得到的PES是非晶性的,除机械强度不足外,拉伸作成容器后,加热充填(热充)内容物时,热收缩大,故有不耐使用之虑。另外,为了减少树脂内含有的低聚物而进行固相聚合时,因树脂软化而容易发生胶粘,故有生产困难之虑。
上述PES,在不发生上述问题的范围内,需要时还可以含有对苯二甲酸单元和乙二醇单元以外的二官能化合物单元。作为其比例(mol%),相对于构成PES的全部结构单元的合计摩尔数,优选等于或小于30mol%,较优选等于或小于20mol%,更优选等于或小于10mol%。作为该二官能化合物单元,可举出二羧酸单元、二醇单元、羟基羧酸单元等,脂族、脂环族、芳族中的任何一种皆可。具体地可举出新戊二醇单元、环己烷二甲醇单元、环己烷二羧酸单元、间苯二甲酸单元、萘二羧酸单元等。
这些当中,间苯二甲酸单元具有如下优点在使用得到的PES时,可以在广泛的制造条件下获得良好的成型制品,由于成型性好,不合格率低。另外从通过控制结晶速度而可以防止成型制品白化方面也是理想的。另外,从得到的成型制品下落时的强度更高这方面看,1,4-环己烷二甲醇单元或1,4-环己烷二羧酸单元是优选的。而且,萘二羧酸单元使得到的PES的玻璃化转变温度上升,并提高耐热性以外,还能赋予吸收紫外线的能力,所以是优选的,故在内容物受紫外线作用而容易劣化变质的场合是特别有用的。例如,像啤酒之类的内容物或因氧化,或因紫外线作用而容易劣化变质的场合也是特别有用的。
在PES制造时使用缩聚催化剂的场合,可以使用PES制造中通常使用的催化剂。例如,可以使用三氧化锑等锑化合物;二氧化锗、四乙醇锗、四正丁醇锗等锗化合物;四甲氧基钛,四乙氧基钛、四正丙氧基钛、四异丙氧基钛、四丁氧基钛等的钛化合物;二正丁基锡二月桂酸酯、二正丁基氧化锡、二丁基锡二乙酸酯等锡化合物等。这些催化剂可以单独使用,也可以使2种或多于2种组合使用。缩聚催化剂的用量,以二羧酸成分的重量为基准,优选0.002~0.8wt%。
这些当中,从催化剂成本上考虑,优选锑化合物,特别优选三氧化锑。另一方面,从得到的PES的色相良好方面看,优选锗化合物,特别优选二氧化锗。另外,从成型性的观点考虑,锗化合物比锑化合物更优选。通过以锑化合物作为催化剂的聚合反应得到的PES,比以锗化合物作为催化剂进行聚合的PES结晶化速度更快,当注塑成型时或吹塑成型时,由于加热使结晶容易进行,结果得到的瓶子发生白化从而损害其透明性。另外,有时还使拉伸取向性下降,也有赋型性恶化的情况。因此,使可以得到良好成型制品的制造条件变窄,有使不合格率容易上升的倾向。
特别是,作为本发明中使用的PES,在使用不含有副生的二甘醇单元以外的共聚成分的聚对苯二甲酸乙二醇酯的场合,在制造该PES时,为了控制结晶化速度使用锗化合物作为催化剂是优选的。
含由上述树脂组合物形成的层和PES层各至少1层的、本发明的多层容器的制造方法,没有特别的限制,但从生产性等的观点看使用共注坯吹塑成型是适宜的。在共注坯吹塑成型中,将通过共注塑成型得到的容器前体(型坯)进行拉伸吹塑成型,由此制造容器。
在共注塑成型中,通常,将要构成多层结构体的各层的树脂从2台或多于2台的注射机筒导入到同心圆状的喷嘴内,同时的或错开一定时间交互地注射到单一的模具内,通过进行一次合模操作来进行成型。例如,可以通过如下方法制造型坯,即,(1)先注塑内外层用的PES层,接着,注塑成为中间层的树脂组合物,则得到PES/树脂组合物/PES的3层结构的成型容器的方法;(2)预先注塑内外层用的PES层,接着注塑树脂组合物,与此同时或其后再度注塑PES层,则得到PES/树脂组合物/PES/树脂组合物/PES的5层结构的成型容器的方法等,但是并不限于这些制造方法。另外,在上述层结构中,在树脂组合物层和PES层之间,需要时还可以配合粘合性树脂层。
作为注塑成型的条件,优选在250~330℃,较优选270~320℃,更优选280~310℃的温度范围注塑PES。PES的注塑温度不到250℃时,PES不能充分熔融,未熔融物(鱼眼状斑点)混入成型制品中发生外观不良,同时还有成为成型制品的机械强度下降的原因之虑。在极端的情况下会使螺杆扭矩上升,故有引起成型机发生故障之虑。另一方面,PES的注塑温度超过330℃时,PES的分解显著,故有因分子量下降而导致成型制品的机械强度下降之虑。另外,由于分解时生成的乙醛等气体不仅使成型制品内填充的物质的性质受到损害,而且还因分解时生成的低聚物而严重污染模具,故有损害成型制品外观之虑。
树脂组合物优选在170~250℃的温度范围注塑,较优选在180~240℃,更优选在190~230℃。树脂组合物的注塑温度不到170℃时,树脂组合物不能充分熔融,成型制品中混入未熔融物(鱼眼状斑点)有使外观发生不良之虑。另外,极端的场合使螺杆扭矩上升,有引起成型机发生故障之虑。另一方面,树脂组合物的注塑温度超过250℃时,热塑性树脂(B)进行氧化,故有树脂组合物的气体屏蔽性和清除氧功能下降之虑。同时,发生因着色和凝胶化引起的成型制品的外观不良,或因分解气体或凝胶物使流动性不均或受阻,也有使树脂组合物层发生残缺部分的现象。极端的场合,由于凝胶物的发生而使注塑成型无法进行。为了抑制熔融时进行氧化,优选用氮气密封原料供给料斗。
另外,树脂组合物,可以以预先将原料成分熔融配合的颗粒形式供给到成型机中,也可以将干混的各原料成分供给到成型机中。
PES和树脂组合物流入的热流道部分的温度优选220~300℃,较优选240~280℃,更优选250~270℃。注塑模热流道部分的温度不足220℃时,由于PES结晶化而在热流道部分固化,有时使成型变得困难。另一方面,热流道部分的温度超过300℃时,热塑性树脂(B)进行氧化,有树脂组合物的气体屏蔽性和清除氧功能下降之虑。同时,由于着色或凝胶物导致成型制品发生外观不良,或者由于分解气体或凝胶物引起流动性不均或受到阻碍,而且有时产生树脂组合物层的残缺部分。极端的场合,由于凝胶物的发生,使注塑成型无法进行。
作为模具的温度,优选0~70℃,较优选5~50℃,更优选10~30℃。由此,可控制型坯的PES和树脂组合物的结晶化,确保均匀的拉伸性,提高得到的多层容器的耐层间剥离性和透明性,从而可以得到形状稳定的成型制品。模具温度不到0℃时,由于模具结露而有损型坯的外观,故有得不到良好的成型制品之虑。另外,模具温度超过70℃时,无法控制型坯的PES和树脂组合物的结晶化,使拉伸性不均,除了得到的成型制品的耐层间剥离性和透明性下降之外,也难以得到赋予预期形状的成型制品。
在如此得到的型坯中,优选总厚度为2~5mm,树脂组合物层的厚度合计为10~500μm。
上述型坯,可以在高温状态下直接地、或采用缸体加热器、红外线加热器等热源再加热之后,送到拉伸吹塑工序。将加热了的型坯在拉伸吹塑工序,在纵向拉伸1~5倍后,用压缩空气等进行1~4倍的拉伸吹塑成型,由此可制造本发明的多层注坯吹塑成型容器,型坯的温度,优选75~150℃,更优选85~140℃,较优选90~130℃,最优选95~120℃,型坯温度超过150℃时,PES容易结晶化,得到的容器因白化而有损外观,并有增加容器的层间剥离的情况。另一方面,型坯的温度不到75℃时,在PES中发生微细裂纹,有时会损害珠光剔透风格的透明性。
如此得到的多层容器的主体部分的总厚度,通常是100~2000μm,150~1000μm是较适宜的,根据用途而定。此时的树脂组合物层的合计厚度优选2~200μm,更优选5~100μm。
如此操作,可以得到由本发明的树脂组合物形成的层和PBS层构成的多层容器。该容器具有高的透明性,而且气体屏蔽性和清除氧功能也极其优异。因此,作为因氧存在而容易劣化变质的内容物,例如,食品、医药品等的容器是有用的。特别是作为啤酒等饮料的容器是极为有用的。
另外,本发明的树脂组合物,也适于作为容器用包封层(密封层),特别是,容器的盖用密封层使用。这种情况下,作为盖本体的素材没有特别的限定,可以采用热塑性树脂、金属等本领域通常使用的材料。安装该密封层的盖子,气体屏蔽性优异,而且具有持续的清除氧功能,因此,在对氧敏感性高而易变质制品的包装中极为有用。实施例
下面,通过实施例更具体地说明本发明,但是,本发明并不受这些实施例的任何限制。
在实施例中的分析如下进行。
(1)EVOH的乙烯含量和皂化度
从采用以重氢化二甲基亚砜为溶剂的1H-NMR(核磁共振)测定(使用日本电子社制「JNM-GX-500型」)得到的光谱计算出。
(2)EVOH的磷酸根含量
将作为试样的干燥切片10g投入到0.01当量的盐酸水溶液50ml中,在95℃下搅拌6小时。将搅拌后的水溶液用离子色谱法进行定量分析,得到作为磷酸离子(PO43-)含量的磷酸根含量,作为色谱法的柱子,使用(株)横川电机制的CIS-A23,作为洗脱液使用含2.5mM的碳酸钠和1.0mM的碳酸氢钠的水溶液。而且,在定量时使用以磷酸水溶液制作的校准曲线。
(3)EVOH的钠盐、钾盐和镁盐含量
将作为试样的干燥切片10g投入到0.01当量的盐酸水溶液50ml中,于95℃下搅拌6小时。将搅拌后的水溶液用离子色谱法进行定量分析,作为各自的阳离子含量以金属换算量计得到了钠盐、钾盐和镁盐含量。作为色谱法的柱子,使用(株)横河电机制的ICS-C25,作为洗脱液使用含5.0mM的酒石酸和1.0mM的2,6-吡啶二羧酸的水溶液。而且,在定量时使用以各自的金属氯化物的水溶液制作的校准曲线。
(4)EVOH的氧透过速度
使用EVOH粒料,在挤出温度210℃下进行挤出,得到厚度为20μm的薄膜。将该薄膜在比EVOH的熔点低20℃的温度下加热处理10分钟后,将温湿度调节至20℃-65%RH,使用氧透过量测定装置(モダンコントロ-ル社制,OX-TRAN-10/50A)测定氧透过速度。使用2种EVOH的混合物作为EVOH时,预先将2种EVOH粒料进行干混,按照上述方法得到薄膜,进行热处理后,测定氧透过速度。对于具有2个熔点的EVOH混合物,作为热处理温度使用比高的一方的熔点低20℃的温度。
(5)共聚物的数均分子量、和共聚物的苯乙烯嵌段的数均分子量
共聚物的数均分子量,采用凝胶渗透色谱法(GPC)作为聚苯乙烯换算值求出。共聚物的苯乙烯嵌段的数均分子量,在第1个苯乙烯嵌段的聚合之后以取样的中间体作为试样,同样地采用GPC作为聚苯乙烯换算值求出。
(6)共聚物的苯乙烯含量,异戊二烯嵌段中的用结构式(1)表示的结构单元的比例和碳-碳双键含量
这些都是从通过以重氯仿作为溶剂的1H-NMR(核磁共振)测定(使用日本电子社制「JNM-GX-500型」)得到的光谱计算出的。这里,所说的苯乙烯含量是指,苯乙烯对于构成共聚物的全部单体单元的比例(mol%)。所说的异戊二烯嵌段中的用结构式(I)表示的结构单元的比例是指,用结构式(I)表示的结构单元(3,4-异戊二烯单元和1,2-异戊二烯单元)对于来自异戊二烯的全部结构单元(1,4-异戊二烯单元、3,4-异戊二烯单元、和1,2-异戊二烯单元)的比例(mol%)。进而,从这些结果算出碳-碳双键含量作为1g树脂中所含双键的摩尔数(eq/g)。
(7)共聚物的tanδ主分散峰温度
将作成试样的树脂,在210℃下供给进行薄膜成型,得到厚度为20μm未拉伸薄膜,从该薄膜切出宽5mm的试验片,使用DVERHEOSPECTOLER DVE-V4(RNEOLOGY Co.,LTD制),在频率11Hz、变位振幅10μm、夹具间距离20mm、测定温度-150~150℃、升温速度3℃/分的条件下进行测定,从得到的图谱求出来自共聚物的异戊二烯嵌段的tanδ主分散峰温度。
(8)熔体流动速率
将作成试样的树脂或树脂组合物的切片,填充到熔融指数仪L244(宝工业株式会社制)的内径9.55mm、长度162mm的料筒中,在210℃下熔融后,使用重2160g、直径9.48mm的柱塞,对熔融的树脂均匀地施加荷重。测定每单位时间从设置在料筒中央的直径2.1mm的模孔挤出的树脂量(g/10分钟),以此作为熔体流动速率。
(9)折射率
将作成试样的树脂切片供给挤出温度210℃下的薄膜挤出成型,得到厚度20μm的末拉伸膜。使用阿贝氏折射仪(株式会社アタゴ社制4T型,株式会社东芝社制SL-Na-1灯)测定该薄膜的折射率。
(10)雾度值(浊度)
将作为试样的树脂或树脂组合物的切片供给挤出温度210℃下的薄膜挤出成型,得到厚度20μm的未拉伸膜。根据ASTM D1003-61基准,使用普克(ポイツク)积分球型光线透过率·全光线反射率计(村上色彩技术研究所制「HR-100型」)测定该薄膜的雾度值。另外,也同样地测定多层膜。另外对于多层瓶,是对瓶体部分中央分4等份的4处,测定各处的内部雾度值,令其平均值作为瓶子的雾度值(浊度)。
(11)PET的各结构单元的含量
从采用以重氢化三氟乙酸作为溶剂的1H-NMR(核磁共振)测定(使用日本电子社制「JNM-GX-500型」)得到的光谱计算出。
(12)PET的特性粘度
从多层容器主体部分的PET层切取试样的薄膜层,并使其溶解在苯酚和四氯乙烷的等重量混合溶剂中。在30℃下用厄布洛德粘度计(林制作所制「HRK-3型」)测定所得溶液的粘度。
(13)PET的熔点和玻璃化转变温度
从多层容器主体部分的PET层切取试样的薄膜层,根据JISK7121基准,使用セイコ一电子工业(株)制示差扫描量热计(DSC)RDC220/SSC5200H型进行测定。在280℃下将试样保持5分钟后,以100℃/分的速度降温到30℃,保持5分钟之后,以10℃/分的速度再升温测定。在温度的校正中使用铟和铅。从得到的曲线图求出上述JIS中所说的熔融峰温度(Tpm)和中间点玻璃化转变温度(Tmg),分别令其为熔点和玻璃化转变温度。
在实施例中,作为气体屏蔽性树脂(A),使用EVOH。实施例中使用的EVOH的物性示于下面的表中。
表2
*1210℃,2160g荷重
*2都是金属换算值
作为热塑性树脂(B),使用由以下方法调制的三嵌段共聚物(B-1)。
向用干燥氮气清洗过的搅拌式高压釜中加入环己烷600体积份、N,N,N’,N’-四甲基乙二胺(TMED)0.16体积份、和作为引发剂的正丁基锂0.094体积份。升温到50℃,供给苯乙烯单体4.25体积份,进行聚合1.5小时。然后将温度降至30℃,供给异戊二烯120体积份,进行聚合2.5小时,再将温度升温到50℃,供给苯乙烯单体4.25体积份并聚合1.5小时。
然后向得到的反应液中,相对于苯乙烯和异戊二烯的合计量100重量份,分别加入2-叔-丁基-6-(3-叔-丁基-2-羟基-5-甲基苄基)-4-甲基苯基丙烯酸酯和季戊四醇四(3-月桂基硫代丙酸酯)各0.15重量份作为氧化防止剂。将反应液注入到甲醇中,使生成物沈淀,并将其分离·干燥,得到添加了防氧化剂的三嵌段共聚物(B-1)。
得到的苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(B-1)的数均分子量是85000,共聚物中的苯乙烯嵌段的分子量分别是8500,苯乙烯含量是14mol%,异戊二烯嵌段中的用结构式(I)表示的结构单元的比例是55%。另外,共聚物的碳-碳双键含量是0.014eq/g,熔体流动速率(210℃,2160g荷重)7.7g/分。共聚物(B-1)中含0.12wt%的2-叔-丁基-6-(3-叔-丁基-2-羟基-5-甲基苄基)-4-甲基苯基丙烯酸酯和0.12wt%的季戊四醇四(3-月桂基硫代丙酸酯)。该共聚物(B-1)的折射率是1.531,雾度值(浊度)是1.0%,来自异戊二烯嵌段的tanδ主分散峰温度是-3℃。
作为互容剂(C),使用下面表中所示的聚合物。
表3
进行如下操作调制互容剂(C-1)。
将苯乙烯-加氢丁二烯-苯乙烯三嵌段共聚物(旭化成株式会社制「タフテツク(注册商标)」H1062)500重量份,和萘烷1500重量份加入到配备有搅拌机、氮气导入管、冷却器和蒸馏器的反应釜中,反应釜用氮气置换后,温度设定在130℃,进行搅拌使共聚物溶解。再向反应釜中加入甲硼烷-三乙胺配合物57.5重量份、和硼酸1,3-丁二醇酯143重量份的混合液。搅拌5分钟后,一度停止搅拌将反应釜温度升至200℃。升温后,不久溶液全体凝胶化,接着从壁面慢慢地进行凝胶的溶解。在可能搅拌的时刻再开始搅拌,待反应釜中的凝胶完全消失以后再继续搅拌1小时。将冷却器切换成蒸馏器,并将反应釜的温度升至220℃,常压下开始蒸馏,连续蒸馏到没有馏出物。冷却得到的反应液,将生成物注入到丙酮中使其沉淀分离,在120℃下真空干燥过夜,得到三嵌段共聚物(C-1)。将该共聚物,溶解在氘化对二甲苯∶氘化氯仿∶乙二醇=8∶2∶0.02的比率的混合溶剂中,供1H-NMR测定(500MHz),测得该共聚物的硼酸1,3-丁二醇酯基含量是220μeq/g。
互容剂(C-2)的调制如下。
将苯乙烯-加氢丁二烯-苯乙烯三嵌段共聚物(重均分子量为100400,苯乙烯/加氢丁二烯=18/82(重量比),丁二烯单元的1,2-键/1,4-键摩尔比=47/53,丁二烯单元的加氢率97%,双键量430μeq/g,熔融指数5g/10分钟(230℃,2160g荷重),密度0.89g/cm3),一边用1L/分钟的氮气置换进料口,一边以7kg/小时的速度供给双轴挤出机。接着,以0.6kg/小时的速度从液体进料器1将甲硼烷-三乙胺配合物(TEAB)和硼酸1,3-丁二醇酯(BBD)的混合液(TEAB/BBD=29/71,重量比),和从液体进料器2将1,3-丁二醇以0.4kg/小时的速度供给,并连续地进行混炼。混炼期间,调节压力使排气孔1和2的表上显示在约20mmHg。其结果,从喷出口以7kg/小时的速度,得到含有硼酸1,3-丁二醇酯基(BBDE)的三嵌段共聚物(C-2)。该共聚物的硼酸1,3-丁二醇酯基含量是210μeq/g。
而且,反应中使用的双轴挤出机的结构、运转条件如下所述。
同向双轴挤出机TEM-35B(东芝机械制)
螺杆径 37mmφ
L/D 52(15段)
液体进料器 C3(液体进料器1),C11(液体进料器2)
排气孔位置 C6(排气孔1)、C14(排气孔2)
螺杆结构 在C5-C6之间,C10-C11之间和C12的位置使用密封环
温度设定 C1冷水
C2~C3200℃
C4~C15 250℃
模头 250℃
螺杆转数 400rpm另外,作为互容剂(C-3),使用乙烯-甲基丙烯酸共聚物(三井デュポンポリケミカル株式会社制「ニュクレル(商品名)」N-1207C)。作为热塑性聚脂,使用通过以二氧化锗作为催化剂的聚合得到的聚对苯二甲酸乙二醇酯(PET)。该PET中的对苯二甲酸单元、乙二醇单元、和二甘醇单元的含量比例分别是50.0mol%、48.9mol%、1.1mol%。另外,特性粘度0.83dl/g,熔点和玻璃化转变温度分别是252℃、80℃。实施例1
将三嵌段共聚物(B-1)71.4重量份、互容剂(C-1)28.6重量份和硬脂酸钴(II)3.0300重量份(作为钴原子0.2857重量份)进行干混,使用30mmφ双轴挤出机(株)日本制钢所制TEX-30SS-30CRW-2V),在200℃下螺杆转数300rpm、挤出树脂量25kg/小时的条件下,一边用氮气吹扫机筒内部一边挤出造粒。在30℃下减压干燥8小时,得到由三嵌段共聚物(B-1)、互容剂(C-1)和硬脂酸钴组成的树脂组合物粒料。
使用得到的树脂组合物粒料,在挤出温度210℃下进行挤出成型,得到厚度20μm的薄膜(第1单层薄膜)。该薄膜的雾度值是1.8%。将该薄膜0.9m2(0.2m×4.5m;表面积1.8m2)在薄膜制膜的5小时后卷成筒状,并放入充满20℃、65%RH的空气的内容量375ml的三角烧瓶中。三角烧瓶中的空气,按体积比计含有21∶79的氧气和氮气。三角烧瓶的瓶口用环氧树脂、含铝层的多层片密封之后,在20℃下放置。封入2天之后、4天之后和8天之后的内部空气用注射器取样,该空气的氧浓度用气体色谱法进行测定。在测定时,多层片上的空的细孔每次都用环氧树脂密封。从通过测定得到的氧和氮的体积比,计算氧的减少量(氧吸收量)时,得到了图1所示的结果。从2天之后和8天之后测定的结果算出的薄膜的氧吸收速度是67ml/m2·day。
将表2所示的EVOH(A-11)93重量份和上述树脂组合物7.2121重量份进行干混,使用30mmφ双轴挤出机((株)日本制钢所制TEX-30SS-30CRW-2V),在210℃下螺杆转数是300rpm,挤出树脂量是25kg/小时的条件下进行挤出造粒,在30℃下进行16小时减压干燥得到树脂组合物粒料。该树脂组合物的熔体流动速率(210℃,2160g荷重)是13.1g/10分钟。用电子显微镜观察树脂组合物颗粒的破碎断面时,确认三嵌段共聚物(B-1)的大约等于或小于1μm的粒子分散在由EVOH构成的基料中了。
由该树脂组合物,与上面同样操作制得厚度20μm的薄膜(第2单层膜),测得其雾度值是1.3%。另外,测定氧吸收量的结果示于图2中。薄膜的氧吸收速度是1.238ml/m2·day。
接着,在得到的薄膜的两面上,用聚氨酯类粘合剂(东洋モ一トン制,商品名AD335A)和固化剂(东洋モ一トン制,商品名Cat-10)的甲苯/甲基乙基甲酮混合溶液(重量比1∶1)叠层厚度20μm的拉伸聚丙烯膜(东セロ株式会社制OP-#20 U-1),得到多层膜。该多层膜的雾度值是2.7%。将该多层膜的温湿度调至20℃-85%RH,以制膜后经过24小时的时刻作为0,使用氧透过量测定装置(モダンコントロ一ル社制,OX-TRAN-10/50A)测定1000小时氧透过速度时,得到图3中所示的结果。
然后,以上述树脂组合物粒料和上述的PET作为原料,使用日精ASB制共注坯拉伸吹塑成型机(ASB-50HT型500ml),成型PET/树脂组合物/PET的2种材料3层的型坯。此间,PET一侧注塑机温度是290℃,树脂组合物一侧注塑机温度是205℃,PET和树脂组合物合流的热流道区段处的温度是255℃,注塑模具型芯温度15℃,注塑模具模腔温度是15℃。另外循环时间是40秒。此后,使用コ一ポプラスト(CORPOPLAST)社制拉伸吹塑成型机(LBO1),将型坯加热到表面温度为105℃并进行拉伸吹塑成型,主体部分的平均厚度是,内层PET100μm,中间层树脂组合物是15μm,外层PET150μm,并制造成瓶底部是香宾酒瓶型的2种材料3层的多层注坯吹塑成型瓶。该瓶的雾度值是3.0%。
调节得到的瓶的温湿度,使瓶外部为20℃-65%RH,瓶内部为20℃-100% RH,使用氧透过量测定装置(モダンコントロ一ル社制,OX-TRAN-10/50A),测定成型10天后的每1个容器的氧透过速度时,确认是0.00ml/container·day·atm。
特别是,向瓶中填充水作为内容物,在常压下栓塞密封。使该瓶的主体部分在垂直状态从50cm的高处,瓶底冲下地只一次自然掉落到水平的混凝土制的平板上。对同一类瓶子试验100个,从发生脱层的瓶子的个数Nd,由下式计算出的脱层发生率Rd(%)是7%。
Rd=(Nd/100)×100实施例2
将实施例1中使用的三嵌段共聚物(B-1)71.4重量份、互容剂(C-1)28.6重量份进行干混,使用30mmφ双轴挤出机(株)日本制钢所制TEX-30SS-30CRW-2V),一边用氮气吹扫机筒内部,一边在200℃下螺杆转数300rpm,挤出树脂量25kg/小时的条件下,进行挤出造粒。在30℃下减压干燥8小时,得到由三嵌段共聚物(B-1)和互容剂(C-1)构成的树脂组合物粒料。
由该树脂组合物,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.6%。
使用在实施例1中使用的EVOH(A-11)74.4重量份、表2所示的EVOH(A-21)18.6重量份、上述三嵌段共聚物(B-1)和互容剂(C-1)构成的树脂组合物7重量份、和硬脂酸钴(II)0.2121重量份(作为钴原子0.0200重量份),与实施例1同样操作制得树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是12.8g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致等于或小于1μm的粒子分散在EVOH构成的基料中。
由该树脂组合物,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.2%。另外,测定氧吸收量的结果示于图2中。薄膜的氧吸收速度是1.475ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.5%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是2.8%。与实施例1同样操作测得该瓶子的氧透过速度是0.00ml/container·day·atm。与实施例1同样操作进行下落试验时,测得脱层发生率是1%。实施例3
在实施例2中,使用示于表2中的EVOH(A-12)代替EVOH(A-11),除此之外,与实施例2同样操作制得树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.2g/10分钟。树脂组合物颗粒破碎断面用电子显微镜观察时,确认三嵌段共聚(B-1)的大致等于或小于1μm的粒子分散在由EVOH构成的基料中。
由该树脂组合物,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.4%。另外,测定氧吸收量得到的结果示于图2中。薄膜的氧吸收速度是0.938ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.7%。另外,测定经过不同时间的氧透过速度,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是2.9%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.00ml/container·day·atm。与实施例1同样操作进行下落试验时,确认脱层发生率是3%。实旋例4
在实施例3中,使用互容剂(C-2)代替互容剂(C-1),除此之外与实施例3同样操作得到树脂组合物粒料。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.2g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致等于或小于1μm的粒子分散在EVOH构成的基料中。
由该树脂组合物,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.4%。测定氧吸收量时,得到示于图2的结果。薄膜的氧吸收速度是1.044ml/m2·day。接着,与实施例1同样操作制作多层膜,测得其雾度值是2.8%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是3.0%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.00ml/container·day·atm。与实施例1同样地进行下落试验时,确认脱层发生率是2%。实施例5
使用表2所示的EVOH(A-13)94重量份、三嵌段共聚物(B-1)5重量份、互容剂(C-3)1重量份和硬脂酸钴(II)0.2121重量份(作为钴原子0.0200重量份),与实施例1同样操作制得树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.4g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1μm左右的粒子分散在EVOH构成的基料中。
为了评价该树脂组合物的热定性,使用差热热重量同时测定装置(セイコ-电子工业株式会社制TG/DTA220型和SSC5200H型),在氮气下,以10℃/分钟的速度将上述树脂组合物粒料从室温升温到260℃,在260℃下保持2小时,颗粒的重量保持率(以加热前的重量为基准的粒料的重量比例)是98.5%。
由该树脂组合物粒料,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.1%。另外,将取样时期定为封入2天后、6天后和13天后,除此之外,与实施例1同样操作测定氧吸收量的结果示于图4中。从2天后和13天后的测定结果计算出的、薄膜的氧吸收速度是0.525ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.4%。另外,测定经过不同时间的氧透过速度时,得到了示于图5的结果。
然后,以上述树脂组合物粒料和上述的PET作为原料,使用日精ASB制共注坯拉伸吹塑成型机(ASB-50HT型750ml,安装2台),成型PET/树脂组合物/PET的2种材料3层的型坯。此间,PET一侧注塑机温度是290℃,树脂组合物一侧注塑机温度是220℃,PET和树脂组合物合流的热流道区段处的温度是260℃,注塑模具型芯温度15℃,注塑模具模腔温度是15℃。另外,循环时间是40秒。此后,使用コ一ポプラスト(CORPOPLAST)社制拉伸吹塑成型机(LBO1),将型坯加热到表面温度为105℃并进行拉伸吹塑成型,并制造主体部分的平均厚度是,内层PET200μm,中间层树脂组合物是20μm,外层PET70μm2种材料3层的多层注坯吹塑成型瓶。该瓶的雾度值是2.9%。
调节得到的瓶的温湿度,使瓶外部为20℃-65%RH,瓶内部为20℃-100%RH,使用氧透过量测定装置(モダンコントロ一ル社制,OX-TRAN-10/50A),测定成型10天后的每1个容器的氧透过速度时,确认是0.00ml/container·day·atm。另外,将瓶子外部在氮气下保持20℃-65%RH,瓶内部在氮气下保持20℃-100%RH的条件下,将瓶子保管3个月,测定每个容器的氧透过速度时,确认是0.00ml/container·day·atm。
另外,连续进行上述瓶子的成型,以目视观察连续运转12小时后的瓶子时,完全没有看到气泡等的外观不良。实施例6
对互容剂(C-3)100重量份和乙酸钴(II)3重量份(作为钴原子1重量份)进行干混,使用装有布拉本装置的试验室塑混机(东洋精机(株)制),在氮气下保持220℃并在螺杆转数60rpm下熔融混炼5分钟。从原料刚投入马上开始中和反应,可以确认作为副产物的乙酸蒸气的发生,但是在混炼结束时蒸气的发生停止。结果得到101重量份的深蓝色的互容剂组合物。
使用实施例5所用的EVOH(A-13)93重量份、三嵌段共聚物(B-1)5重量份和上述互容剂组合物2.02重量份,与实施例1同样地操作得到树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.6g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1μm前后的粒子分散在EVOH构成的基料中。与实施例5同样操作评价该树脂组合物的热定性时,确认粒料的重量保持率是99.4%。
由该树脂组合物,与实施例5同样操作制得厚度20μm的薄膜,测得其雾度值是1.6%。另外,测定氧吸收量的结果示于图4中。薄膜的氧吸收速度是0.507ml/m2·day。接着,与实施例5同样操作制作多层膜,并测得其雾度值是2.7%。
进而,与实施例5同样操作制作瓶子,测得其雾度值是3.4%。与实施例5同样操作测得该瓶子的氧透过速度是0.00ml/container·day·atm。保管3个月后的瓶子的氧透过速度是0.00ml/container·day·atm。
另外,连续进行上述瓶子的成型,以目视观察连续运转12小时后的瓶子时,完全没有看到气泡等的外观不良。实施例7
使用硬脂酸钴(II)10.6重量份(作为钴原子1重量份)代替乙酸钴(II)3重量份,除此之外,与实施例6同样操作得到101重量份的深蓝色的互容剂组合物。
除将互容剂组合物变换成上述的组合物以外,与实施例6同样地操作得到树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.6g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1μm前后的粒子分散在EVOH构成的基料中。与实施例5同样操作评价该树脂组合物的热定性时,确认粒料的重量保持率是99.3%。
由该树脂组合物,与实施例5同样操作制得厚度20μm的薄膜,测得其雾度值是1.4%。另外,测定氧吸收量的结果示于图4中。薄膜的氧吸收速度是0.471ml/m2·day。接着,与实施例5同样操作制作多层膜,并测得其雾度值是2.8%。
进而,与实施例5同样操作制作瓶子,测得其雾度值是3.2%。与实施例5同样操作测得该瓶子的氧透过速度是0.00ml/container·day·atm。保管3个月后的瓶子的氧透过速度是0.00ml/container·day·atm。
另外,连续进行上述瓶子的成型,以目视观察连续运转12小时后的瓶子时,完全没有看到气泡等的外观不良。比较例1
单独地使用EVOH(A-11),与实施例1同样操作制得厚度20μm的薄膜。测定该薄膜的氧吸收量时,得到了示于图2的结果。薄膜的氧吸收速度是0.000ml/m2·day。接着,与实施例1同样操作制作多层膜,测得其雾度值是2.1%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是2.1%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.03ml/container·day·atm。与实施例1同样地进行下落试验时,确认脱层发生率是10%。比较例2
使用实施例1中所用的EVOH(A-11)95重量份、三嵌段共聚物(B-1)5重量份和硬脂酸钴(II)0.2121重量份(作为钴原子0.0200重量份),与实施例1同样地操作得到树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是13.5g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1~2μm的粒子分散在EVOH构成的基料中。
由该树脂组合物粒料,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.5%。另外,氧吸收量的测定结果示于图2中。薄膜的氧吸收速度是1.117ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.9%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是3.3%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.00ml/container·day·atm。与实施例1同样地进行下落试验时,确认脱层发生率是52%。比较例3
除了单独使用EVOH(A-12)代替EVOH(A-11)之外,与比较例1同样操作制得厚度20μm的薄膜。该薄膜的氧吸收量的测定结果示于图2中。薄膜的氧吸收速度是0.000ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.0%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是2.0%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.02ml/container·day·atm。与实施例1同样地进行下落试验时,确认脱层发生率是11%。比较例4
除了用EVOH(A-12)代替EVOH(A-11)之外,与比较例2同样地操作得到树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是10.0g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1~2μm的粒子分散在EVOH构成的基料中。
由该树脂组合物粒料,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.4%。另外,氧吸收量的测定结果示于图2中。薄膜的氧吸收速度是0.700ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.9%。另外,测定经过不同时间的氧透过速度时,得到了示于图3的结果。
进而,与实施例1同样操作制作瓶子,测得其雾度值是3.4%。与实施例1同样操作测定该瓶子的氧透过速度时,确认是0.00ml/container·day·atm。与实施例1同样地进行下落试验时,确认脱层发生率是85%。比较例5
单独使用EVOH(A-13)。与实施例5同样操作评价EVOH的热稳定性时,确认该EVOH的粒料的重量保持率是91.4%。与实施例5同样操作制得厚度20μm的薄膜,氧吸收量的测定结果示于图4中。薄膜的氧吸收速度是0.000ml/m2·day。接着,与实施例5同样操作制作多层膜,并测得其雾度值是2.0%。另外,测定经过不同时间的氧透过速度时,得到了示于图5的结果。
进而,与实施例5同样操作制作瓶子,测得其雾度值是2.4%。与实施例5同样操作测定该瓶子的氧透过速度时,确认是0.02ml/container·day·atm。保管3个月后的瓶子的氧透过速度是0.02ml/container·day·atm。
另外,连续进行上述瓶子的成型,以目视观察连续运转12小时后的瓶子时,完全没有看到气泡等的外观不良。比较例6
使用实施例5中所用的EVOH(A-13)95重量份、三嵌段共聚物(B-1)5重量份和硬脂酸钴(II)0.2121重量份(作为钴原子0.0200重量份),与实施例5同样地操作得到树脂组合物。该树脂组合物的熔体流动速率(210℃-2160g荷重)是9.5g/10分钟。树脂组合物颗粒的破碎断面用电子显微镜观察时,确认三嵌段共聚物(B-1)的大致1μm前后的粒子分散在EVOH构成的基料中。另外,与实施例5同样操作评价该树脂组合物的热定性时,确认粒料的重量保持率是83.0%。
由该树脂组合物粒料,与实施例1同样操作制得厚度20μm的薄膜,测得其雾度值是1.0%。另外,氧吸收量的测定结果示于图4中。薄膜的氧吸收速度是0.565ml/m2·day。接着,与实施例1同样操作制作多层膜,并测得其雾度值是2.3%。另外,测定经过不同时间的氧透过速度时,得到了示于图5的结果。
进而,与实施例5同样操作制作瓶子,测得其雾度值是2.7%。与实施例5同样操作测定该瓶子的氧透过速度时,确认是0.00ml/container·day·atm。保管3个月后的瓶子的氧透过速度是0.00ml/container·day·atm。
另外,连续进行上述瓶子的成型,以目视观察连续运转12小时后的瓶子时,可看到有若干的气泡。
将上述的树脂组合物的组成汇总在表4中,各种评价结果汇总在表5和表6中。
表4
*3金属换算值
*9ml·20μm/m2·day·atm
表5
*4210℃,2160g荷重
*5从2天后和8天后的氧吸收量计算出的
表6
*4210℃,2160g荷重
*6从2天后和13天后的氧收吸量算出的
*7成型后经10天的瓶子的氧透过速度
*8成型后经3个月的瓶子的氧透过速度实施例8
将实施例5中制作的多层膜冲切成,与外径65mm、底部厚度1.2mm的聚丙烯制的螺纹盖主体相一致的密封垫片形状,并安装到该螺纹盖主体内。然后将得到的装有密封垫片的盖子主体供给到压缩成型用密封垫片成型机的模具中,另外,在该压缩成型用密封垫片成型机中将乙烯-1-丁烯共聚物(シェルケミカル制「POLYBUTYLENE8240」1-丁烯(至少99mol%)和乙烯(最多1mol%)的共聚物,密度0.908g/cm3,MFR=2.0g/10分钟(210℃-2160g荷重))供给到该多层薄膜构成的密封垫片表面上,进行压缩成型,由此制作装有密封垫片的盖子。此时要调节温度,以使压缩成型机的机筒温度是245℃,喷嘴温度是235℃,模具温度是30℃。
然后,向内容量500ml圆筒状的聚酯制吹塑瓶子中装入水200ml,安装上述盖子,用指尖轻轻压实。用手拿住瓶子主体部分上下大幅度振动20次,观察液体泄露状态,然而完全没有见到液体泄露的现象。
工业实用性
按照本发明,可以得到具有优异的清除氧功能的树脂组合物。该树脂组合物容易加工,可以成型为任意的形状。特别是,该树脂组合物构成的容器不仅具有优异的气体屏蔽性、防湿性、保香性、和香味屏蔽性,而且还具有优异的耐冲击剥离性,另外还可以得到外观,特别是透明性,故作成对于氧敏感性高易于劣化变质的制品,特别是食品、饮料、医药品、化妆品等的容器是有用的。
权利要求
1.一种树脂组合物,该树脂组合物是含有气体屏蔽性树脂(A)、该气体屏蔽性树脂(A)以外的热塑性树脂(B)、和互容剂(C)的树脂组合物,其中,该气体屏蔽性树脂(A)在20℃,65%RH下的氧透过速度等于或小于500ml·20μm/m2·day·atm,该热塑性树脂(B)具有碳-碳双键,而且该树脂组合物的氧吸收速度是等于或大于0.001ml/m2·day。
2.按照权利要求1所述的树脂组合物,其中,还含有过渡金属盐(D)。
3.一种树脂组合物,该树脂组合物是含有气体屏蔽性树脂(A)、该气体屏蔽性树脂(A)以外的热塑性树脂(B)、互容剂(C)、和过渡金属盐(D)的树脂组合物,其中,该气体屏蔽性树脂(A)在20℃,65%RH下的氧透过速度等于或小于500ml·20μm/m2·day·atm,而且,该热塑性树脂(B)具有碳-碳双键。
4.按照权利要求2或3所述的树脂组合物,其中,过渡金属盐(D)的含有比例,以上述气体屏蔽性树脂(A)、热塑性树脂(B)和互容剂(C)的合计重量为基准,换算成金属元素计是1~5000ppm。
5.按照权利要求2~4的任一项所述的树脂组合物,其中,上述过渡金属盐(D)具有选自铁、镍、铜、锰、和钴中的至少一种的过渡金属。
6.按照权利要求1~5的任一项所述的树脂组合物,其中,上述热塑性树脂(B),以等于或大于0.0001eq/g的比例含有碳-碳双键。
7.按照权利要求1~6的任一项所述的树脂组合物,其中,上述热塑性树脂(B),具有用下述结构式(I)表示的单元
式中,R1是氢原子或是碳原子数1~5的烷基、R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4分别独立地是氢原子、碳原子数1~10的烷基、可被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基。
8.按照权利要求1~7的任一项所述的树脂组合物,其中,上述热塑性树脂(B)的数均分子量是1000~500000。
9.按照权利要求1~8的任一项所述的树脂组合物,其中,上述气体屏蔽性树脂(A)是乙烯含量5~60mol%、皂化度是等于或大于90%的乙烯-乙烯醇共聚物。
10.按照权利要求1~9的任一项所述的树脂组合物,其中,上述气体屏蔽性树脂(A)和上述热塑性树脂(B)的折射率之差是等于或小于0.01。
11.按照权利要求1~10的任一项所述的树脂组合物,其中,上述热塑性树脂(B)构成的粒子分散在上述气体屏蔽性树脂(A)的基料中。
12.按照权利要求1~11的任一项所述的树脂组合物,其中,含有上述气体屏蔽性树脂(A)的比例为40~99.8wt%、上述热塑性树脂(B)的比例为0.1~30wt%、和上述互容剂(C)的比例为0.1~30wt%。
13.一种树脂组合物,该树脂组合物是含有热塑性树脂(B)和互容剂(C)的树脂组合物,其中,该热塑性树脂(B)具有用下述结构式(I)表示的单元
式中,R1是氢原于或碳原于数1~5的烷基,R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4各自独立地是氢原子、碳原子数1~10的烷基、可以被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,而且碳-碳双键的含量比例是等于或大于0.0001eq/g,且该热塑性树脂(B)的数均分子量是1000~500000,而且该树脂组合物的氧吸收速度是等于或大于0.1ml/m2·day。
14.按照权利要求13所述的树脂组合物,其中,还含有过渡金属盐(D)。
15.一种树脂组合物,该树脂组合物是含有热塑性树脂(B)、互容剂(C)和过渡金属盐(D)的树脂组合物,其中,该热塑性树脂(B)具有以下述结构式(I)表示的单元
式中,R1是氢原子或碳原子数1~5的烷基,R2是氢原子、碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,R3和R4各自独立地是氢原子、碳原子数1~10的烷基、可被取代的芳基、-COOR5、-OCOR6、氰基、或卤原子,R5和R6各自独立地是碳原子数1~10的烷基、芳基、烷芳基、芳烷基或烷氧基,且以等于或大于0.0001eq/g的比例含有碳-碳双键,而且该热塑性树脂(B)的数均分子量是1000~500000。
16.按照权利要求14或15所述的树脂组合物,其中,以热塑性树脂(B)和互容剂(C)的合计重量为基准,以换算成金属元素计为1~50000ppm的比例含有过渡金属盐(D)。
17.按照权利要求14~16的任一项所述的树脂组合物,其中,上述过渡金属盐(D)具有选自铁、镍、铜、锰和钴中的至少一种的过渡金属。
18.按照权利要求1~17的任一项所述的树脂组合物,其中,上述互容剂(C)是具有选自羧基、硼酸基、和在水存在下可转化成硼酸基的含硼基中的至少一个官能基的热塑性树脂。
19.按照权利要求1~18的任一项所述的树脂组合物,其中,上述热塑性树脂(B),含有芳香族乙烯系化合物单元和二烯化合物单元。
20.按照权利要求19所述的树脂组合物,其中,上述二烯化合物单元是异戊二烯单元和丁二烯单元中的至少一方。
21.按照权利要求19或20所述的树脂组合物,其中,上述芳香族乙烯系化合物单元是苯乙烯单元。
22.按照权利要求19~21的任一项所述的树脂组合物,其中,上述热塑性树脂(B)是嵌段共聚物。
23.一种多层结构体,该多层结构体含有至少一层是由权利要求1~22的任一项所述的树脂组合物构成的层。
24.一种多层容器,该多层容器含有由权利要求1~22的任一项所述的树脂组合物构成的层,和热塑性聚酯层至少各一层。
25.一种盖子,该盖子安装有由权利要求1~22的任一项所述的树脂组合物构成的密封垫片。
全文摘要
本发明提供具有清除氧功能的树脂组合物,该树脂组合物含有气体屏蔽性树脂(A)、该气体屏蔽性树脂(A)以外的热塑性树脂(B)、和互容剂(C),该气体屏蔽性树脂(A)在20℃,65%RH下的氧透过速度等于或小于500ml·20μm/m2·day·atm,该热塑性树脂(B)具有碳-碳双键,而且该树脂组合物的氧吸收速度是等于或大于0.001ml/m2·day。
文档编号C08L23/08GK1392893SQ01803110
公开日2003年1月22日 申请日期2001年8月31日 优先权日2000年9月1日
发明者田井伸二, 下浩幸, 中谷正和, 池田薰 申请人:可乐丽股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1